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Abstract 

Configuring Engineering Systems Considering Consumer Heterogeneity 

Christopher Hoyle 

This dissertation is motivated by the need to develop methods which connect the engineering 

and marketing domains to enable identification of the preferred engineering system 

configuration, considering the real complexities in engineering system design and the 

heterogeneity of consumer preferences for such systems. The research includes a design process 

tool, an experimental design approach for human appraisal experiments, a multivariate statistical 

analysis methodology for human appraisal data, and finally an integrated Bayesian hierarchical 

choice modeling method which rigorously considers consumer heterogeneity and the nature of 

complex system design. This research primarily uses an automotive vehicle occupant package 

design as a motivating example, to both illustrate the issues in system design and demonstrate the 

features of the proposed design approach. The research can be divided into four primary 

contributions. 

A new process tool called Product Attribute Function Deployment (PAFD) is introduced as a 

decision-theoretic, enterprise-level process tool to guide engineering design. The PAFD method 

is a model-based approach built upon established methods in engineering, marketing, and 

decision analysis to eliminate the need for user ratings and rankings of performance, priority, and 

attribute-coupling used in current process tools.  
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To collect data necessary to support preference modeling, an algorithmic design of human 

appraisal experiments method is developed to identify the optimal human appraisal experiment 

for a given set of requirements. The advantages of this approach over competing approaches for 

minimizing the number of appraisal experiments and model-building efficiency are clearly 

demonstrated.  

An issue with human appraisal experiments is that the heterogeneity of the experimental 

respondents contributes to the response, and this heterogeneity must be understood to separate 

the influence of design factors from that of human factors. Multivariate statistical techniques are 

utilized to create a human appraisal analysis methodology to understand heterogeneity and 

preprocess the human appraisal data to enable preference modeling. 

The Integrated Bayesian Hierarchical Choice Model (IBHCM) framework provides a unified 

choice modeling approach for complex system design. It utilizes multiple model levels to create 

a link between qualitative attributes considered by consumers when selecting a product and 

quantitative attributes used for engineering design.  
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Glossary 

Decision-Based Design (DBD): An approach to engineering design that recognizes the 
substantial role that decisions play in design, largely characterized by ambiguity, uncertainty, 
risk, and multiple trade-offs.  

Discrete Choice Analysis (DCA): A statistical modeling technique that describes choices 
made by people among a set of mutually exclusive and collectively exhaustive alternatives. 
Aggregation of individual choice probabilities allows for demand estimation for a given 
alternative. 

Ordered Logit (OL): A regression modeling technique specifically for modeling ordinal 
dependent variables, such as ratings.  

Hierarchical Choice Model (HCM): A multilevel model used to describe choices made by 
people for a set of alternatives characterized as complex systems. The model is characterized 
by a DCA model at the top level, and a system of DCA or OL models at other levels to link 
consumer choices to engineering design attributes. 

Customer-Desired Attributes (A): Attributes of a product or system which influence a 
consumer’s choice or evaluation of the product or system, such as comfort, roominess, or 
exterior styling of an automobile. 

Engineering Attributes (E): Attributes of a product or system used in engineering analysis 
and decision-making, such as horsepower, occupant package headroom, or fuel economy of an 
automobile.  

Design Attributes (X): Specific attributes of a product or system which can be directly 
controlled by a designer to define an engineering attribute, such as a material type, dimension, 
or shape of an automotive component. 

Demographic (or Human) Attributes (S): Attributes of the consumer including socio-
economic (e.g. income), anthropomorphic (e.g. height), purchase history (e.g. Ford Focus) and 
product of system intended usage (e.g. commuting to work). 

Model Attributes (Z): The set of all customer-desired A or engineering attributes E, and 
demographic attributes S included in the choice or rating model, including interactions among 
the model terms and high order terms. 

Ratings (R): A method for a consumer to express his/her opinion of a product or system using 
an ordinal scale. Popular ordinal scales are 1-5, 1-7, or 1-10.  

Programmable Vehicle Model (PVM): A computer-controlled, parametric vehicle hardware 
model capable of simulating a wide range of vehicles in a short amount of time for human 
appraisal experiments.  
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Chapter 1 
PPRROOBBLLEEMM  DDEESSCCRRIIPPTTIIOONN  AANNDD  RREESSEEAARRCCHH  OOBBJJEECCTTIIVVEESS  

The research in this dissertation is motivated by the need to develop methods which connect the 

engineering and marketing domains to enable identification of the preferred configuration of an 

engineering system, considering the real complexities in engineering system design and the 

heterogeneity of consumer preferences for such systems. Configuring an engineering system 

requires multiple decisions to be made, specifically selection of a preferred system concept, 

deciding the features to offer in the system, and finally setting performance targets for the 

system. To make rigorous decisions for an engineering system, it will be shown in this research 

that it is necessary to consider factors outside the traditional engineering domain.  

Traditional engineering design is conducted primarily with an engineering-centric viewpoint, 

in which the objective is to achieve the best performance given the budget available (monetary, 

human resources, etc.). In general, it has been noted in a variety of contexts (Clausing and 

Hauser, 1988; Krishnan and Ulrich, 2001; Ullman, 2002) that each of the major functional 

domains within a firm, or enterprise, such as engineering, marketing, production, and 

management, generally seeks to optimize a domain-specific objective, with limited input from 

the other functional domains. An example of the traditional product development decision 

making process in the marketing and engineering domains is shown in Figure 1.1. Such a 

disconnected decision process cannot be assured to make optimal decisions for an engineering 

system, most importantly because the engineering-centric approach does not consider consumer 

demand for the designs considered, whereas the marketing-centric approach does not consider 
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the intricacies of engineering attribute coupling, and the resulting influence upon cost, for a 

product or system design. 
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Figure 1.1: Disconnected Decision Processes 

The need to consider potential consumer demand, together with cost and performance, when 

designing an engineering system is necessary to estimate the potential profit for the designed 

system, to determine the benefit of a given design to an enterprise. As will be shown in this 

research, an estimation of demand as a function of product attributes must explicitly consider 

the heterogeneity of the consumers and the market in which the product will compete, as 

illustrated in Figure 1.2, as well as sources of uncertainty to make product decisions. 
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Customer Usage Heterogeneity Market 

age, income, 
SUV PICKUP height, weight, 
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Moving MINIVA
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Figure 1.2:  Heterogeneity of the Consumers and the Market 
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1.1 RESEARCH MOTIVATION AND CHALLENGES 

Creating a connected decision process, primarily between marketing and engineering, has been a 

topic of research over the last few decades (Krishnan and Ulrich, 2001). Clausing and Hauser 

(1988) introduced the largely qualitative House of Quality (HoQ) methodology, based upon the 

Quality Function Deployment (QFD) methodology developed in Japan in the late 1960’s. QFD 

is based upon the assumption that customer preferences can be aggregated and represented by 

group importance rankings and ratings, which is a potentially faulty assumption as will be 

demonstrated in this research. Recent efforts have used quantitative demand modeling 

approaches to estimate consumer demand for engineering system designs. Cook (1997) 

introduced a linear demand model derived from Taylor series expansion using product value and 

price to estimate demand, assuming aggregate consumer preferences. Li and Azarm (2000) 

utilized paired-comparison conjoint analysis (Green and Srinivasan, 1978) and estimated a 

deterministic linear part-worth utility model to estimate demand among the survey respondents 

for a given product. Alternatively, probabilistic choice modeling approaches using Discrete 

Choice Analysis (DCA) (Ben-Akiva and Lerman, 1985) to estimate demand have been utilized. 

DCA is a flexible approach which can model choice using a utility function composed of 

observed product and consumer level attributes, and can be estimated using survey or actual 

choice data, or a combination of both. Further, a “mixed” formulation of the model can be used 

to capture the distribution of unobserved, or random, preference heterogeneity. Using DCA to 

estimate demand entails estimating choice probability for a given design alternative over a 

sample population, and aggregating choice probability for a given design alternative to estimate 

its choice share, and ultimately its demand. Wassenaar et al. (2003; 2005; 2006) utilized DCA to 

model demand for an engineering system, demonstrating the method using a selection of 
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quantitative product and consumer attributes for a consumer product and an automotive system. 

The approach was extended to include consumer perceptual preferences through the introduction 

of latent variable modeling (Wassenaar et al., 2004). Michalek et al. (2005) have considered 

random consumer heterogeneity only (i.e. the distribution of attribute preferences in a given data 

set) to enable the use of a DCA choice model.  

While the previous work has laid the foundation for incorporating demand modeling in 

engineering design, there are several issues which must be resolved to enable the estimation of 

demand models for a general engineering system. The issues are summarized as follows: 

• A systematic approach does not exist to model the effect of consumer heterogeneity upon 

demand. Previous approaches have accounted for heterogeneity of consumer preference in 

different manners: some have assumed that an “average” preference exists for the whole 

market, while others have assumed that the market could be segmented into groups in which 

preference is assumed to be homogeneous (i.e. latent class models (Train, 2003)). In the DCA 

methodology, both systematic and random heterogeneity have been modeled, but primarily 

as dictated by the form of model chosen and not based upon the nature of the problem. 

• Except for the qualitative and potentially faulty QFD process, a design process tool for 

implementing the demand modeling approaches described above in a real design 

environment does not exist.  

• Previous approaches have not adequately addressed the issue that customer-desired attributes 

used by a consumer may be qualitative in nature, and may be best expressed by an ordinal 

rating or ranking for the attribute, as opposed to a quantitative measure in a choice model.  

• A comprehensive method for designing, conducting, and analyzing human appraisal 

experiments for use in guiding the engineering design process does not exist. 
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• The approaches do not adequately consider the nature of a complex system, in which a 

hierarchy of sub-systems exists between the top-level consumer choice attributes and the 

design-level engineering attributes.  

• The approaches presented have used a single data source collected at a single time, with no 

framework to combine data from different sources and different times throughout the 

design process. 

• Major sources of uncertainty in the demand model have not been adequately quantified and 

included in the subsequent decision process. 

Given the issues in engineering design, the objective of this dissertation is to develop a 

general design methodology for complex engineering systems which considers the effect of 

consumer heterogeneity. Specifically, the research tasks are: 1) to create a general design process 

tool, similar in format to QFD, but rooted in more rigorous design decision-making principles to 

quantitatively bridge the gap between engineering and marketing; 2) to formulate a design of 

experiments method specifically for human appraisals; 3) to develop a multivariate statistical 

analysis methodology to understand human appraisal experiments; and 4) to create a general 

hierarchical choice modeling framework to support target-setting for complex system design, 

which accounts for the hierarchical nature of complex system design, incorporates heterogeneity 

at all model levels, and quantifies model uncertainty. 

1.2 ENTERPRISE-DRIVEN DESIGN APPROACH TO CONFIGURING ENGINEERING SYSTEMS  

The enterprise-driven approach to system configuration proposed in this dissertation and 

illustrated in Figure 1.3 is a comprehensive process to address the issues enumerated in Section 

1.1. Specifically, methods are provided for selecting a preferred design concept, assessing 

consumer preferences for various system, sub-system, and component attributes, utilizing data 
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collected in human appraisal experiments, and setting target levels of performance for a 

preferred system concept. The methods proposed in this research are based upon the principles of 

enterprise-driven Decision-based Design (DBD) to make engineering system configuration 

decisions. This proposed design methodology begins at the conceptual design phase in which a 

number of design concepts are brainstormed by a design team and a preferred design concept is 

selected for further development. Following selection of a preferred concept, performance targets 

must be set to define the preferred configuration for the selected system concept. The process of 

configuring the system starts with an understanding of heterogeneous consumer preferences for 

system, sub-system, and component level design features. These preferences are elicited using 

designed human appraisal experiments. These data are analyzed and processed to understand 

consumer heterogeneity and to structure the data in a format which supports efficient modeling 

of consumer preferences. With structured data, preference models are created which link 

consumer preferences to engineering attributes using the Bayesian Hierarchical Choice Model, 

which together with cost models and enterprise-level objectives, enable identification of target 

engineering performance levels to be selected which meet the needs of both the consumer and 

producer.  

To realize the enterprise-driven approach to system configuration, research is required in four 

core areas: the Product Attribute Function Deployment Method, the Human Appraisal 

Experimental Design Method, Multivariate Statistical Data Analysis and Processing Techniques 

for Human Appraisals, and the Integrated Bayesian Hierarchical Choice Model. Research in 

these four core elements forms the focus of this dissertation; each research task is described in 

more detail in the following paragraphs.  
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Figure 1.3: Enterprise-Driven Approach to System Configuration 

Research Task 1—Product Attribute Function Deployment: As noted, design decisions for an 

engineering system require consideration of engineering performance and cost, as well as market 

acceptance to ensure the resulting design will be profitable and benefit the enterprise. The current 

methods outlined previously for bridging this gap are either the qualitative, and potentially 

flawed QFD method, or the quantitative optimization frameworks, using analytical engineering 

and market demand models, but lacking a methodology for implementation in a product 

development setting. In engineering product development, design process tools are needed to 

guide the development process in a systematic way, with a clear flow of activities. The PAFD 
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method is provided as a design process tool, rooted in rigorous decision-making principles, to 

bridge the gap between engineering and marketing to guide product development activities, 

select preferred design concepts, and set target engineering performance levels. 

Research Task 2—Design of Subsystem Human Appraisal Experiments: Surveys are 

required to elicit consumer preferences for system and sub-system design features and to provide 

the data needed to estimate preference models. An optimal design of human appraisal 

experiments methodology is developed, which considers that the experiments are completed by 

heterogeneous human respondents, and supports modeling of human preferences explicitly 

including the impact of heterogeneity. Features of the human appraisal experimental design 

method are that the experiment is optimized to estimate a response surface ordered logit model, a 

large number of product and demographic factors can be accommodated, fatigue of human 

respondents is mitigated, the unique rating style of individual respondents is accounted for, and  

specific factor combinations can be included or excluded from the design.. 

Research Task 3—Analysis of Human Appraisals for Modeling Consumer Heterogeneity: 

While the ultimate goal of this research is the use of the hierarchical choice model to set 

engineering attribute targets, the data used in the modeling process must be analyzed to 

determine the best modeling method, maximize the goodness-of-fit of the resulting models, and 

gain insights into the heterogeneity of human preferences that may not be obvious from a 

preference model alone. Specific methods are developed to analyze human appraisal 

experiments, which present a unique set of challenges compared to industrial or scientific 

experiments due to the effects of respondent heterogeneity and human behavior. Multivariate 
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statistical methods are utilized for this task to understand respondent heterogeneity and to 

support consumer preference modeling. 

Research Task 4—Integrated Bayesian Hierarchical Choice Modeling: A link between 

customer-desired attributes in the choice model and engineering design attributes used for 

product development is required for the design of complex systems. The complex system 

problem is characterized by a hierarchy of attributes in choice model estimation, a hierarchy of 

consumer demographic descriptors, and data from multiple sources of varying degrees of 

richness. Additionally, it cannot be assumed that the data needed to estimate a choice model for a 

complex system resides in a single survey, but rather is contained in several sub-system surveys. 

The Integrated Bayesian Hierarchical Choice Modeling approach is formulated to 

mathematically map qualitative choice criteria to quantitative engineering attributes. The 

approach considers the hierarchy of components and subsystems in a complex system, utilizes 

multiple sources of data, and affords a mechanism to quantify uncertainty and minimize model 

errors for a hierarchical system of preference models. The mixed logit (MXL) choice model is 

used to capture systematic and random heterogeneity, and Bayesian methodology is used for 

integrated estimation of the system of models in the hierarchy. 

Development of techniques for the four listed research tasks enables implementation of the 

Enterprise-Driven Decision-Based Design (DBD) framework, which provides the basis for a 

rigorous decision making methodology for engineering design. The Decision-Based Design 

framework will be described in Chapter 2. The research developments will be illustrated using 

the vehicle occupant packaging design problem, which provides the necessary complexity and 

attribute trade-offs to demonstrate the proposed techniques. 
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1.3 VEHICLE OCCUPANT PACKAGING DESIGN 

Vehicle occupant package design is a multidisciplinary design activity that requires setting 

package design targets in terms of standard Society of Automotive Engineers (SAE) dimensions, 

in the presence of overall vehicle design considerations, such as structural, safety, and styling 

dimensions, illustrated in Figure 1.4. The design problem is characterized by often conflicting 

objectives among the design of the exterior styling, the vehicle structure, and the occupant 

package layout. In actual design practice, the conflicts are often resolved using extensive 

benchmarking of competitive vehicles and heuristic approaches. Several methodical approaches 

to capture the interaction of occupant packaging with other vehicle sub-systems have been 

investigated in the literature (Parkinson and Reed, 2006; Noui-Mehidi, 1997; Hamza et al., 2004; 

de Weck and Suh, 2006). While these approaches consider specific interactions between 

occupant packaging attributes and select vehicle attributes, they do not consider the trade-offs 

among multiple vehicle attributes, while simultaneously considering customer preferences. 

Further, models have been used for posture prediction (Reed et al., 2000; Reed et al., 2002) but 

have not addressed the relationship between anthropomorphic attributes and customer 

preferences for packaging.  

 
Figure 1.4: Vehicle Occupant Packaging Design Trade-offs (Society of Automotive Engineers, 

2002) 
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The vehicle package must be designed to best meet the needs of a demographically diverse 

target population, characterized by diversity in socio-economic attributes (e.g. age, income), 

anthropomorphic attributes (e.g. height, weight), expectations based on previous purchase history 

(e.g. vehicle brand, size), and intended usages (e.g. commuting, moving), as illustrated in Figure 

1.2. The market is also heterogeneous, composed of many market segments in which similar 

vehicles compete (e.g., small SUV, compact sedan). Unlike other vehicle specifications, setting 

package targets has been heavily influenced by qualitative considerations, such as overall 

roominess of the occupant package. In addition, customer-perceptions of the vehicle occupant 

package can be influenced by external factors, such as the market/product segment (SUV vs. 

midsize car) and the perceived status (luxury vs. economy) of the vehicle. Due to such 

complexity, targets for packaging attributes have traditionally been determined primarily through 

benchmarking of competitive vehicles and experience, limiting the potential for optimization of a 

vehicle design for a given market segment. 

1.4 ORGANIZATION OF THE DISSERTATION 

The organization of the dissertation is illustrated in Figure 1.5. Chapter 2 presents both the 

technical background and the previous work underlying the four research tasks described in 

Section 1.2. Chapter 3 presents the Product Attribute Function Deployment (PAFD) method for 

design selection to address Research Task 1. While the method is general and can be used for 

both selecting a preferred design concept early in the process and setting target performances 

later in the design process, the method is demonstrated for design concept selection early in the 

design process. The design example used is an automotive pressure sensor rather than the vehicle 

packaging problem introduced in Section 1.3 because the choice model structure is 

straightforward and allows for a clear demonstration of the PAFD method and principles. The 
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PAFD method provides a process tool for design selection; however, the method does not address 

acquiring the data needed to build a choice model or how to create choice models for complex 

systems.  Chapter 4 presents the optimal design of experiments for Human Appraisal method to 

address Research Task 2. This method provides the means to collect human preference data 

which is optimal for building preference models and understanding consumer heterogeneity. 

Chapter 5 provides a methodology to statistically analyze preference data to understand 

consumer heterogeneity as well as to preprocess the data to create efficient preference models. 

The methods presented address Research Task 3. Chapter 6 presents the Integrated Bayesian 

Hierarchical Choice Model (IBHCM) approach which provides a comprehensive choice 

modeling approach for complex systems in which both qualitative and quantitative choice 

attributes are considered (Research Task 4). The model is estimated using both data collected 

from experiments conducted using design of experiments for human appraisal method of Chapter 

4 and processed using the methods of Chapter 5, as well as market survey data. Chapter 7 details 

the contribution of this research as well as areas for future research. 

 
Figure 1.5: Organization of Research Presented in the Dissertation 
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Chapter 2 
TTEECCHHNNIICCAALL  BBAACCKKGGRROOUUNNDD    

The work in this dissertation is rooted in the discrete choice method for modeling product 

demand, as part of a larger effort to enable enterprise-driven Decision-Based Design (DBD). 

Demand modeling is necessary to estimate the potential profit of an engineering system or 

product, which is used as the selection criterion in the DBD framework. In this chapter, the 

Decision-based Design (DBD) framework is introduced, a brief tutorial on discrete choice 

analysis for demand modeling is provided, the hierarchical choice modeling approach is 

introduced, multilevel formulations of the DBD framework are described, design of experiments 

for human appraisals are introduced, and methods for statistical analysis and preprocessing of 

data are provided. 

2.1 DECISION-BASED DESIGN (DBD) FRAMEWORK 

2.1.1 DBD Motivation and Overview 

Within the engineering research community, there is a growing recognition that decisions are the 

fundamental construct in engineering design (Lewis et al., 2006; Marston et al., 2000; Shah and 

Wright, 2000; Dong and Wood, 2004; Herrmann and Schmidt, 2002; Gu et al., 2002; Wassenaar 

and Chen, 2003). Based upon this premise, the Decision-Based Design framework has been 

developed, which merges the separate marketing and engineering domains into a single 

enterprise-level decision-making framework. The framework utilizes a decision-theoretic 

methodology to select the preferred product design alternative for the enterprise undertaking the 



 
 

34 

design activity, as well as set target levels of performance for the product. This is accomplished 

as shown in Figure 2.1 through a hierarchical model linkage in which design concepts and 

variables (X) are linked to demand, Q, through engineering analysis and attribute mapping 

between engineering attributes E (e.g. fuel economy, horsepower) and customer-desired 

attributes A (e.g. comfort, performance). Also key is the inclusion of demographic attributes S 

(e.g. age, income, height), in addition to customer-desired attributes A, in the estimation of 

demand, to capture the heterogeneity of consumer preference.  
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Figure 2.1: The Decision Based Design Framework for Conceptual Design 

In the DBD implementation (Wassenaar and Chen, 2003), a single criterion, V, which represents 

economic benefit to the enterprise, typically profit, is employed as the selection criterion. This 

single-objective approach avoids the difficulties associated with weighting factors and multi-

objective optimization which can be shown to violate Arrow’s Impossibility Theorem (Hazelrigg, 

1996). A utility function, U, which expresses the value of a designed artifact to the enterprise, 
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considering the decision maker’s risk attitude, is created as a function of the selection criterion, 

V. A preferred concept and attribute targets are selected through the maximization of enterprise 

utility. 

2.1.2 Enterprise-Driven DBD Formulation 

In the DBD formulation, utilizing profit, Π, as the selection criterion (V) captures the needs of 

both the consumer and the producer stakeholders, resulting in maximum benefit to the enterprise 

when utility is maximized. The profit function is intended to represent the profit contribution 

attributed to design attributes and not enterprise-level profitability for a product as a whole, 

similar to the traditional use of cost functions in engineering optimization (Siddall, 1982) used to 

represent design cost and not total enterprise costs. Profit is expressed as a function of product 

demand Q, price P, and total cost C, where demand Q, is expressed as a function of customer-

desired attributes A, customers’ demographic attributes S, price P, and time t: 

( ) CPtPQV −⋅=Π= ,,,SA  . (2.1)

Similar to “customer attributes” in QFD, A are product characteristics that a customer typically 

considers when purchasing the product. To enable engineering decision-making, qualitative 

customer-desired attributes A must be expressed as a function of quantitative engineering 

attributes E in the demand modeling phase. This functional relationship can consist of a 

hierarchy of models mapping A to E to establish the relationships necessary for decision-

making. Cost, C, is a function of the design attributes, E, exogenous variables Y (the sources of 

uncertainty in the market), demand, Q, and time t. Price, P, is an attribute whose value is 

determined explicitly in the utility optimization process, or obtained from a separate price 
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optimization process. Based upon these functional relationships, the selection criterion can be 

expressed as: 

( )( ) ( )tQCPtPQV ,,,,,, YESEA −⋅=Π= . (2.2)

It should be noted that uncertainty is considered explicitly and the objective is expressed as the 

maximization of the expected enterprise utility E(U), considering the enterprise risk attitude: 

( ) ( ) ( )dVVpdfVUUE
V
∫=    :max  (2.3)

where V is the single selection criterion in Eq. (2.2). 

As seen in Figure 2.1, decision-making regarding a preferred design concept, as well as 

optimal levels (targets) of engineering design attributes E is performed using optimization to 

maximize the expected enterprise utility E(U), subject to appropriate constraints.  

2.2 DISCRETE CHOICE ANALYSIS (DCA) FOR DEMAND MODELING 

Discrete Choice Analysis (DCA) (Ben-Akiva and Lerman, 1985; Koppelman et al., 2005) is used 

to model product demand by capturing individual customers’ choice behavior, in which 

performance of a given product is considered versus that of competitive products. It should be 

noted that in this formulation, the customers could be either individual consumers or industrial 

customers. DCA is based upon the assumption that individuals seek to maximize their personal 

customer choice utility, u, (not to be confused with enterprise utility, U) when selecting a 

product from a choice set.  

2.2.1 Formulation of the Discrete Choice Analysis Model 

The concept of choice utility is derived by assuming that the individual’s (n) true choice utility, 

u, for a design alternative, i, consists of an observed part W, and an unobserved random 

disturbance ε (unobserved utility): 
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ininin Wu ε+=  . (2.4)

While there are a number of DCA techniques popular in literature (e.g., Multinomial Logit, 

Nested Logit, Mixed Logit), they are distinguished from each other by the degree of 

sophistication with which they model the unobserved customer choice utility error ε and 

heterogeneity in customer preferences. In the Multinomial Logit (MNL) model, the coefficients 

(β) of the observed customer choice utility function (W) for the product attributes are identical 

across all customers. However, heterogeneity is modeled by considering demographic attributes 

S (e.g., customer’s age, income, etc.) in the customer choice utility function. Assuming this 

utility function can be expressed as a linear combination of attributes, W follows the form: 

( )ininiiinW ASβAβSβZβ ⋅+++=⋅= 3210β . (2.5)

where β0i is an Alternative Specific Constant (ASC), β1i is an Alternative Specific Variable 

(ASV), and Z is the set containing A and S. The MNL model exhibits the Independence of 

Irrelevant Alternatives (I.I.A.) property, which leads to proportional substitutions patterns among 

the alternatives considered. In cases in which this property is undesirable, the nested or mixed 

logit formulations can be used to relax this assumption.  

The mixed logit model (MXL) is distinguished from the MNL model in that it allows for 

random taste variation, i.e. the parameters β  vary over respondents. Therefore, the mixed logit 

probabilities are integrals of the multinomial logit probabilities over a density of parameters, as 

expressed in the form: 
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where )(βpdf  is the probability density function of model parameter β s. The mixed logit model 

has been demonstrated to be capable of approximating any random utility discrete choice model 

(Train, 2003). One of the most important advantages of the mixed logit model is that 

heterogeneity in customer preferences is decomposed into a systematic part, expressed by S, and 

a random part expressed by random coefficients β; in MNL, only the systematic part is 

estimated, with the random heterogeneity lumped into the error term inε . No closed form 

solution exists for Eq. (2.7). Therefore in practical applications, the mixed logit choice 

probability is approximated (i.e. by )(rP̂ in ) using numerical simulation by taking a finite number 

of draws Rr ,...,3,2,1=  from the distribution: 
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where R  is the number of random draws, Prn,r(i) is the probability of respondent n choosing 

product i in the rth draw, and rβ  is the corresponding simulated random coefficients.  

2.2.2 Estimation of the Discrete Choice Analysis Model 

The choice model is estimated using Maximum Likelihood Estimation (MLE) or Hierarchical 

Bayes Estimation (HBE). In the MLE method, model parameters (i.e. β) are found through 

maximization of the likelihood function L for the MNL or MXL model: 

( ) ( )∏∏
= =

=
N

n

J

i

y
nn

niiyL
1 1

)(Pr| β , (2.8)

where yn is the response, i.e. the individual choices in the MXL model. To aid the solution 

process, the log-likelihood function (LL) is typically maximized because the LL function is 

additive as opposed to multiplicative. 
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In order to reduce the computational burden associated with multivariable sampling for MLE 

of the mixed logit model, Hierarchical Bayes Estimation methods were developed utilizing 

Markov Chain Monte Carlo methods with a Gibbs sampler to estimate the mixed logit model 

(Rossi et al., 2005). In the Hierarchical Bayes choice modeling paradigm (Gelman et al., 2004), 

the choice probability is modeled using a method in which the posterior distribution of the βn 

parameters, characterized by a mean b and covariance matrix Σ, is found as a function of the 

prior distribution of b0 and Σ0, and an information source of observations, Y. In the hierarchical 

prior distribution, the distribution of βn is conditional upon the distribution of the population-

level hyper-parameters b and Σ. The population-level hyperparameters characterize the 

distribution of βn in the population as a whole. Thus, model parameters β, b, and Σ are given by 

the parameter posterior distribution, pdf*: 

( ) ( ) ( ) ( )∏
=

ΣΣ∝Σ
N

n
nnn bpdfbpdfyLYbpdf

1

0000* ,,|||,, βββ , (2.9)

where pdf is the prior distribution (the denominator is excluded for simplicity), L is the 

likelihood function of the MXL model, and b is the mean vector and Σ is the full variance-

covariance matrix of β.  

The expression in Eq. (2.9) demonstrates a fundamental difference between the HBE and 

MLE approaches: the Bayesian method estimates the mean of a distribution, whereas the MLE 

solution estimates the maximum, or mode, of a distribution. The HBE method has several 

advantages over MLE for model estimation. If the prior distribution of βn are assumed to be 

multivariate-normally distributed, i.e. β ~ MVN(b, Σ), estimation of random parameters is more 

computationally efficient than classical MLE methods. The Bayesian method allows for 
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estimation of the true posterior distribution and recovery of the individual level βn, unlike the 

MLE method which only provides point estimates of the mean b and variance Σ of the assumed 

distribution of βn. Through the specification of hierarchical prior distributions, this solution 

technique estimates the posterior distribution of β, and provides a mechanism for model updating 

through the definition of the prior distribution as information evolves. 

2.2.3 Demand Forecasting using Discrete Choice Analysis 

Estimation of the customer choice utility function (W) allows the choice share, C.S., for a choice 

alternative i to be determined by summing over the market population, N, all probabilities, Prn(i), 

of a sampled individual, n, choosing alternative i from a set of J competitive choice alternatives: 
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(2.10)

The set of choice alternatives J may include both the new designed product and the existing 

competitive alternatives available. The choice alternative set is composed of either actual 

consumer purchase choices from a set of product alternatives, i.e. Revealed Preference or 

simulated product choices, such as those resulting from a market survey, i.e. Stated Preference. 

Demand for a given alternative, i, at time t, Q(i)t, is the product of choice share, C.S.(i), by the 

total market size (or aggregate market segment demand), D(t), for a given market segment (e.g. 

automobile mid-size sedan): 

( ) ( ) ( )tDiSCiQ t ⋅= .. . (2.11)

2.3 HIERARCHICAL CHOICE MODELING 

A large-scale design problem is characterized by attribute-hierarchies in demand model 

estimation, a hierarchy of consumer demographic descriptors (S), and data from multiple sources 
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with varying degrees of richness (e.g., in-house marketing surveys, purchase data, exit 

interviews). Existing demand modeling approaches in the design literature require that product 

attributes considered in the choice model be quantitative. However, many criteria used by 

customers to choose between complex engineering systems tend to be qualitative, especially 

those at the system level. Also, as noted in Section 1.1, existing demand modeling approaches 

used in engineering design do not adequately account for consumer heterogeneity, nor do they 

consider multiple data sources. 

2.3.1 Challenges in Choice Modeling for Complex System 

A challenge in choice modeling of complex engineering systems is modeling the heterogeneity 

of customer preferences. For the design of a complex design artifact like an automobile, it is 

important to model the diversity in customer-preferences in a more complete way. In general, 

capturing customer heterogeneity is a necessary component in understanding the perception of a 

design for a given population segment. Most existing approaches in the design literature do not 

consider heterogeneity of preference in modeling (i.e. systematic and random heterogeneity do 

not appear in the demand model). As discussed earlier, Li and Azarm (2000), and Michalek et al. 

(2005) used conjoint analysis, in which individual choice preferences were aggregated. Michalek 

et al. (2005) have considered random heterogeneity only in using a mixed logit choice model. 

Cook (1997) used a linear model derived from Taylor Series expansion which used product value 

and price to estimate demand. Wassenaar et al. (2003; 2005) considered the systematic 

heterogeneity only by including a limited number of demographic attributes (e.g., age, gender) in 

a DCA model. Wassenaar et al. (2004) also considered the use of an integrated latent variable 

modeling approach; however, the implementation of the approach was not completely successful 
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due to the high computational expense, and the large number of explanatory variables involved 

in a complex system. 

While the current demand modeling approaches described previously consider customer 

preferences when choice (purchase) decisions are involved, they do not fully consider the impact 

of customer preferences for individual product features. In the automobile market, for instance, 

customers have distinct preferences for individual product features like engine characteristics 

(e.g., acceleration, noise, fuel economy), interior characteristics (e.g., roominess, instrument 

panel, material, seating), etc. as well as component-level attributes like suspension, tires, 

steering, etc. Attributes considered by customers in a choice situation may be qualitative, and 

require mapping to physical, measureable design attributes at the subsystem and component 

levels. While it may be possible to include all mapped quantitative component-level attributes in 

the product-level choice model, it is not realistic due to the sheer volume of such attributes and 

more importantly, such an approach does not consider that decisions on design-level attributes 

may only be required for a subset of all possible design attributes. Integrating preference models 

at different levels allows us to examine the effect of design changes at the component level on 

customer ratings for different product features as well as on customer choice.  

Design of large artifacts is usually distributed over several teams, often spread across 

different geographical locations requiring design teams to work autonomously. In such a 

scenario, designers usually conduct surveys and human appraisals specific to subsystems and 

components (e.g., evaluation of an engine upgrade, vehicle-interior surveys and exterior/styling 

surveys) independently to preserve autonomy as well as to make the survey size manageable.  In 

order to examine how customers trade-off between the different subsystem attributes when they 

make the purchase decision, it is necessary to combine data sources to simultaneously consider 



 
 

43 

multiple feature-specific surveys. Estimating such pooled models is known as model fusion 

(Allenby et al., 2005) or data enrichment (Louviere et al., 2000) in the transportation literature. 

Existing approaches in the design literature have only used data from a single source—either 

stated preference (SP) data (Michalek et al., 2005) or revealed preference (RP) data (Wassenaar 

and Chen, 2003). RP data refers to actual choice (i.e., purchase) behavior that is observed in real 

choice situations. SP surveys are used to learn about how people are likely to respond to new 

products or new product features through a market survey. Preliminary work on combining RP 

and SP sources of data specifically for product design has been examined in (Kumar et al., 2007; 

Kumar et al., 2009), but more comprehensive methods are required.  

2.3.2 Previous Work in Hierarchical Choice Modeling 

To deal with the challenges presented in Section 2.3.1, a Hierarchical Choice Modeling 

strategy has been proposed (Kumar et al., 2009) as shown in Figure 2.2, in which the top system 

level choice model only contains a reasonable set of system-level customer-desired attributes A 

(including price P), while the lower level models establish the relationships between qualitative 

customer perceptual attributes A as functions of quantitative engineering design attributes E and 

demographic attributes S, i.e., A=f(E, S).  This ensures a more manageable model at each level, 

and mitigates the model estimation issues that accompany an all-in-one approach. The proposed 

approach uses customer ratings for qualitative attributes in the choice model, which are 

expressed in terms of quantitative engineering attributes through a hierarchy of linking models. 

For example, qualitative attributes in the top-level DCA analysis model, labeled M1 in Figure 

2.2, may be linked to engineering attributes through a series of ordered logit ratings prediction 

models for the subsystems, labeled M2 and M3 in the figure. 
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Figure 2.2: Hierarchical Choice Model Approach 

A key issue is determining the set of S to include at each model level. In order to ensure 

comprehensive modeling of systematic heterogeneity and thus minimize unexplained 

heterogeneity, a taxonomy of S has been developed for model estimation (Kumar et al., 2009). 

The proposed taxonomy of Figure 2.3 is expressed as the following: 

• S1: Socio-Economic attributes (e.g., age, income)  

• S2: Anthropometric variables (e.g., stature, weight)  

• S3: Purchase History (e.g., vehicle type last purchased)  

• S4: Usage Context attributes (e.g., construction, moving) 
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Figure 2.3: Taxonomy of S 



 
 

45 

2.3.3 Ordered Logit for Modeling Rating Responses 

As discussed in the previous subsection, methods are required to model consumer preferences 

expressed as ratings as a function of quantitative engineering attributes to enable the hierarchical 

choice model. To fit a predictive model to survey ratings, or ordinal data (e.g., 1=poor, 2=fair, 

3=good; rating from 1 to 10), alternative methods to standard linear regression are required. A 

key assumption of linear regression is violated when used to fit ordinal data because the expected 

model error cannot be assumed to be of zero mean with constant variance: the true value of the 

dependent variable is not a linear function of the explanatory variables Z, as shown Figure 2.4 

(McKelvey and Zavoina, 1975). Further, an ordinal dependent variable is not unbounded as 

required by linear regression (Lu, 1999), but rather takes on a fixed number, p, of discrete values 

as defined by the survey design (e.g., rating scales of 1-10, 1-7). 
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Figure 2.4: Illustration of the Variation of Ratings vs. Explanatory Variables Z (McKelvey and 

Zavoina, 1975) 

For this reason, the ordered logit model is used in this work to estimate models for ordinal 

customer ratings. McKelvey and Zavoina (1975) introduced ordered probit regression for ordinal 

data, in which the ordinal ratings were assumed to be discrete representations of a continuous 

underlying, normally distributed opinion or utility. McCullagh (1980) introduced ordered logit in 

which the underlying distribution is logistically distributed, leading to the proportional odds 



 
 

46 

model. In this model, the cumulative odds ratios are identical across ratings categories. Hedeker 

and Gibbons (1994) developed a random effects ordered probit formulation, which considered 

the β to be random and potentially functions of respondent level attributes (e.g., age, income), or 

covariates. Tamhane et al. (2002) modeled the underlying utility response using the beta 

distribution to allow greater flexibility (i.e. not symmetric) and to enable a bounded response.  

Ordered logit assumes that the p ordered ratings, R, are discrete representations of a 

continuous, underlying utility, uin, associated with each alternative, i, which is rated by each 

survey respondent, n. In the ordered logit formulation, the underlying utility measure, uin, is 

based upon the same concept as the discrete choice model utility in that it is assumed to be the 

sum of a parameterized observable component, Win = β·Z, and an unobserved error component 

εin, as given previously by Eqs. (2.4) and (2.5). Also in the OL approach, it is assumed that the 

error variance is smallest at maximum or minimum values of Z and largest for moderate values 

of Z (i.e. responses at the ratings extremes are more certain than those in the middle regions). 

This appears to be a more realistic assumption compared to that used in linear regression. OL 

seeks to model the underlying utility, uin, while the predicted discrete ratings, R, are estimated 

through the use of (p-1) cut points, k, imposed on the distribution of the uin, estimated to match 

the proportions of R present in the actual survey data. The ordered logit model is derived under 

the assumption that the probability, Pr, for any rating Rp is a function of observed utility and cut 

points, and that the unobserved errors εin are distributed logistically: 
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The model parameters, β, and cut points, k, are determined using Maximum Likelihood 

Estimation (MLE) or Bayesian estimation. A random-effects version of the model is used in this 

work in which a random intercept term is used to capture random heterogeneity (Hedeker and 

Gibbons, 1994). When used for prediction purposes, the utility for an alternative, i, for a 

particular person, n, is first calculated, and then transformed to a rating using the (p-1) series of 

estimated utility cut points. As an alternative to the latent variable approach, ratings are used in 

this research to capture qualitative customer preferences. Ratings represent relative, or ordinal, 

preferences for an attribute, as opposed to absolute, or cardinal, preferences and thus require 

special consideration in modeling. 

2.4 MULTILEVEL OPTIMIZATION FORMULATION TO DBD 

The DBD formulation described in Section 2.1 was described as ultimately a process of 

maximizing the expected utility, E(U), of a designed artifact to the enterprise. For complex 

systems, an All-in-One (AIO) method of solution to the maximum expected utility problem may 

not be feasible or desirable, and a multilevel method of solution may be implemented. Figure 2.5 

illustrates the difference between the AIO approach and a multilevel optimization formulation to 

DBD. The AIO approach in Figure 2.5 (a) treats the problem of maximizing the expected value 

of enterprise-level utility E(U) as a single optimization problem, where the decisions on product 

planning and product development are made simultaneously. Figure 2.5 (b) illustrates a 

decomposed multilevel framework (Kumar et al., 2006), reflecting a decoupling between the 

enterprise-level product planning and engineering product development. Following the “target 

cascading” paradigm (Kim, 2001; Kim et al., 2002; Kim, Michelena et al., 2003; Kim, Rideout et 

al., 2003; Michalek et al., 2005; Michelena et al., 1999) for multi-level decision making in 
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industrial settings, engineering product development is viewed as a process for meeting the 

targets set from the enterprise level. 

Maximize 
        Expected Utility E(U) 
        ( e.g. function of profit, revenues etc.) 
with respect to 
 enterprise variables Xent 

 engineering design variables Xd 
subject to 
 engineering design constraints  
 g(Xd)≤ 0 
 enterprise level constraints 
 g(Xent)≤ 0 
 

Enterprise-level Product Planning 
Maximize 
        Expected Utility E(U)  
        (Utility as a function of profit, revenues, etc.) 
with respect to 
 enterprise variables Xent 
 engineering design attributes E 
subject to 
 overall enterprise level design constraints  
 g(Xent )≤ 0 
 product development capability 

(introduced only after solving the engineering problem) 
 ||E - ED||≥∆D    

(a) All-In-One approach (b) Hierarchical approach 

Engineering-level Product Development 
 
Minimize 
 Deviation from Target ||E - TU|| 
with respect to 
 product design variables Xd 
subject to 
 engineering design constraints  
 g(Xd)≤ 0 
 E=r(Xd) 

Target performance TU=E* Achievable performance ED

 
Figure 2.5: Comparison Between All-In-One and Hierarchical Multi-level Approach to DBD 

Using a multilevel optimization formulation, at the upper level, the enterprise-level product 

planning problem maximizes the expected utility E(U) with respect to the engineering design 

attributes E and enterprise-level variables, Xent. Decisions made on the optimal levels of 

engineering design attributes E, represented as E*, are then used as targets or TU, passed to the 

lower level engineering product development process. The objective of the lower-level 

engineering product development is to minimize the deviation between the performance target 

TU and the achievable product performance response E while satisfying the engineering 

feasibility constraints g, for the design artifact.  The achievable product performance ED is then 
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transferred to the enterprise level problem, and the optimizer creates new targets based upon the 

achievable performance.   

The optimization problem at the engineering development level can be further decomposed 

and solved using multilevel optimization. Based on the nature of decomposition, either non-

hierarchical or hierarchical, different multilevel optimization (MDO) formulations can be used. 

The motivation for decomposing the problem is the desire to leverage discipline specific 

knowledge in the formulation of the optimization problem for each sub-system, or to incorporate 

an existing sub-system optimization formulation in the overall system optimization problem. The 

Analytical Target Cascading (ATC) approach decomposes the original engineering problem 

hierarchically at multiple levels, and operates by formulating and solving a minimum deviation 

optimization problem (to meet targets) for each element in the hierarchy. Collaborative 

Optimization (CO) (Braun, 1996) can be utilized to decompose the problem non-hierarchically, 

reflecting a collaborative design environment. Under a multilevel design framework, the ideal 

product development scenario occurs when the utopia targets corresponding to the maximum 

enterprise utility are achievable by the engineering design. In most engineering design cases, 

however, it is uncommon to achieve the utopia target due to the trade-off nature of multiple 

attribute target values and physical feasibility (i.e., no feasible design is available to meet the 

targets perfectly). If the engineering feasible domain is disconnected in the space of performance 

attributes (i.e., multiple, discrete feasible designs are available), the task becomes more 

challenging.   

In this work, the DBD problem will be solved using the AIO approach to demonstrate the 

features of the proposed method; however, the problems can be formulated to use a multilevel 

approach, such as ATC or CO, if desired. 
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2.5 DESIGN OF EXPERIMENTS FOR HUMAN APPRAISALS 

Human appraisal experiments can be differentiated from other types of experiments in the 

literature. Industrial and scientific design of experiments have been well documented (Box et al., 

2005; Montgomery, 2005; Myers and Montgomery, 2002) and utilized in practice. The response 

in such experiments is the output of a physical process, such as from industrial machinery or a 

new product test bed, and therefore fatigue is not generally an issue. This class of experiments is 

characterized by random error, εrand, in the response due to uncontrolled nuisance factors. While 

advanced methods for reducing the random error of designed experiments, such as blocked and 

split-plot designs, are used in this class of experiments, the reasons are typically due to nuisances 

or compromises in the experimental design which introduce additional error or prevent full 

randomization, as opposed to being an integral feature of the design. Computer experiments have 

been studied extensively (Simpson et al., 2001; Jin et al., 2001) for the purpose of metamodeling, 

and are characterized by a lack of random error, and thus methods of blocked or split-plot 

designs are not used: the goal of computer experiments is a uniform coverage of the design space 

to minimize bias error. Conjoint experiments have been used for product or service evaluations 

in the marketing field (Green and Srinivasan, 1978; Green and Srinivasan, 1990; Louviere et al., 

2000), and are characterized by random error, εrand, in the response and blocks corresponding to 

each respondent; however, they have not considered human attributes S in the design of the 

experiments but rather have treated the S as covariates (i.e. quantities recorded during the 

experiment but not used in the design of the experiment). A comparison of optimal distribution of 

design points to minimize bias error in computer experiments, versus that of a conjoint 

experiment to minimize random error is shown in Figure 2.6. Garneau and Parkinson (2007) 

have demonstrated that both systematic and random anthropomorphic heterogeneity are 
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significant predictors of preferences for product designs in which the design interacts with the 

human (e.g., an exercise bicycle seat); however, a general approach for designing experiments 

for such human appraisals and methods to separate respondent level variation from random 

variation was not presented.  
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Figure 2.6: Error Comparison of Computer vs. Physical/Appraisal Experiments 

The human appraisal experiment is presented as a separate class of experiment in this work, 

specific to product evaluations in which the human attributes of the respondent have an 

observable, systematic influence upon the response, in addition to the random effect captured by 

the random block effect as in a general conjoint analysis. Standard experimental designs and 

other experimental design approaches for human appraisals are generally not suitable for these 

experiments, which are conducted with the goal of creating a response surface model to 

understand respondent preferences as a function of product and human attributes. Standard split-

plot designs based upon standard full factorial or fractional factor designs for response surface 

creation, considering significant respondent blocking, do not exist (Box et al., 2005; Myers and 

Montgomery, 2002). Orthogonal array designs (Phadke, 1995), such as the L18 design, are small 

enough such that each person can complete the entire experiment and blocking is not required; 
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however, while such designs allow estimation of linear and quadratic terms, interactions can not 

generally be estimated. Experiments specifically for human appraisals, with the goal of 

minimizing the number of configurations for each respondent to evaluate, have been developed 

for certain situations. Adaptive Conjoint Analysis (Green et al., 1991) uses a prescreening of 

preferences for factor levels to optimize the configurations presented; however, this approach 

requires gaining access to resources for the prescreening tests and ignores the importance of 

factor interactions. One-factor-at-a-time experiments (Frey et al., 2003) have been developed to 

reduce the number of configurations needed when the goal of the experiment is to identify an 

optimal configuration. While this approach is effective for optimization, the goal of the human 

appraisal experiment in this work is to create a response surface model over a design space to 

understand response behavior. Based on the limitations of existing approaches, an approach 

using the D-optimality criterion is implemented as the method for selecting a human appraisal 

experiment.  

To select experimental designs for human appraisals, given a constraint on the number of 

configurations rated by a single respondent (due to fatigue) and multiple product and human 

attributes, optimal design of experiment methods are adapted to the specific needs of this class of 

experiments. Optimal design of experiments (DOE) have been studied for a variety of 

applications, such as industrial, agricultural, or scientific experiments, e.g. Atkinson and Donev 

(1992), and conjoint experiments, e.g. Kuhfeld et al. (1994) and Kessels et al. (2008). The 

methodology has been extensively developed for Ordinary Least Squares (OLS) modeling 

(Atkinson and Donev, 1992) and has been extended recently to Generalized Least Squares (GLS) 

to account for the error variance structure in blocked or split-plot experiments (Goos, 2002). 

Optimal DOE methodology has also been applied to multinomial logit (MNL) discrete choice 
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analysis models (Kuhfeld et al., 1994; Sandor and Wedel, 2001; Kessels et al., 2006), as well as 

general logistic regression, including ordered logit and ordered probit (Zocchi and Atkinson, 

1999; Chipman and Welch, 1996; Heise and Myers, 1996; Perevozskaya et al., 2003); however, a 

general approach to account for the combined split-plot and block structure of the human 

appraisal experiments has not been presented and is therefore a focus of this work. 

2.6 STATISTICAL DATA ANALYSIS AND PROCESSING OF HUMAN APPRAISAL EXPERIMENTS 

Results from human appraisal experiments require analysis prior to creating ordered logit models 

due to the multiple responses provided by respondents, the correlation of ratings elicited by a 

single respondent, and the many potential product and demographic factor forms that can be 

utilized in the modeling process. Multivariate statistical analysis methods have been developed 

for the purpose of data exploration, reduction, classification, and relationship identification 

(Johnson and Wichern, 2002). For the purpose of data reduction, Factor Analysis or Latent Class 

Analysis (McCutcheon, 1987) is used. The purpose of these methods is to describe the 

covariance relationship among many observed random quantities in terms of a few underlying, 

unobserved factors, or latent variables. Factor Analysis is used for continuous observed 

variables, whereas Latent Class Analysis is used for discrete (categorical or ordinal) observed 

variables. In the area of data exploration, cluster analysis is commonly employed, particularly in 

the area of market segmentation analysis (Green and Krieger, 1995). The goal of cluster analysis 

is to find natural groupings of items or variables based upon similarity of the items, or variables. 

For data classification, methods broadly classified as data mining techniques (Witten and Frank, 

2005) are used to classify a set of objects or observations into groups, with different methods 

providing different insights into the classification process. For data relationship identification, 

regression methods broadly classified as generalized linear models, such as ordered logit 
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modeling, are used to predict the value of a response variable based on a set of predictor 

variables. To understand the relationship before the modeling process, analysis of variation 

(ANOVA) methods (Box et al., 2005) are utilized to understand the portion of variation 

explained by each factor. 

While the standard statistical techniques exist, the use of the techniques to support preference 

modeling in general, and application to the hierarchical choice modeling approach, must be 

examined. 
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Chapter 3 
PPRROODDUUCCTT  AATTTTRRIIBBUUTTEE  FFUUNNCCTTIIOONN  DDEEPPLLOOYYMMEENNTT  FFOORR  

DDEESSIIGGNN  SSEELLEECCTTIIOONN  

As noted in Chapter 1, product planning requires a design process tool to establish 

engineering priorities, select the preferred design concept, and set target levels of engineering 

performance while considering the needs of both the consumer and producer. In this chapter, a 

new design tool called Product Attribute Function Deployment (PAFD), based on the principles 

of Decision-Based Design (DBD), is introduced as a decision-theoretic, enterprise-level process 

tool to guide the conceptual design phase. Other process tools, such as Quality Function 

Deployment (QFD), have been developed as design process tools to translate customer needs 

into engineering characteristics; however, significant limitations have been identified with such 

process tools. While existing tools such as QFD provide a useful visual format and encourage an 

interdisciplinary design process, they rely upon subjective performance assessments and 

potentially faulty rating and ranking methods. The PAFD method extends the qualitative matrix 

principles of QFD while utilizing the quantitative decision-making processes of DBD. The PAFD 

method is built upon established methods in engineering, marketing, and decision analysis to 

eliminate the need for the user ratings and rankings of performance, priority, and attribute-

coupling in the QFD method. The differences between the QFD and the PAFD processes are 

compared and contrasted, and the conceptual design of an automotive Manifold Absolute 

Pressure sensor is used as a case study to demonstrate the features and benefits of the PAFD 
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method. The general framework presented in this chapter can be utilized with the Bayesian 

Hierarchical Choice Model developed in Chapter 6 to make design decisions for a complex 

system. 

The chapter is organized as follows: Section 3.1 introduces the challenges in design selection, 

Section 3.2 describes the limitations of current methods used for design selection, Section 3.3 

describes the use of DBD for design selection, Section 3.4 develops the new PAFD method, and 

Section 3.5 provides a demonstration of the method for automotive sensor design selection. 

3.1 INTRODUCTION 

In the early stages of product design there is a need to set engineering priorities, primarily 

through the selection of a preferred design concept, identification of key product attributes, and 

establishment of performance targets for the artifact or product under design. Because product 

decisions made in the early, or conceptual, design phase can account for up to 75% of the 

committed manufacturing cost (Ullman, 2002), it is essential that these decisions be rigorous and 

consistent with the objectives of the firm or enterprise. A design process tool utilized to guide 

these critical product planning activities must consider the needs of both the consumer and the 

producer in order to select concepts and set targets which will maximize the benefit to the 

enterprise as a whole. While design freedom is at a maximum in this phase, design knowledge is 

at a minimum, requiring that decisions made in this phase also explicitly consider uncertainty.  

Within the engineering research community, there is a growing recognition that decisions are 

the fundamental construct in engineering design (Marston et al., 2000; Shah and Wright, 2000; 

Dong and Wood, 2004; Herrmann and Schmidt, 2002; Gu et al., 2002). Traditionally, discipline 

specific decision-making methodologies, utilizing mathematical behavioral models such as those 

used in marketing (e.g., conjoint analysis) and engineering (e.g., differential equations), have 
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been adopted based upon the specific needs of the individual discipline. These methods have 

used domain specific objectives as the decision criteria, biased towards either consumer product 

acceptance or producer performance metrics. These methods in isolation cannot achieve the 

necessary enterprise-level decision process required during the product planning phase, a fact 

which has been acknowledged by the development of various process tools which bridge 

different enterprise domains to support product design activities (Krishnan and Ulrich, 2001).  

Quality Function Deployment (QFD) was developed to bridge the marketing and engineering 

domains using a much simplified, consensus-driven qualitative analyses. This process was 

developed as a means to link product planning directly to the “Voice of the Customer”. It remains 

the leading tool for setting engineering priorities, determining target levels of product 

performance through benchmarking and, when supplemented with Pugh’s Method, selecting a 

design concept. As shown in Figure 3.1, the primary feature of the QFD process is the House of 

Quality (HoQ) (Clausing and Hauser, 1988), which provides an inter-functional product planning 

map to link engineering attributes to customer desires that are ranked in importance. The HoQ 

utilizes a weighted-sum multi-objective decision criterion, entailing technical test measures 

(benchmarking) analysis, technical importance rankings, and estimates of technical difficulty to 

enable a decision maker to set performance targets for a designed artifact. The QFD process has 

been supplemented by some practitioners with the Pugh Matrix for design concept selection 

(Terninko, 1997). The Pugh Matrix provides a method to compare alternative design concepts 

against customer requirements, with evaluations made relative to a base or favored concept, in a 

process independent from the HoQ analysis. 
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Figure 3.1: House of Quality, 1st House (Olewnik and Lewis, 2005) 

3.2 ANALYSIS OF LIMITATIONS IN CURRENT DESIGN PROCESS TOOLS 

3.2.1 Issues with QFD Analysis 

Much literature has demonstrated both the successes and issues with the QFD methodology 

(Chan and Wu, 2002). Based on a survey of the literature and analysis conducted for this work, 

the QFD method suffers from several limitations which can lead to sub-optimal or irrational 

early product decisions. Firstly, according to Aungst et al. (2003), using only customer and 

competitor information to set targets without consideration of the physics of engineering attribute 

interactions or other product objectives, such as choice share and potential profit, can result in 

targets that can never be achieved in practice. Several proposed improvements to the QFD have 

been presented in the literature. Aungst et al. (2003) have presented the Virtual Integrated Design 

Method. Their method uses a quantitative, rather than qualitative, link between the conventional 
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four HoQ matrices, and adds a new 5th house to account for customer perceptual attributes 

determined using factor analysis. Brackin and Colton (1999) have proposed a method in which 

analytical relations between the engineering attributes and customer attributes are created, and 

real values of engineering attributes are searched from an appropriate database to ensure targets 

are achievable. Locascio and Thurston (1998) have combined the QFD ratings and rankings into 

a design utility function to determine performance targets using multi-objective optimization. 

Although these methods improve upon the target setting methodology of QFD, they utilize 

customer group importance rankings and engineering rankings which have been shown to be 

potentially problematic (Hazelrigg, 1996). 

In the QFD approach, the importance ranking assumes that all customers’ preferences are the 

same and can be represented by a group utility; however, based on Arrow’s Impossibility 

Theorem (AIT), Hazelrigg (1996) has shown that utility exists only at the individual, or 

disaggregate level. Each customer has a specific preference, and the demand for a product can 

only be determined by aggregating individual product choices. More recently, van de Poel (2007) 

has illustrated the methodological problems in the QFD process caused by the implications of 

AIT. Although the Analytical Hierarchy Process (AHP) was introduced (Armacost et al., 1994) 

to aid in the determination of importance rankings, Hazelrigg (1996; 2003) has shown through 

the use of AIT that the importance weightings for ranking the importance of engineering 

attributes can be irrational when more than two attributes are ordered. Further, Olewnik and 

Lewis (2005) have demonstrated through the use of designed experiments that the HoQ rating 

scale used in the relationship matrix yields results comparable to inserting random variables, or 

completely different scales in its place.  
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Additionally, due to its philosophy, the QFD method is overly biased towards meeting 

customers’ requirements. Prasad (2000) presented an expanded QFD methodology called 

Concurrent Function Deployment (CFD) that expands upon the customer attributes to consider 

other corporate objectives, such as cost and manufacturing.  Similarly, Gershenson and Stauffer 

(1999) developed a taxonomy for design requirements for corporate stakeholders, in the form of 

a hierarchically organized requirements database. They consider not only end-user requirements 

as in conventional QFD analysis, but also corporate, regulatory and technical requirements. 

These methods still employ conventional weighting and ratings techniques.  

Although the consideration of uncertainty is imperative in engineering design, particularly in 

the conceptual design phase, conventional QFD analysis offers only a deterministic approach to 

ranking importance and setting target performance. It lacks a mathematical framework to 

incorporate uncertainty into decision-making. Recent work in the QFD methodology has focused 

on the use of fuzzy set theory to account for uncertainty in consumer importance assessments 

(Chan et al., 1999; Kim et al., 2000; Kahraman et al., 2006). While these approaches address the 

uncertainty in the human element of importance assessment, they do not address uncertainty in 

other elements of the decision process, such as in the technical requirements, or address the 

limitations of preference aggregation in the QFD method. Other significant limitations of QFD 

are the over-simplification of attribute-coupling in the “roof” of the HoQ, an inadequate 

reflection of the real design trade-offs due to the subjective nature of attribute ranking, and a lack 

of methodology for considering manufacturing/production constraints. Regarding the Pugh 

Matrix for concept selection, its major limitation is that it is not a comprehensive enterprise-level 

decision tool, but rather was formulated to make decisions in the engineering domain while 
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considering product requirements, without consideration of uncertainty, customer demand, or 

enterprise profitability. 

3.2.2 Issues with Other Common Design Process Tools 

A comprehensive review of other target setting and design selection methods, such as Taguchi’s 

Loss Function, Design for Six Sigma, and Suh’s Axiomatic Design, has been conducted by 

Hazelrigg (2003). To summarize, none of these processes attempt to set targets or select a design 

concept utilizing an enterprise-level decision criterion. They each assume that product design 

decisions made using a domain-specific selection criterion, such as minimizing product defects 

or producing “uncoupled” designs, will result in a preferred design. Another relevant product 

planning tool is the Requirements Traceability Matrix (RTM), which is used to organize and 

track product requirements to ensure all requirements are met by the design artifact. The Design 

Structure Matrix (DSM) is utilized in systems engineering to decompose a system into 

components and determine the relationships among components which must be considered in the 

design process. Neither RTM nor DSM is intended to be used as an enterprise-level product 

planning tool, but rather each is used to help designers organize product or system requirements. 

3.3 USE OF THE DECISION-BASED DESIGN FRAMEWORK TO ADDRESS QFD LIMITATIONS 

The limitations in the previous section point to the need for a design planning tool which is 

supported by a rigorous decision-making framework to ensure that consumer preferences are 

accurately represented and targets set by the tool are achievable in engineering design. The 

Decision-Based Design (DBD) method, an emerging design paradigm (Lewis et al., 2006), 

provides such a rigorous framework by modeling design as a decision-making process that seeks 

to maximize the value of a designed artifact through the use of utility maximization. Recent 
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efforts in DBD research resolve trade-offs among technical objectives by utilizing models of the 

producer’s financial objective, such as net revenue or profit (Hazelrigg, 1998; Li and Azarm, 

2000; Wassenaar and Chen, 2003; Michalek et al., 2005).  At the core of the enterprise-driven 

DBD approach is the use of Discrete Choice Analysis (DCA) (Ben-Akiva and Lerman, 1985) for 

demand modeling to estimate the effect of design changes on a product’s choice share, and 

consequently on the firm’s revenues.  In Chapter 2, the probabilistic choice modeling approach  

(DCA) was shown to have the ability to capture the effect of heterogeneous consumer choice 

behavior upon product design. The disaggregate DCA method takes account of every observed 

choice situation and the correlation between individual behavior and individual-level conditions 

and attributes to model choice behavior. A disaggregate DCA approach is more in line with 

microeconomic theory than an aggregate demand modeling approach and is necessary to 

understand the heterogeneity of consumer choice behavior (Small, 2006). Although the DBD 

approach provides a rigorous mathematical framework for decision-making, most formulations 

of DBD exist as optimization frameworks, not intended to be used as comprehensive process 

tools to guide real product development activities. The approach has not been applied widely due 

to the complexity of integrating product planning and engineering product development into an 

optimization formulation that incorporates various categories of product design attributes at 

different levels of abstraction. To manage the complexity of implementing the DBD approach, 

there is a need to develop a design process tool which effectively guides the execution of the 

method at an operational level. Such a tool can be tailored for use in the conceptual design phase 

to fulfill the identified need for a comprehensive product planning tool. 

While the flaws associated with the QFD approach limit its use as a quantitative tool for 

decision-making, the HoQ analysis used in QFD does provide an effective visual tool and 
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promote a rigorous thought process for qualitatively linking product attributes to ensure that 

product planning activities are conducted while considering the Voice of the Customer. Also, it 

facilitates a multidisciplinary design process among marketing, engineering, and production. 

Combining the strengths of DBD and QFD, the Product Attribute Function Deployment (PAFD) 

method is developed in this work as a comprehensive product planning process tool for the 

conceptual design phase. It extends the QFD mapping matrix concept to qualitatively identify 

relationships and interactions while employing the principles of Decision-Based Design (DBD) 

to provide quantitative assessments for concept selection, attribute target setting, and establishing 

engineering priority for the detailed product design phase. Our research development leads to a 

product design tool that overcomes the limitations of the QFD method and facilitates the 

implementation of the DBD approach for a real design problem.  

3.4 THE PRODUCT ATTRIBUTE FUNCTION DEPLOYMENT (PAFD) METHOD  

Combining the strengths of the QFD and DBD methods, the PAFD method is developed in 

this work as a multi–stage process that utilizes two “houses” to establish the qualitative attribute 

mapping to set engineering priorities, select the preferred design concept, and determine target 

values, ET, for the engineering attributes. Because PAFD is intended as a replacement for QFD, a 

comparison of analogous QFD and PAFD process steps, categorized into three primary stages, is 

shown in Figure 3.2. In the first stage of both methods, customer preferences are quantified. 

PAFD uses a DCA model to express consumer demand for an entire product relative to the 

existing competing products, whereas QFD uses a ranking of consumer preferences for specific 

product attributes to assess consumer acceptance of a product as a whole. In the second stage, the 

engineering design is characterized. PAFD utilizes preliminary analysis models to capture the 

costs and technical trade-offs among E (details provided later), versus the technical difficulty 
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rating and correlation matrix mapping used in QFD. PAFD explicitly considers engineering 

attributes resulting from customer, corporate, and regulatory sources, whereas QFD is primarily 

focused upon those engineering attributes resulting from customer-desired attributes, A. 
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Figure 3.2: Comparison of QFD to PAFD Processes 

In the third stage, PAFD provides design decisions in a single-step maximization of 

enterprise utility formulation, whereas QFD sets priorities using several ratings and rankings 

which must be synthesized by a human decision maker(s). The following subsections describe 

the three stages of PAFD in detail, with comparison to equivalent QFD processes. 

Stage 1: Analyzing Customer Preferences and Attribute Interrelationships 

A “house” structure is used to accomplish the Stage 1 processes of the PAFD method. Similar 

to conventional QFD analysis is the deployment of mapping between E and A, as well as the 
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collection of engineering attribute levels from competitors’ products (competitive analysis). The 

engineering attributes determined in this matrix are the E related to customer-desired attributes 

A, identified as EA. Also unique to PAFD, customer demographic attributes S and the A·S 

interactions (later transformed to EA S for demand modeling) are identified to account for the 

heterogeneity of individual customers. This part of the expansion facilitates the construction of 

the DCA demand model to capture the impact of engineering design (engineering attributes) on 

customers’ purchase behavior through estimation of product demand. As shown in Figure 3.3, 

House 1 contains two relationship matrices: 

• Matrix 1: Mapping customer-desired attributes, A, to engineering design attributes, EA.  

• Matrix 2: Identifying interactions between demographic attributes, S, and A. 

Additionally, a table is provided for tabulating competitive alternatives in the choice set: 

• Table A: Table of competitive alternatives J with corresponding levels of EA and price, P.  
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Figure 3.3: House 1 of the PAFD Method 
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The house can also be extended for use with the Latent Variable modeling approach as shown in  

Hoyle et al. (2006) by introducing an additional mapping between perceptual customer-desired 

attributes, A, to indicators, I, which is not shown in Figure 3.3 for simplicity. 

The relationship matrices in PAFD show only the qualitative linking between attributes. 

Unlike QFD, a rating scale (i.e. 1, 3, 9) is not utilized to characterize the strength of the 

relationship; however, an “ ” is used to indicate the presence of a relationship. The purpose of 

completing these relationship matrices is to ensure that each of the A has a corresponding EA 

(vector) and that inter-relationships among A, EA, S, are clearly identified to enable choice 

modeling. The “roof”, which identifies the coupling of engineering attributes in QFD, has been 

eliminated in PAFD because engineering attribute interactions will be modeled explicitly using 

preliminary engineering analyses in Stage 2, to better associate the coupling with a specific 

design concept. As noted in Section 3.2.1 and illustrated in the case study in Section 3.5, the 

coupling of multiple engineering attributes, EA, can largely depend on the chosen design 

concept, with EA coupling in different ways for different design concepts.  

The DCA choice model is estimated using the EA, P, and S identified in House 1 as 

explanatory variables, with J comprising the set of choice alternatives based on competitors’ 

products. Unlike the competitive analysis in QFD (customer ratings), the competitive alternative 

set used in PAFD is for the purpose of estimating the DCA model as described in Section 2.2. 

The values of EA and P for each alternative together with the consumer product choice form the 

basis for model estimation. The choice set is composed of either actual consumer purchase 

choices or simulated product choices, such as those resulting from a market survey, as described 

in Section 2.2. For a market survey, the list of A and EA can help guide survey construction by 
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providing an indication of the attributes that should be varied among the products presented in 

the survey (Louviere et al., 2000).  

The form of the parameters in the choice model requires insight into customer choice 

behavior, with potentially several model iterations needed to maximize the model goodness of 

fit. Linear (e.g. Ei) and transformed (e.g. Ei
2) forms of the variables are explored during the 

modeling process based upon expected choice behavior. The relationship matrices are used to 

guide the modeling of Ai × Si interactions in terms of the EA and S necessary to make decisions at 

the engineering design level. Alternative Specific Constants (ASC) are utilized to represent 

preferences that are inherent and independent of specific attribute values. Conversely, Alternative 

Specific Variables (ASV) are utilized to capture the heterogeneity of consumer preference for 

each alternative due to the differing demographic attributes, S, of each consumer (Ben-Akiva and 

Lerman, 1985). 

Stage 2: Design Characterization   

This stage of PAFD results in preliminary engineering and cost analysis models which are 

intended to capture the high-level relationship between design concepts and both engineering 

performance and cost, as opposed to use in creating detailed product designs. The PAFD analyses 

explicitly consider specific design concepts, whereas the QFD analyses require the design 

characterization to be carried out at the engineering attribute level, with rankings of technical 

difficulty and attribute interactions used in place of established engineering and cost analysis 

methods. 

To begin Stage 2, the EA established in House 1 become one set of engineering attributes 

tabulated in House 2 (price, P, is not included in Stage 2 because its value will be determined 

directly in Stage 3) as shown in Figure 3.4. Unlike QFD analysis which is primarily focused 
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upon the Voice of the Customer, the EA form just one subset of the entire set of engineering 

attributes E in PAFD.  In addition, those attributes which a customer does not consider explicitly 

in product selection but are essential to producer’s interests (Gershenson and Stauffer, 1999), 

specifically those resulting from corporate EC, regulatory ER, and physical requirements EP, are 

also identified. This expanded set is essential to ensure all requirements of the design are 

considered in the decision-making phase to make certain achievable targets are set.  
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Figure 3.4: House 2 of the PAFD Method 

With a comprehensive set of E determined and tabulated, designs can now be generated to 

fulfill these requirements. A design concept is defined as a high–level system configuration, 

composed of multiple subsystems and corresponding key design features, Fe. To facilitate 

preliminary cost and engineering analysis, each design feature, Fei, is represented by integer, 
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discrete, or continuous design variables, X, such as material types, dimensions, etc. For each 

design concept, the attribute mapping in House 2 provides the qualitative relationship between 

the E and X through a mapping of E to Fe as shown in Figure 3.4. From the qualitative 

relationship, the quantitative functional relationship, Ei=f(X) i, is established using preliminary 

engineering analysis. In cases where design options are highly conceptual, and an analytical 

relationship cannot be established, the range of achievable levels of E can be estimated. The 

design variables (X) selected are the minimum, high–level set necessary to estimate the cost, Ci, 

of each feature and to represent the coupling of the design features in the decision-making 

process (Stage 3). The specific form and complete set of the Xi will be established in the detailed 

design process.  

After establishing the set of design concepts and specific high-level design features, 

preliminary manufacturing process attributes, Mf, are identified for each concept, and mapped to 

Fe (Figure 3.4). The Mf are used to estimate processing costs and to identify constraints on X 

resulting from manufacturing process limitations to be considered in the decision-making stage 

of PAFD, as well as to ensure appropriate manufacturing processes are identified for each design 

feature. Using the identified X and Mf, estimation of the total cost, Ck, for each design concept, 

k, is calculated using: 

( ) ( ) ( )tCtCtQCtQC k
F

k
C

k

R

k
D

kk ++= ∑ ,,,),,,( YXYX  (3.1)

where ( )tQC kk
D ,,, YX  is the material and processing cost for each design feature, R is the number 

of design features, ( )tC k
C  is the cost of capital, and ( )tC k

F  is fixed corporate overhead cost for 

each design concept. The reason for establishing both preliminary engineering and cost analysis 
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in PAFD is to capture the real trade-off behavior of engineering attributes, to ensure design 

selections resulting from the tool are optimal, and target performances are actually achievable. 

The number of design concepts considered in PAFD is not fixed, with the house structure 

repeated for each additional concept to be evaluated. The design concepts and key design 

features can be generated using several methods available in the literature. Brainstorming and 

functional decomposition techniques (McAdams et al., 1999; Stone and Wood, 2000) can be 

utilized to generate the design concepts and corresponding design features, while TRIZ (Theory 

of Inventive Problem Solving) principles (Altshuller and Williams, 1984) can be employed to aid 

in the creative process. Optionally, Suh’s axiomatic design method (Suh, 1990) can also be 

employed with PAFD, enforcing an un-coupled or de-coupled relationship between the E and X 

and the Mf and X. While the features of the design concepts can vary significantly, it is assumed 

that the concepts share a common set of engineering performance (attributes) EA that matter to 

customers. 

Stage 3: DBD: Design Concept Selection & Target Setting (Decision-Making) 

As shown schematically in Figure 3.2, PAFD evaluates designs through the maximization of 

expected enterprise utility E(U), using the single selection criterion, V, constructed from the 

DCA demand (stage 1), engineering, and cost models (stage 2). In addition to selecting a 

preferred design concept and setting performance targets, PAFD, like QFD, can also aid in 

setting engineering priority through evaluation of parameter (β) importance in the DCA model 

and sensitivity analysis of the E(U) function to determine which product attributes should receive 

the greatest resource allocation during the detailed design phase. In contrast, the evaluation 

process used by QFD is a (human) group consensus decision, in which the multi-attribute 

decision criterion requires synthesis of technical importance, technical test measures, technical 
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difficulty, and attribute correlations by the decision maker(s). Engineering targets are set 

individually for each engineering attribute, based upon the best measured performances from the 

competing products. This methodology has been shown to be potentially faulty in Section 3.2.1. 

Because the preliminary engineering and cost models are used for the purpose of capturing 

attribute trade-off behavior and are typically analytical expressions, the computational expense 

of evaluating such models, and hence the expense of the PAFD design selection method, is 

minimal. Additionally, the X can often be represented by discrete values in the conceptual design 

phase, for example representing catalog component options (Bradley and Agogino, 1994). The 

maximization of utility can be evaluated using a genetic algorithm which is commonly used in 

conceptual design selection when a combination of discrete and continuous design variables are 

present (Goldberg, 2002). Constraints are of the form g(X, E) ≤ 0, and are estimated for each 

design concept based upon corporate, regulatory, physical, and manufacturing constraints upon 

the X and E(X) identified in House 2.  

3.5 AUTOMOTIVE SENSOR CASE STUDY 

The conceptual design of an automotive pressure sensor is used as a case study to 

demonstrate the PAFD methodology. The specific example considered is to design a standard 

next-generation Manifold Absolute Pressure (MAP) sensor for the automotive industry. The 

MAP sensor measures the air pressure in the intake manifold for fuel and timing calculations 

performed by the engine computer. The customers are industrial customers, composed of both 

automobile manufacturers and engine system sub–suppliers. The targeted market is the mid-size 

sedan segment. A high level function diagram of a MAP sensor is shown in Figure 3.5. 
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Figure 3.5: MAP Sensor Functions 

Multiple sensing technologies exist for pressure measurement, and each technology drives 

specific corresponding high-level design features, resulting in differing levels of performance 

and cost structure for each design concept. Therefore, before detailed design of the sensor begins, 

the preferred design concept must be selected and target levels of product performance must be 

established. A risk-averse attitude is assumed for the enterprise, and the market size is assumed 

to grow by 10%/yr. over the time interval, t, of 4 years considered in the forecast. Both a QFD 

and PAFD analysis are conducted to better illustrate the parallels between the two 

methodologies, with the differences in the resulting design decisions demonstrated. 

3.5.1 QFD Analysis of MAP Sensor 

To begin the QFD analysis, the A (e.g. High Accuracy and Withstand Temperature Extremes) 

and the key EA, such as Housing Footprint (mm2) and Temperature Range (°C), are placed in the 

appropriate rows and columns of the HoQ as shown in Figure 3.6.  
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Figure 3.6: Comparison QFD Analysis of MAP Sensor 

The engineering team must rank-order the importance of each A, fundamentally establishing 

a “group utility” for each attribute as described previously, and determine a “direction for 

improvement” for each of the EA based on engineering judgment, as shown by the “+” and “–” 

signs preceding each EA.  The relationship matrix is then completed, with the engineering team 

determining the strength of relationship between the EA and A, using a largely subjective 

evaluation based on the experience level of the team members. With the relationship matrix 

complete, the Technical Importance is calculated for each EA to determine engineering priority 

for each attribute, with a higher importance rating indicating higher engineering priority. The 

“roof” Correlation Matrix is completed, with  indicating positive correlation and  negative 
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correlation between attributes (e.g. negative correlation indicates a performance improvement to 

one attribute degrades the performance of another attribute), and the Technical Difficulty rating is 

estimated (higher number indicates greater difficulty). These analyses can be viewed as highly 

simplified, empirical forms of the engineering and cost analyses explicitly formulated in the 

PAFD method. 

To complete the Customer Ratings, a market study (Stated Preference) is conducted in which 

several customers are surveyed to determine consumer perceptions of current competitive MAP 

sensors on the market. The respondents are asked to rank-order the performance of three 

competitive sensors (labeled A, B, C), plus the current generation sensor (Our), with respect to 

each A they have identified, with the ranking results shown in Figure 3.6. For example, the 

customer group evaluation for High Accuracy indicates that Sensor B is perceived as having the 

highest accuracy and Sensor A the lowest accuracy. Note that with QFD, the customer ranking 

must be aggregated in order to achieve a single rank-order for each A, a process shown to be 

potentially problematic (Hazelrigg, 1996). To complete the QFD analysis, the actual measured 

performance level of each engineering attribute is determined for each of the four sensors and 

documented in the Technical Test Measures portion of the HoQ.  

With the HoQ completed, performance targets for the sensor are determined through a multi-

attribute consideration of the Technical Test Measures, Customer Ratings, Technical Difficulty, 

and Correlation Matrix. The performance target decision is made relative to the current levels of 

performance of Our sensor, with the values identified in the Technical Test Measures 

representing the best known levels of performance for each E which should be targeted by the 

new sensor. The Technical Difficulty and Correlation Matrix provide subjective constraints upon 

performance. Using the QFD methodology, the targets are shown at the bottom of the HoQ in 
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Figure 3.6. It was decided that the new sensor should have improved target performances for 

Accuracy, Pressure Span, and Temperature Range, since these have high technical importance, 

and Our current sensor is not perceived as the market leader in these areas. Also, it was decided 

to improve the target for Connector Mating Force since it has a very low technical difficulty. It 

was decided not to improve the target for Housing Footprint, since Our sensor is the market 

leader, or Natural Frequency due to high technical difficulty and low technical importance. With 

targets set, product design concepts may be further brainstormed by an engineering team, and the 

preferred concept selected with a tool external to the HoQ, such as Pugh’s Method.  

3.5.2 PAFD Analysis of MAP Sensor 

Stage 1: Understanding MAP Sensor Requirements and Interrelationships 

As the first step in PAFD, key customer-desired attributes A and engineering attributes EA 

are placed in the appropriate rows and columns in the same manner as the QFD analysis (Figure 

3.7). In contrast to QFD analysis, demographic attributes S (e.g. Vehicle Market Segment) are 

also identified and tabulated. Note that the S for the industrial customers are company-specific 

attributes, such as the corporate location or the specific market niche in which the company 

competes. As described in Section 2.2, the S account for the heterogeneity of customer choice, 

i.e. they explain why different customers choose different MAP sensors for similar applications. 

With A, EA, and S identified, hypothesized relationships are marked by an “ ” in matrix 1 

identifying the linking of the EA to A, and in matrix 2 identifying the potential interactions 

among the S and A which influence choice behavior, such as the interaction of High Accuracy 

and Vehicle Market Segment.  
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Figure 3.7: PAFD House 1 for MAP Sensor 

To acquire the choice data necessary to estimate the DCA model, simulated sensor purchase 

data (Revealed Preference) was utilized, unlike the QFD analysis in which respondents were 

asked to rank-order the performance of each sensor for each A. The purchase data for Our sensor 

represents the current generation sensor on the market; alternatively, a Stated Preference survey 

(Louviere et al., 2000) could be conducted using prototypes of the new sensor design, if desired. 

The demographic data S for each customer in the data set is recorded in the PAFD method. A 

sample of the purchase and recorded demographic data S is shown in Table A.1, Appendix A. A 

MNL DCA model is formulated as a function of the values of EA, P, and S using the choice data 

collected for the four sensors. The model parameters (β) estimated to create a choice model with 
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good fit statistics are composed of linear (e.g. Accuracy, Temperature Range), interaction (e.g. 

Accuracy × Vehicle Market Segment) and alternative specific variables (e.g. Alternativej × 

Vehicle Market Segment), with alternative specific constants included to capture inherent 

preferences for each alternative. The results are shown in House 1 (Figure 3.7), which has been 

extended from the template shown in Figure 3.3 to include a summary of the β parameters in the 

grey region (note that not all EA enter W as indicated by a , as some parameters are not 

statistically significant or are highly correlated with other EA). Referring to Eq.(2.5), the β 

parameters establish the customer choice utility function, W, of each alternative. In particular, 

each alternative shares a common set of product selection attribute parameters, which form the 

common customer choice utility function: 

( ) ( ) ( ) ( ) ( ) ( )MSPSPRICENFFTTRACW iiiiiiCommon ×+−−−+−= 3.0 9.6001.04.002.08.2 . (3.2)

The specific customer choice utility functions for each of the competitive alternatives is then 

determined for use in Stage 3, using the common utility formulation with the addition of the 

appropriate alternative specific constants (ASC) and variables (ASV): 

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )MSERARWW

MSERARWW
WW

icommonn

icommonn

icommonn

8.125.90.8|6.7 
3.70.74.7|4.6

|

3

2

1

++++−=
++++−=

=

=

=

=

C

B

A

. (3.3)

A customer choice utility function is also developed for Our sensor design: 

( ) ( ) ( ) ( )MSERARW5.6 W icommonn 4.29.71.7| 4 −+++−= =OUR . (3.4)

Examination of the utility function provides insight into customer choice behavior. The sign 

of the parameter indicates the effect of an attribute upon W, for example increasing the Price (β 

= -6.9) of a sensor decreases W, and hence the probability of choice of that sensor, ceteris 

paribus. Additionally, the effect of S upon utility can also be examined. For example, W and 



 
 

78 

hence the probability of choice of Sensors B, C and Our increases relative to the reference 

(Sensor A) if the customer is located in Asia (AR) or Europe (ER); the greatest increase in W is 

for Sensor C as indicated by the magnitude of the β parameters for AR (β = 8.0) and ER (β = 9.5) 

in the WCn expression. To understand the engineering priority of each EA and EA×S in terms of 

their impact on demand, the β coefficients can be normalized as shown in Figure 3.7 to allow the 

importance of each attribute to be estimated based upon its magnitude. For example, Price is the 

most important attribute (βNORM = -85.6) while Temperature Range is the least important (βNORM 

= 2.9). 

With a customer choice utility function available for each alternative, Eq. (2.5) can be 

utilized to determine the demand for the new design concepts based upon the values of EA and P 

substituted into Eq. (3.4) during the decision-making phase in Stage 3.  

Stage 2: MAP Sensor Design Concepts Identification and Characterization 

Stage 2 begins by transferring the EA identified in House 1 to the E Column in House 2, 

Figure 3.8, and establishing the additional engineering design attributes derived from corporate, 

regulatory, and physical requirements, such as Common Platform as EC, UL Flammability 

Resistance as ER, and Housing Stress as EP, to form the complete set of E. With E identified, 

design concepts and their corresponding design features Fe can be formulated. For this problem, 

two design concepts were identified: Concept 1 utilizes a piezoresistive (PRT) sensing element 

with a micro–machined sensing diaphragm, which senses pressure due to bending of the 

diaphragm, and Concept 2 utilizes a two–plate capacitive sense element, which senses pressure 

due to a change in the capacitor plate separation distance. 
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Figure 3.8: PAFD Engineering Design House 2 for the MAP Sensor 

Both design concepts are shown in Figure 3.9. Due to differences in the designs of the sensing 

elements, the piezoresistive concept is inherently less expensive and results in a smaller package, 

whereas the capacitive concept is more robust to temperature and pressure extremes. 
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Figure 3.9: Comparisons of Concepts 1 and 2 

The key design features for each concept are established and the corresponding high-level 

design variables, X, to model the technical trade-offs and cost for the decision-making problem 

are determined and tabulated (Figure 3.8). For example, piezoresistive sense element thickness is 

a continuous variable to be determined based upon the trade-off among element length, 

manufacturing limitations, and cost; integrated circuit A/D discretization resolution is a discrete 

variable to be determined based upon the trade-off between sensor accuracy and cost. Key 

conceptual manufacturing processes, Mf, (e.g., micro-machining, injection molding, etc.) are 

identified for each design concept, and placed in the columns corresponding to the associated 

design feature, Fe, shown in Figure 3.8. Manufacturing process costs are also estimated for each 

design feature for use in the cost model (Eq. (3.1)). 

As demonstrated by this case study, the technology selection drives specific design features 

and the corresponding set of design variables for a given design concept. For example, the 

packaging of each sensor is fundamentally different as shown in Figure 3.9: Concept 1 uses an 

injection–molded housing with integral pressure port and connector, whereas Concept 2 requires 

a separate port and connector component because of the large size and electrical interconnect of 

the capacitive element. 

Piezoresistive Capacitive
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Also noted, each set of high-level design variables X for a given concept has a different 

functional relationship with E (E=f(X)). Concept 1 utilizes the piezoresistive sensing element 

with a resistance output given by the relation (Hauptmann, 1993): 

)/( EE LLk SpanPressure ∆=  (3.5)

where the engineering attribute is Pressure Span, the design variable is diaphragm length LE, and 

the piezoresistive k-factor, k, is a constant. Concept 2 utilizes a capacitive output given by: 

( )EEr DA SpanPressure ∆= εε 0  (3.6)

where the engineering attribute is Pressure Span, the design variables are the plate area, AE, and 

the plate separation distance, DE, with absolute and relative dielectric constants, ε0, and εr. A list 

of all engineering relations used in this analysis is provided in Appendix A, Table A.2. These 

analyses are intended to be preliminary analyses to capture the fundamental trade-offs among the 

critical design variables, and will be refined during the detailed design phase to enable final 

design of the sensor. 

Each concept requires a specific manufacturing process, and the different sets of Mf result in 

a differing cost structure and place different constraints upon the X. For example, the micro-

machining process used to manufacture the diaphragm of the piezoresistive sense element results 

in a minimum diaphragm thickness limitation, and hence, places a constraint on the minimum 

size of the sense element, independent of engineering analysis. Also confirmed by this study is 

that engineering design attributes, E, resulting purely from customer-desired attributes, A, are 

not sufficient to create an engineering specification (target setting). For example, consideration 

of the stresses induced by the manufacturing process on the sensor housing leads to a key 
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constraint upon the sensor housing design which would not have resulted from customer-desired 

attributes.  

Stage 3: Design Concept Selection and Target Setting 

Stage 3 of PAFD is conducted by formulating the decision-making problem as shown in 

Table 3.1.  

Table 3.1: Pressure Sensor Decision-Making Formulation 

Given  
Mid-Size Sedan Market Size: 1,000,000 [sensors/year] for 4 years 
Demographic data of targeted industrial customers    S 

Engineering Attributes EA (PAFD: House 1)  
EA determined as a function of the high-level design options X (E(X)) 

Design Concept (PAFD: House 2)  
Two (2) Design Concepts considered (piezoresistive & capacitive sensing) 

Sources of Uncertainty Y  
DCA Model Parameters S.E. of β 
Cost Estimates C1=±10%, C2=±30% 
Normal Distribution of TE and DE   σ = (0.1) µ 

Cost Model (PAFD: House 2)  
Cost of each alternative given by Eq.(3.1). 

Demand Model Q (PAFD: House 1)  
Obtained from the MNL model of the competitive alternative attribute data. 

Single criterion V  = QP-C (Eq.(2.2)) 
FIND: 

Design Variables X, Target Engineering Levels ET (PAFD: House 1) and Price P 

MAXIMIZE: 
        E(U), assuming an enterprise risk-averse attitude (Eq. (2.3)) 
SUBJECT TO (PAFD: House 2): 

g(X, E) ≤ 0 TE – 14.0 ≤ 0; DE – 12.0 ≤ 0 :       Constraints from Mf 
g(X, E) ≤ 0 PS – 80.0 ≤ 0; NF –1400.0 ≤ 0:    Constraints from EC and EP 

Three types of uncertainty are considered in the selection process: 

• Demand Model Uncertainty: Uncertainty in all DCA model parameters (i.e. βs), as 

quantified by the standard error (S.E.) estimates, is considered. 

• Cost Estimation Uncertainty: Because the costs are estimated, uncertainty in the 

estimates must be considered. It is assumed that the cost estimates for Concept 1 have ±10% 



 
 

83 

error, while estimates for Concept 2 have ±30% error, since it is assumed that the designers are 

more familiar with the design and costs of Concept 1. 

• Design Variable Uncertainty: The Piezoresistive Sense Element Thickness, TE, and 

Capacitive Sense Element Plate Separation Distance, DE, are normally distributed random 

variables due to known variation in the element manufacturing processes.  

These uncertainties create risk in the decision process. The preferred concept, considering 

uncertainty, depends upon the decision-maker’s (i.e. the enterprise) risk attitude. The risk attitude 

assumed by the enterprise in this case study is moderately risk-averse. However, the decision-

making process will be demonstrated for risk-averse, risk-neutral, and risk-seeking attitudes. 

3.5.3 Comparison of PAFD and QFD Results 

The results of the PAFD decision process are shown graphically in Figure 3.10 a) in which 

the full distributions of profit for both concepts are shown. Figure 3.10 b) illustrates the expected 

utility of each concept considering a variety of enterprise risk attitudes. The risk attitude is 

modeled using an exponential utility function in which higher relative risk tolerance indicates 

increasing risk-seeking. 
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Figure 3.10 a) and b): Comparison of Profit and Utility for Concepts 1 and 2 
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As demonstrated, Concept 1 is preferred for risk-averse, risk-neutral, and moderate risk-seeking 

attitudes. However, Concept 2 is preferred for a high risk-seeking attitude, since the greater 

uncertainty in Concept 2 results in a higher upside potential than Concept 1. 

The results of both the PAFD and QFD analyses corresponding to a moderate risk-averse 

attitude are shown in Table 3.2. The PAFD decision results in performance targets ET, and values 

of demand, price, and cost for both Concepts 1 and 2. The preferred design concept for this 

problem is Concept 1, which results in the highest utility for the enterprise considering 

uncertainty (E(U) = 1,683,000 utils). The QFD analysis results in performance targets only, 

which are not associated with a design concept, and additionally QFD has no mechanism for 

determining price P. For the purpose of comparison, the unit price of the QFD design is set at the 

same price ($10.40) as Concept 1 (the preferred design from the PAFD method) and profit and 

utility estimated using this price. 

Table 3.2: Comparison of Decision Results–Preferred Concept (shaded) 

 PAFD  (ET) QFD  
Engineering Attribute E Concept 1 Concept 2 (ET) 
Sense Element Accuracy (%) 1.23 1.19 1.0 
Full Scale Span  (kPa) 176.0 185.0 250.0 
Temperature Range (°C) 150.0 150.0 180.0 
Housing Footprint (cm2) 16.9 17.2 14.6 
Natural frequency (Hz) 1400.0 1425.0 1600.0 
Connector Mating Force (N) 40.0 40.0 35.0 
Q: Demand/year (# sensors) 416,000 433,000 541,000 
P: Unit Price (USD) $10.40 $10.58 $10.40 
C: Unit Cost (USD) $9.25 $9.66 $10.32 
Expected Profit (USD) $1,905,000 $1,706,000 $173,000 
Expected (U) (utils) 1,683,000 1,393,000 170,000 

Compared to the PAFD results, the QFD identifies targets based upon the best values of EA 

identified in the competitive analysis, which subsequently leads to a lower value of E(U) of  

170,000 utils. The reason the QFD resulted in such low enterprise utility is that although the 
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estimated demand, Q, for a sensor meeting the targets set by QFD is higher than those identified 

by PAFD, the cost to make such a sensor is significantly higher ($10.32). As described in Section 

3.2.1, QFD is biased toward meeting customer product desires and does not explicitly consider 

cost, leading to a sensor design with good customer acceptance potential but low expected 

enterprise utility. Additionally, because parameter relationships identified through engineering 

analysis and constraints determined in the PAFD Stage 2 process are not utilized, it is not known 

with confidence if these QFD targets can actually be achieved in the subsequent sensor design.  

For the PAFD analysis, the target levels identified for the preferred concept reflect the actual 

achievable levels of EA which maximize enterprise utility for this design concept, based upon the 

constraints imposed in the decision-making problem. This is further illustrated by noting that 

Concept 2 has different values of ET corresponding to the maximum enterprise utility for that 

particular concept.  

To set engineering priority using the PAFD analysis, a global sensitivity analysis (Chen et al., 

2005) is conducted as recommended previously to study the total effect of individual engineering 

attributes on the E(U). The results of this analysis indicate that the greatest resource allocation 

should be made to achieving the targets for Housing Footprint and Pressure Span, due to the 

sensitivity of enterprise utility to these parameters. For QFD, the Technical Importance measure 

is used to establish engineering priority, resulting in selection of High Accuracy and Pressure 

Span as the highest priority. The difference in priority results from the different focuses of the 

two tools, with PAFD focused upon maximizing enterprise utility and QFD focused primarily 

upon customer product acceptance. In summary, the PAFD method has provided a clear 

conceptual direction and engineering targets necessary to begin the detailed design of the MAP 
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sensor; detailed engineering analysis can be utilized to create the specific feature designs which 

meet these targets. 

3.5.4 Validation and Discussion of the PAFD Method 

A primary feature of the PAFD is the use of a DCA model to predict customer demand for a 

design option. The choice model was validated using a cross-validation method, in which the 

data is partitioned into training and test sets (Tamhane and Dunlop, 2000). The results show 

approximately a 5-10% error in predicting the choice share on the test sets; however, such errors 

equally effect predictions for both Concepts 1 and 2 and do not change design selection result. To 

explore the effect of demand model specification on the selection process, a model was used in 

the process which did not include country (i.e. Asia, Europe) attributes. For such a model, cross-

validation indicated greater errors on the test sets (10-18% errors) and did result in higher 

predicted choice share and approximately 8% higher profit for Concept 1 and 10% higher profit 

for Concept 2; however, the selection process was not effected as Concept 1 is still preferred for 

risk-averse, risk-neutral, and moderate risk-seeking attitudes using this model.  

The case study presented demonstrates the advantages of the proposed PAFD method. It has 

been shown to preserve the primary strengths of QFD by offering a visual tool, maintaining ease 

of use, and promoting team work. The DCA model presented is becoming commonplace in the 

marketing discipline (Rossi et al., 2005) with commercial software solutions available (Sawtooth 

Software, 1999), while the engineering and cost modeling are standard practice among design 

and manufacturing engineers. The method can be expanded beyond the three stages shown in 

Figure 3.2, for example to include a specific stage for the design of choice experiments. The 
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method can also find application in the service industry, to design the service to best meet the 

needs of both the customers and the enterprise providing the service.  

The PAFD method can identify a preferred solution in situations in which cost and 

performance models can be formulated, and the risk attitude of the enterprise can be formalized. 

A potential limitation of the PAFD method is that it is based on the assumption that a DCA 

choice model can be estimated to represent consumer preferences. This assumption would not be 

valid in cases where the customer is a single or small group of customers (such as for a 

component sub-supplier of a major system), for highly specified designs, or in industries which 

do not have the infrastructure for consumer preference data collection.  

3.6 DISCUSSION AND SUMMARY   

In this work, the Product Attribute Function Deployment (PAFD) method is developed to 

offer a mathematically rigorous, decision-theoretic process tool for use during the product 

planning phase of a product development program. The need for developing such a method 

results from a close examination of the needs during the conceptual design phase, and the 

limitations of current methods, such as QFD, currently used for this purpose. The PAFD method 

extends the QFD mapping matrix concept to qualitatively identify relationships and interactions 

among product design attributes while employing the DBD principles to provide rigorous 

quantitative assessments for design decisions.  In conceptual design, the PAFD method is used to 

select the preferred design concept, set target levels of engineering performance, and set 

engineering priorities.  The PAFD method can be implemented, with minor modification, to work 

with alternative enterprise-driven design approaches to provide the necessary quantitative 

assessments.  
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In addition to presenting the PAFD method, a comprehensive comparison of QFD and PAFD 

was conducted in this work, demonstrating the parallels between the two methods and the 

improvements achieved by utilizing DBD principles in the new tool. The use of single-objective 

utility maximization provides a rigorous mathematical framework for decision-making under 

uncertainty, alleviating the difficulties associated with weighting factors and multi-objective 

decision-making in QFD. The use of profit as a single criterion better captures the real design 

trade-offs, incorporating the needs from both the producer and consumer to set engineering 

targets consistent with enterprise objectives. The heterogeneity of consumers is captured through 

the inclusion of demographic attributes, S, in the DCA model, addressing the aggregation issues 

present in QFD. The subjective ratings and rankings present in QFD are replaced with 

established methodologies in engineering, cost, and decision analysis to set targets for 

performance which can be achieved in practice. Uncertainty is explicitly addressed through the 

use of expected enterprise utility as the decision criterion.  

A case study involving the conceptual design of a Manifold Absolute Pressure (MAP) sensor 

is used to illustrate the benefits of the PAFD method. Complex trade-offs among engineering, 

manufacturing, and customer considerations which would result in a difficult synthesis and 

subsequent decision-making process using QFD are resolved effectively using the PAFD 

approach. While the PAFD method has been demonstrated as a method for design concept 

selection, it provides a general design process tool that can be utilized throughout the design 

process, such as the vehicle target setting case study of Chapter 6. The simple choice model 

presented here, in which it was assumed that the mapping from qualitative customer-desired 

attributes to engineering attributes is straightforward, can be replaced with the Bayesian 

Hierarchical Choice Model of Chapter 6 for a complex system. Also, it is assumed in this study 
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that a single data set is available for choice model estimation, an assumption that is not realistic 

for a complex system such as a vehicle. Methods for acquiring data are presented in Chapter 4, 

methods for preparing the data for model estimation are presented in Chapter 5, and methods for 

model estimation with multiple data sets are presented in Chapter 6. 
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Chapter 4 
OOPPTTIIMMAALL  DDEESSIIGGNN  OOFF  EEXXPPEERRIIMMEENNTTSS  FFOORR  HHUUMMAANN  

AAPPPPRRAAIISSAALLSS  

In Chapter 3, the PAFD method for making engineering design decisions was presented. A key 

issue not addressed in that chapter was the acquisition of the data needed to estimate the choice 

model. For the Bayesian Hierarchical Choice Model introduced in Chapter 1, preference data is 

required to estimate the hierarchy of discrete choice and ordered logit models. This highlights a 

general need for the development of a standardized approach for designing experiments to access 

consumer preferences, using Human Appraisal experiments. Human appraisals are used to 

assess consumers’ opinions of a given product design, and are unique in that the experiment 

response is a function of both the product attributes E and the respondents’ human attributes S. 

In this work, the design of a human appraisal is characterized as a split-plot design, in which the 

respondents’ human attributes form the whole-plot factors while the product attributes form the 

split-plot factors. The experiments are also characterized by random block effects, in which the 

design configurations evaluated by a single respondent form a block. An experimental design 

algorithm is needed for human appraisal experiments because standard experimental designs 

often do not meet the needs of these experiments. In this chapter, an algorithmic approach to 

identify the optimal design for a human appraisal experiment is developed, which considers the 

effects of respondent fatigue and the block and split-plot structure of such a design. The 

developed algorithm seeks to identify the experimental design which maximizes the determinant 
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of the Fisher Information Matrix, labeled the D-criterion of a given design. The algorithm is 

derived assuming an ordered logit model will be used to model the rating responses. The 

advantages of this approach over competing approaches for minimizing the number of appraisal 

experiments and model-building efficiency are demonstrated using an automotive occupant 

package human appraisal as an example.  

The chapter is organized as follows: Section 4.1 provides the definition and challenges in 

human appraisal experiments, Section 4.2 provides background for the DOE and modeling 

methodology, Section 4.3 presents the experimental design methodology for human appraisals, 

Section 4.4 discusses implementation of the methodology, and Section 4.5 provides a case study. 

4.1 INTRODUCTION 

Human appraisal experiments are used in a variety of contexts in product design to elicit 

consumer feedback on current or future product designs. The link between consumer preferences 

and engineering design has received much attention in the literature recently (Li and Azarm, 

2000; Besharati et al., 2002; Wassenaar and Chen, 2003; Petiot and Yannou, 2004; Michalek et 

al., 2005; Wassenaar et al., 2005; MacDonald, 2007). Such design approaches have created the 

need for methods to assess human preferences for hypothetical or actual product designs to 

enable the desired linkage between consumer preferences and engineering design. In Chapter 2, a 

hierarchical choice modeling approach was introduced in which a hierarchy of customer 

preference models is used to estimate consumer preferences for a given system design. Such an 

approach requires the collection of customer opinion for given system and sub-system designs. 

These product designs are generally represented by prototype hardware for human appraisals, 

more recently by highly flexible, programmable hardware-in-the loop (Wang et al., 2006), 

which can assume a wide array of unique configurations for human evaluation. Complementary 
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developments in experimental design are needed to fully exploit such prototype hardware to 

estimate useful predictive models of customer preferences. The previous approaches to human 

appraisals in the design literature have generally assumed the customer preference data is readily 

available, generally from a marketing source (Kumar et al., 2007), or that a standard experiment 

design (e.g. full factorial or fractional factorial) is given to each respondent for the purpose of 

collecting the desired preference data (MacDonald, 2007; Michalek et al., 2005). As will be 

presented in this work, the large number of factors and the experimental structure of a human 

appraisal for a complex system, such as an automobile, generally preclude the use of standard 

designs in such experiments. It will be shown that in such cases, it is more efficient, as well as 

necessary, to provide each survey respondent with a different set of configurations. 

4.1.1 Definition of a Human Appraisal Experiment 

A human appraisal is characterized by an interaction between the human respondent and the 

product design; therefore, the set of factors which influence the response from a given 

respondent for a given product configuration are both product attributes, denoted by A, and 

respondent human attributes, denoted by S, as illustrated in Figure 4.1.  
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Figure 4.1: Response as a Function of Product and Human Attributes 
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Human attributes are defined as characteristics, primarily anthropomorphic characteristics such 

as stature or body mass index (BMI), of a respondent which influence how the respondent 

experiences the system. In human appraisal experiments, the response for a given experiment 

could be the identification of a preferred configuration, or choice, from the configuration set, a 

rank-ordering of the configurations evaluated, or a rating for each configuration (Louviere et al., 

2000). In this work, the response considered is in the form of a discrete rating, on a scale 

selected by the survey administrator. The number of rating categories should be limited to 

between 4 and 11 categories (Cox III, 1980; Green and Rao, 1970) (scales of 0-10, 1-5, and 1-7 

are popular in application) to balance the competing desires of maximizing information recovery 

(i.e. maximize number of categories) versus minimizing scale usage heterogeneity (i.e. minimize 

number of categories). Rating responses represent an ordinal scale, in which higher ratings 

represent stronger positive preference for a given product configuration. The most popular 

models for estimating ratings as a function of independent variables are the ordered probit 

(McKelvey and Zavoina, 1975) and ordered logit (McCullagh, 1980) models. These models 

assume a respondent rating is a discrete realization of a continuous underlying opinion, or utility, 

for a given product configuration. In this work, the ordered logit model described in Section 

2.3.3 is used; however, the approach presented can easily be adapted to the ordered probit model 

(or other related models). 

4.1.2 Issues in Human Appraisal Experiments 

The primary issues with human appraisal experiments are as follows: 

• Unique rating style of each respondent. 

• Potentially a large number of product and demographic factors to investigate. 
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• Desire to create a response surface (i.e. quadratic terms) due to non-linearity of the 

response and the effect of interactions. 

• Fatigue of human respondents. 

• Desire to specifically include or exclude specific factor combinations. 

These issues are described as follows in this subsection. 

In human appraisal experiments, a single respondent often evaluates several product 

configurations in sequence due to time and cost constraints. This implies that human appraisal 

experiments will naturally have a random block effect, as each person’s ratings will have some 

level of correlation depending on the rating style of the respondent. A block is a set of 

experiments conducted under homogeneous but uncontrolled external conditions. Blocking is 

necessary since the overall experiment can be quite large, since the number of engineering 

attributes which potentially characterize a customer-desired attribute, as identified using a 

process such as the PAFD method of Chapter 3, can be extensive. Also, human appraisals are 

naturally split-plot designs (Box et al., 2005), because it is unrealistic to completely randomize 

human attributes since a single respondent represents a set of fixed human attributes, and it is the 

most efficient to have a single respondent evaluate an entire block of experiments, or 

configurations, at a single time. Split-plot experiments are characterized by one or more factors 

remaining unchanged for a given set of experiments.  

In general, the goal of a human appraisal experiment is to create a response surface model, 

thus requiring a minimum of three levels of each product attribute (three levels cannot always be 

achieved for human attributes which are categorical, such as gender). The desire to create a 

response surface is based upon findings in psychometrics, in which it has been found that the 

human sensation magnitude to a given stimuli intensity follows a power law relationship 
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(Stevens, 1986). A three level experiment enables approximation of the power law relationship 

using linear and quadratic terms in the prediction model (e.g., the ordered logit model).  

A key issue to consider in human appraisal experiments is user fatigue (Kuhfeld et al., 1994). 

Unlike computer or industrial experiments, fatigue will create additional error in the response in 

a human appraisal experiment. The number of trials or configurations, B, given to each 

respondent must be managed to ensure the effects of fatigue are limited. Another important issue 

in human appraisal experiments is the inclusion or exclusion of certain (experimental) design 

points of interest. The reason for specific inclusion or exclusion of design points is due to the 

interaction effects of certain factors, which may be theorized to be highly significant and 

important. If the interaction effect is achievable in the product, it would be of particular interest 

to study the impact of the interaction, whereas if the interaction is unachievable in the real 

product, it may be of interest to exclude such a combination. The design of experiments with 

excluded combinations has been studied previously, e.g. Steckel et al. (1991), but the general 

case of inclusion or exclusion of certain design points has not been examined. 

An example of a human appraisal used throughout this work is the design of an automotive 

occupant package. A respondent’s rating of a particular package configuration is dependent not 

only upon the product attributes (A), such as the amount of headroom, knee room, etc. in the 

package, but also the human attributes of the respondent (S), such as his/her stature, weight, 

gender, etc. Also, these experiments are characterized by a block effect because, after controlling 

for the respondents’ human attributes, each respondent will retain a certain correlation among 

their ratings which must be accounted for in the resulting model.  

To summarize, the focus of this chapter is the development of a design of experiments 

methodology for human appraisal experiments, considering the split-plot and block structure of 
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these experiments, and the use of ordered logit (or probit) to estimate the subsequent response 

model. The developed methodology enables the number of configurations, B, provided to each 

respondent to be controlled and minimized, and will also allow certain factor combinations to be 

included or excluded.  

4.2 BLOCKED AND SPLIT-PLOT DESIGN OF EXPERIMENTS 

Blocked and Split-Plot designs have been used extensively in physical experimentation. The 

difference between block and split-plot designs is illustrated in Figure 4.2. The larger 

experimental unit (composed of many individual experimental design points or configurations) 

in a blocked experiment is called a block, whereas the larger experimental unit in a split-plot 

experiment is called a whole plot. Each block or whole plot consists of a number of experimental 

design factors, x=(E1, E2,…Ej), the values of which are determined by a design criterion, such as 

the D-optimality to be discussed in the next section. The primary difference between a blocked 

versus split-plot design is that in a split-plot design, whole-plot factors, such as a human factor 

S1, remain unchanged for a given experimental run. In blocked experiments, there are no 

corresponding larger experimental-unit, or block-level, factors such as the whole-plot factors. 

Therefore, the goal of a split-plot design is the selection of the design points under each whole 

plot factor, whereas in a blocked design the goal is the allocation of design points to each block.  

E2

E1

S1

S1 S1

E2

E1

E2

E1

S1

E2

E1

Whole Plots

E2

E1

E2

E1

E2

E1

E2

E1

Blocks

E2

E1

S1

S1 S1

E2

E1

E2

E1

S1

E2

E1

Whole Plots

E2

E1

E2

E1

S1

S1 S1

E2

E1

E2

E1

E2

E1

E2

E1

S1

E2

E1

S1

E2

E1

E2

E1

Whole Plots

E2

E1

E2

E1

E2

E1

E2

E1

Blocks

E2

E1

E2

E1

E2

E1

E2

E1

E2

E1

E2

E1

E2

E1

E2

E1

Blocks  
Figure 4.2: The Structure of a Blocked and Split-Plot Experiments (Goos, 2002) 
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A demonstration experiment with two E and one S, which is presumably used to estimate a 

linear regression model, quadratic in E and linear in S, is used to demonstrate the terminology 

used in optimal DOE. In the proposed experimental design approach, both E and S comprise the 

experimental factor set, x: 

[ ]121 SEE=x . (4.1)

The complete set of terms, E and S, which appear in the resulting prediction model (e.g., the 

ordered logit model), such as an intercept and linear, quadratic, and interaction terms, form the 

extended design point, denoted by f(x): 

( ) [ ]211121
2
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11211 ESESEEEESEE=xf . (4.2)

The matrix of all extended design points in the complete experiment form the extended design 

matrix, denoted as F:   
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The motivation for split-plot design methodology is the inclusion of “hard-to-change” 

factors, e.g. a respondent’s human attributes, in the experimental design. These hard-to-change 

factors are the whole-plot factors, which are not completely randomized as with the other design 

factors, and remain at a fixed level during the completion of a given whole plot experiment. 

Alternatively, blocked experiments are motivated by the need to minimize the effects of known 

or theorized uncontrollable factors, such as the rating style of each respondent, not included as a 

design factor (i.e. E or S), but believed to have an influence on the experiment response. 
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Therefore, the goal in blocked experiments is to distribute the experimental design points among 

homogeneous blocks, or respondents, to minimize the effects of uncontrollable factors. 

4.3 OPTIMAL EXPERIMENTAL DESIGN METHOD FOR HUMAN APPRAISALS USING RATING 

RESPONSES 

In our proposed experimental design method, the human appraisal experiment is considered as 

both a split-plot and a blocked experiment. The human attributes S form the whole-plot factors 

because they represent hard-to-change factors. As discussed in the introduction, a single 

respondent, characterized by a fixed human profile S, rates several configurations in succession 

due to the expense and inconvenience of requiring people to evaluate configurations randomly 

over time. Also, each whole-plot experiment may be too large for a single respondent to 

complete due to the fatigue issues discussed in Section 4.1. Each whole-plot may therefore be 

distributed among multiple survey respondents, each with the same S, in the form of blocks. The 

blocked split-plot design is illustrated in Figure 4.3. In this diagram, the respondent human 

factors, S, are the whole-plot factors, and the product factors, E, are the split-plot factors. 
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Figure 4.3: The Structure of the Human Appraisal Blocked Split-Plot Experiment (Goos, 2002) 

In this work, Optimal Design of Experiments (DOE) methodology will be used to select the 

preferred human appraisal experiment. In optimal DOE, a candidate set of design points G, 

typically the design points of a full factorial experiment in the desired number of factors, is 
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provided to an algorithm which uses a defined criterion to select the optimal design points from 

the set to achieve a design of any arbitrary size, M. A key concept in Optimal DOE is that the 

form of the model to be estimated, i.e. the form of the extended design point f(x), must be 

specified a priori to determine the optimal design which supports the specified model.  

4.3.1 Optimal Experimental Design Selection Criterion 

Various criteria for selecting the optimal experimental design are available, the most widely 

used being D-Optimality. In general, several criteria exist for selecting a preferred experimental 

design. Popular criteria in the literature are D, A, G, and V (also known as I, Q, or IV) optimality, 

which are all functions of the Fisher Information matrix, M, of the extended design matrix, F. 

The D and A criteria are related to making precise estimates of the model parameters (β), 

whereas the G and V criteria are concerned with minimizing the overall prediction variance of 

the resulting model. While any optimality criterion can be used with the approach presented in 

this work, the approach is presented using the D-optimality criterion for several reasons. Firstly, 

D-optimality is widely used as an optimality criterion and is computationally inexpensive for 

experiment selection compared to some of the other criteria, such as V-optimality. Additionally, 

D-optimal designs have been shown to be highly efficient  (i.e. provide efficient model building) 

with respect to the other optimality criteria (i.e. G, A, and V), whereas G, A, and V-optimal 

designs generally are not efficient with respect to D-optimality (Goos, 2002). Also, because the 

models estimated must be validated in some manner, D-optimal designs provide precise 

estimates of the resulting model parameters (β) which can be interpreted for expected sign and 

magnitude as part of the model validation process. D-optimality is achieved algorithmically 
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through maximization of the determinant of the Fisher Information matrix, M, or the D-criterion, 

of a given experiment design: 

( )Mdet   max . (4.4)

The Fisher Information matrix for the Ordinary Least Squares (OLS) fixed-effect model 

parameters, β, can be expressed as (Atkinson and Donev, 1992): 

FFM ′= −2
εσ . (4.5)

As seen in Eq.(4.5), M for an OLS model is a function of the extended design matrix, F, and the 

random error variance, σε, (which, without loss of generality, can be assumed to be 1 for 

experiment optimization purposes) both of which are independent of the model parameters β. In 

the case of Generalized Least Squares (GLS), Goos (2002) has derived the information matrix 

for the random block effects model, in which each experiment respondent forms a block. The 

variance-covariance matrix of the rating observations, R, for a single respondent n, cov(Rn), is of 

the form: 
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where σu is the variance at the respondent level, and σε is the variance at the observation level. 

The information matrix for all observations can then be written as: 
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Bn is the number of configurations in block n (of N blocks), and 
nB1 is a square matrix of ones of 

size Bn. In this case, an estimate of ρ, which is a measure of the ratio of across-respondent to 
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within-respondent variance, is needed to select the optimal design. For this reason, such 

experimental designs are referred to as semi-Bayesian designs, since they require a prior 

estimation of ρ. The expression for M given in Eq (4.7) is only valid if the model to be estimated 

is a (least squares) linear regression model. It is therefore not valid for the human appraisal 

experiments in this work which are to be modeled using ordered logit. 

4.3.2 Derivation of Human Appraisal Experiment Selection Criterion 

A complementary derivation is proposed in this work to support estimation of the ordered 

logit model. The ordered logit model can be written as: 

( ) ( ) ( ) ( )βxβxβ nipnipnipnipni kFkFRR ′−−′−=== −1Pr π , (4.8)

where Rni is the discrete rating for respondent, or block, n (of N blocks) and configuration i (of B 

configurations), k is an ordered logit cutpoint, p is a rating category (of P categories, such as 1-

10), and F is the Cumulative Distribution Function (CDF) of the logistic distribution (this CDF 

can be replaced with the standard normal CDF, Φ, if the ordered probit model is to be used).  

To enable selection of a D-optimal design to support the ordered logit model, an expression 

for the information matrix (needed to calculate the D-criterion) that can be estimated without 

prior knowledge of the resulting model parameters, i.e. β, is needed. In general, the information 

matrix for the ordered logit model can be expressed as (Liang and Zeger, 1986): 
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 where Vn is the asymptotic variance-covariance matrix for block n. Dn is the derivative of πn with 

respect to β:  
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( ) ( ) ββπβDD dd nnn == , (4.10)

where the (P−1) vector of ratings probabilities for a single individual n for configuration i is 

given as ( )1,21 ,, −= Pnininini πππ …π  and ( )′= nBnnn ππππ …,, 21 . The asymptotic variance-

covariance matrix, Vn, for the ordinal model, such as ordered logit, can be written in block-

matrix form as (Williamson et al., 1995): 
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where the on-diagonal matrices are multinomial covariance matrices, ( ) nininitt πππV ′−= diag , and 

the off-diagonal matrices, Vts (t ≠ s), are the within-block covariance matrices between any two 

responses in a block. These matrices are generally calculated as part of the model estimation 

process using collected data; therefore, a method for estimating them for experimental design 

purposes must be devised.  

The on-diagonal multinomial covariance matrices (Vtt) can be calculated from knowledge of 

the ratings probabilities; however, the within-block covariance matrix (Vts) requires additional 

derivation. In general, the Vts matrix follows the form (Liang and Zeger, 1986): 

( ) ( )2121 BPBV tnts
′

= , (4.12)

where P is the “working” correlation matrix, and B is a matrix determined by the correlation 

structure. The selection of B and P depends upon the form of the model to be estimated with the 

experimental response data (Hines, 1997; Hines, 1998; Zorn, 2001). The proper specification for 

Ptn for the random-effects ordered logit model has been found to be the “exchangeable” 
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structure. In the “exchangeable” structure, Ptn is a diagonal matrix with all diagonal elements of 

Ptn = α, implying equal correlation among all observations in a given block. In this formulation, 

α is the pair-wise correlation coefficient between elements in the Vtt matrices, similar to the 

correlation coefficient ρ applicable for the scalar variance-covariance matrix of Eq (4.6). The 

recommended specification for B for the random effects model is Vtt (Hines, 1997; Hines, 1998). 

Therefore Vts can be written as: 

( ) ( ) ( ) st    ttttts ≠
′

= 2121 VdiagVV α . (4.13)

In viewing Eqs.(4.10), (4.11), and (4.13), it can be seen that in order to calculate M, 

estimates for nπ and α are required. The pair-wise correlation coefficient α is not reported in the 

random-effects ordered logit modeling process, which provides a challenge to determining a 

reasonable estimate for α from previous experiments or the literature. However, the coefficient ρ 

is reported in the modeling process, and it has been found that α can be estimated using ρ by the 

relation Pρα ≈  to enable calculation of Vts. This estimate is based upon the assumption that ρ 

should “distributed” over the P ratings categories in the working correlation matrix, such that the 

influence of α and ρ are equivalent in the respective information matrix calculations of Eqs. (4.7) 

and (4.9). Because a ratings prediction model is not available before the experiment is 

conducted, the rating category (e.g., 1-10) probabilities, nπ , must be estimated directly. They can 

be estimated from prior knowledge from a previous experiment, or if no prior knowledge is 

available, an equal probability of each rating category can be assumed. Because estimates of the 

entire response probability vectors, πni, are needed to calculate Vn and Dn to compute M, such 

experimental designs are referred to as Bayesian designs (Atkinson and Donev, 1992).  
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4.3.3 Verification of the Experimental Design Selection Criterion 

To verify the formulation of M for the ordered logit model and the estimates for nπ  and α, 

two test data sets with equal probability of each rating (i.e. ratings 1-10) are created. In one data 

set, the average correlation ρ of ratings from a single respondent is set to 0, (data set 1) and in the 

second data set, the ratings were distributed such that the average ratings correlation, ρ, is 0.40 

(data set 2). The purpose of this verification is to ensure that the proposed calculation of the 

information matrix (Eq.(4.9)), in which the ratings probabilities are estimated a priori and the 

correlation of responses is estimated using α, is consistent with the information matrix calculated 

from actual data. Ordered Logit models are estimated using both data sets in the statistical 

modeling software Stata™ (Stata Corporation, 1996-2008). The information matrices calculated 

by Stata (labeled stat) are compared to the information matrices calculated using the proposed 

derivation using estimates for nπ  and α (labeled der). For data set 1, the information matrices 

calculated by Stata and Eq. (4.9) are identical, and the determinants of M identical (detstata = 

detder =1.16×1020). For data set 2, the difference in the determinants is 7.62% (detstata=5.15×1017, 

detder=5.54×1017), most likely because only the average correlation could be controlled in the 

created data set and α is approximated as described previously. A study of the sensitivity of the 

algorithm to misspecification of ρ has been investigated for the GLS algorithm by Goos (2002). 

He has found that a misspecification of ±50% results in only a 4-8% error in the information 

matrix. In a further study (Kessels et al., 2008), it was found that the actual experiment design 

selection was robust to larger misspecifications of ρ (range of 0.1 to 0.9), indicating that an exact 

estimate of ρ is not needed for design selection purposes.   
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The challenges of optimal experimental design for a random-effects ordered logit model can 

be understood through a comparison to the generalized least squares approach presented at the 

beginning of this section. In the least squares approach, the on-diagonal terms of the Vn matrix in 

Eq. (4.6) are scalars of estimated with-in block and across-block variances, whereas in the 

ordered logit approach, the on-diagonal terms of the Vn matrix of Eq. (4.11) are matrices which 

are a function of estimated response probabilities. Comparing the off-diagonal terms of Eq. (4.6) 

and Eq. (4.11) indicates that the least squares method requires only a scalar estimate of across-

block variance whereas the ordered logit requires estimation of a matrix (i.e. Vts). This 

comparison indicates the difficulties in design optimization for ordinal data models in that the 

computation is more expensive due to the replacement of scalar quantities with matrices, and that 

estimates of both nπ  and α are required.  

4.4 OPTIMAL HUMAN APPRAISAL ALGORITHMIC IMPLEMENTATION 

The algorithmic implementation for selecting the optimal blocked split-plot design follows 

the approach provided in (Goos and Vandebroek, 2004), with the least squares information 

matrix of Eq. (4.7) used in their approach replaced with that of Eq. (4.9) for the new approach. In 

general, the experimental design is built sequentially, with points from the candidate set (G) 

having the highest prediction variance ( ){ }xR̂var  added to the experiment to maximize the D-

criterion. The prediction variance for any value of f(x) must be calculated to determine the point 

from G to add to the experiment. For the GLS model, f(x) is a vector and the prediction variance 

can be calculated as ( ){ } ( ) ( )xfMxfx 12ˆvar −′= εσR ; however in the case of the ordinal model, each 

f(x) results in a matrix of terms for each of the (P−1) rating categories. The prediction variance 
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for any point to be added to the design can be estimated using the delta method for asymptotic 

variance (Tamhane and Dunlop, 2000): 
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As seen in Eq. (4.14), the prediction variance is calculated for each of P ratings categories, 

leading to a vector of prediction variances for each design point f(x). Therefore, the design point 

with the highest summed total prediction variance is added to the experiment: 

( ){ } ( ){ }∑
=

=
P

p
pniR

1
var  ˆvar βx π  (4.15)

To implement the algorithm, a simplified method of expressing M a given in Appendix B. An 

overview of the algorithm is shown in Figure 4.4 and described as follows: 

1. Generate a set of Candidate points, G, for the product attributes, A, from which to select 

the optimal set. G is typically the points of a full factorial experiment in the number of 

factors desired. Specific factor combinations to be specifically excluded from the candidate 

set, or specifically included in the final experiment design are also specified. 

2. Create an experimental design for the desired human whole-plot factors, S. This design 

can be a full or fractional factorial in human attributes, depending upon the size of S and the 

number of respondents. Randomly assign the whole plot factors to each block, n.  

3. Create a starting design. To begin building the experimental design, a starting design is 

composed of a randomly selected small number of points from the candidate set and 

randomly assigned to the blocks. Compute the initial information matrix, M, and the 

determinant, det(M). 
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4. Determine the point in the candidate set G with the largest prediction variance, 

( ){ }xR̂var . Randomly assign this point to a block, and update M and det(M). Repeat this 

process until each block receives B configurations, forming an experiment design of size M. 

5. Evaluate exchanges. Since the design was started with a random selection of points, there 

may be points in the candidate set G which will increase the D-criterion. Each point in the 

current design is evaluated to determine if its replacement by a point in the candidate set will 

increase the D-criterion. This is continued until no further increases can be established.  

6. Record the D-Criterion and repeat steps 3-5. Steps 3-5 constitute a single try, each with a 

local maximum for D-Optimality based on the starting design of Step 3. T tries (e.g. 100 

tries) can be conducted to search for the global maximum. 
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Figure 4.4: Algorithmic Implementation of the Optimal Experimental Design Method 



 
 

108 

4.5 AUTOMOTIVE OCCUPANT PACKAGING CASE STUDY 

A case study using an automotive occupant packaging human appraisal is used to demonstrate 

the methodology, as well as the advantages of using the blocked split-plot experimental design 

methodology for human appraisal. The occupant packaging appraisal is performed on a 

Programmable Vehicle Model (PVM) as shown in Figure 4.5, which is capable of creating a wide 

range of parametric representations of an occupant package through a computer controlled 

interface.   

 
Figure 4.5: Programmable Vehicle Model (PVM) (Wang et al., 2006) 

4.5.1 Design of PVM Experiments 

A human appraisal experiment has been previously conducted by Ford Motor Co. using the PVM 

to evaluate occupant package design specifically for headroom. In the experiment conducted, 

headroom design is characterized by three dimensions as defined by the Society of Automotive 

Engineers (SAE) J1100 (Society of Automotive Engineers, 2002): L38 (frontal), W35 (lateral), 

and H61 (vertical). These three product factors (x*=[E1, E2, E3]) were used to create a full 3241 

factorial experiment (i.e. 36 trials) which was given to each of 100 human appraisal respondents, 

for a total of 3600 ratings responses. The responses were given on a (discrete) scale of 2-10, with 

10 representing highest satisfaction with the headroom, and 2 representing the least satisfaction, 
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leading to P=9. Human profile (S) factors were not used in the design of the experiment; 

however, the S were treated as covariates in that the human profile of each person was recorded, 

but no attempts were made to control the profiles of the respondents in the experimental design 

process. The data set with ratings responses were used to create a full quadratic response surface 

model, used to predict a customer headroom rating for a given occupant package design and a 

given target market human. This data set is referred to as data set Full in the case study. 

Conducting an experiment of this size was very time consuming and costly for Ford, and 

methods to conduct more efficient experiments are needed. Using this example in which data has 

already been collected, we will demonstrate that the experimental design methodology presented 

in this chapter allows selection of an experimental design which can be used to estimate a 

comparable model with significantly fewer experimental design points than used in the Full data 

set. In the new methodology, the 3241 factorial experiment forms the candidate set for the 

optimization algorithm. Additionally, a set of potentially significant human attributes, S, is 

included in the design of the experiment as whole-plot factors. The human profile attributes 

included are respondent gender (Gen) and stature (Stat). An issue to address in the experimental 

design of S is that exact levels cannot be practically achieved for all S (e.g. stature) in a real 

human appraisal design. In this case, human attribute ranges are assigned to a level in the design 

of an experiment, for example statures between 54”-57” are coded as the -1 level and those 

between 73”-76” are coded as the +1 level. These human attribute “bins” are needed to ensure 

that the proper respondents are selected for the experiment; however, the actual human 

measurements (e.g., stature, weight, age) are used in the model estimation process. A criterion 

for selecting the bins is to ensure that 5 and 95 percentile human-measurement respondents of 

the target population are included in the bins. If more levels (i.e. bins) can be afforded, 
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respondents closer to the human mean (e.g. 50 percentile) should be included; however, it is 

most important from a D-optimality perspective to include 5 and 95 percentile respondents. At 

the time of the experiment, additional human and socio-economic attributes of a respondent can 

be recorded and treated as covariates in the modeling process. 

To demonstrate the ability of the new method to manage the size of an experiment, the 

number of configurations given to each respondent is reduced from 36 to a block size of 18. The 

whole-plot experiment design is composed of two levels of gender (i.e. male, female) and four 

levels of stature (using stature ranges), leading to a 2141 whole plot experiment design. Two 

respondents (i.e. blocks) will be assigned to each whole plot for a total of 16 respondents (or 

blocks, n), leading to a total of M=288 total trials, vs. 3600 in the Full experiment described 

above. A summary of the experimental design is shown in Figure 4.6.  

 

Product 
Attributes

(Split-plots)

Demographic 
Attributes

(Whole-plots)

Gen:1

Stat:1

n 1

n 2

n 3

n 4

n 5

n 6

n 7

n 8

Gen:1

Stat:2

Gen:1

Stat:3

Gen:1

Stat:4

Gen:2

Stat:1

n 9

n 10

n 11

n 12

n 13

n 14

n 15

n 16

Gen:2

Stat:2

Gen:2

Stat:3

Gen:2

Stat:4

Product 
Attributes

(Split-plots)

Demographic 
Attributes

(Whole-plots)

Gen:1

Stat:1

n 1

n 2

n 3

n 4

n 5

n 6

n 7

n 8

Gen:1

Stat:2

Gen:1

Stat:3

Gen:1

Stat:4

Gen:2

Stat:1

n 9

n 10

n 11

n 12

n 13

n 14

n 15

n 16

Gen:2

Stat:2

Gen:2

Stat:3

Gen:2

Stat:4

 
Figure 4.6: Occupant Package Blocked Split-Plot Human Appraisal Experiment 

The exact form of the model to be estimated is known for this case study from previous work, 

enabling specification of model form f(x) as defined in Eq. (2). The model form contains full 

quadratic terms for E (linear, squared, interaction) and linear terms for S (no S E interactions). 

With f(x) specified, the algorithm can be used to select the best 18 configurations to give to each 

of the 16 respondents. As discussed in Section 4.3 a prior ratings probability estimate is needed 

to calculate M. For this study, it is assumed that the probability, nipπ , of each rating Rp for each 

respondent n and each configuration i is equally probable, i.e. 11.091 ==nipπ . Also, it is 
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known from a previous experiment that the correlation among ratings of a single respondent is 

ρ=0.3. The use of equal ratings probabilities assumes there is no prior information about the 

ratings responses. If prior information is available, (e.g., middle ratings are more likely than 

extreme ratings) such information can be incorporated to improve the experiment design. In this 

experiment, the best experiment as selected by the algorithm presents each respondent with a 

different set of configurations, demonstrating that the use of the same 18 point fractional factorial 

experiment (of the original 3241=36 experiment) for each respondent is not optimal for a human 

appraisal experiment. The data set with observations based upon this design is labeled D-Opt, 

with an example of the configurations assigned to the first three respondents shown in Appendix 

C. For comparison, an additional set of experimental designs is created. In these designs, 16 

respondents are randomly selected from the original 100 respondents and 18 observations are 

randomly selected from the 36 total observations for each respondent. A total of 100 such 

random experiments are created, such that experimental design comparisons are made to the 

mean random experimental design, to ensure that any comparisons are made based upon a 

typical random experiment and not an outlying design. This set of experimental designs is 

labeled Rand.  

4.5.2 Results of Random-Effects Ordered Logit Model Estimation 

With the three experimental designs established, a random-effects ordered logit model is 

estimated using each of the three data sets. A summary of the experimental efficiency as 

measured by D-efficiency, model fit as measured by ρ0
2 (Train, 2003), and average rating 

prediction error (Johnson and Albert, 1999) are shown in Table 4.1. In the case of the Rand 

experiment designs, the model fit is evaluated using experimental data with a mean D-efficiency. 
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Table 4.1: Summary of Experiment and Model Statistics 

 
Number 

Experiments D-Efficiency 
Model Fit 

ρ0
2 

Prediction 
Error 

Full 3600 — 0.373 2.80% 
D-Opt 288 79.7% 0.485 6.90% 
Rand 288 35.8% ± 1.6%* 0.375 14.60% 

* The mean and ± 1 standard deviation are shown 

D-efficiency is a measure of the relative efficiency of an experiment versus a base experiment, 

for example the Full experiment in this work. As seen in the table, the D-efficiency of the D-Opt 

experiment is high, ensuring low variance estimates of the model parameters, whereas the mean 

D-efficiency of the Rand experiment is quite low and will result in poor model parameter 

estimates. The ρ0
2 statistic varies between 0 and 1 and is a function of the log-likelihood of the 

estimated model, with higher ρ0
2 indicating a better “model fit”. The ρ0

2 for the D-Opt model is 

significantly higher than that of the Full model. The explanation for this can be provided by 

reviewing the assumptions of ordered logit modeling and the nature of ratings. Ratings tend to 

have higher variance in the middle ratings versus those at the extremes (McKelvey and Zavoina, 

1975). D-optimality tends to bias towards including those configurations with the most extreme 

settings. Thus by selecting the D-Optimal configurations from the full PVM data set, a more 

efficient estimation of the model β parameters, and hence utility, is accomplished for the 

assumed model. The fit of this mean Rand model is similar to the Full model, which is 

consistent with the fact the points were randomly selected, so similar model fits are expected. 

The prediction error is the ratings misclassification error when using the three models to estimate 

ratings in the full 3600 observation data set. The effects of the prediction error on the resulting 

ratings predictions can be seen graphically in Figure 4.7. As shown, the prediction error of the 

mean Rand model is significantly higher than the other two models. 
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Figure 4.7: Comparison of Ratings Predictions to Actual Ratings 

The estimated model parameters, β, for the utility function are shown in Table 4.2, along with 

the standard errors of the parameters (the cut points, k, are not shown since these estimates are 

similar for all three models). We can compare model attributes, such as the relative magnitudes 

and signs of parameters and the general interpretation of the models, in addition to the model 

statistics. Considering the model estimated on the Full data set to be the baseline, it is seen that 

the model estimated using the D-Opt data set is close in interpretation. The signs of the 

parameters agree (except for the insignificant L38*W35 interaction). The ranking of parameter 

importance as measured by the parameter magnitudes is the same in both models. Vertical 

headroom clearance (H61) is found to be the most important dimension influencing a 

respondent’s perception of headroom. The next most important dimension is frontal headroom 

clearance (L38), followed by lateral headroom clearance (W35). The human attributes indicate 

that taller respondents and female respondents (gender is a dummy variable: 0=male, 1=female) 

systematically respond with lower headroom ratings (on average) than shorter and male 

respondents, respectively. The ratio of parameters (e.g., W35/H61) is similar in both models, 

with the exception of L38 which is more important in the D-Opt model. The reason for this could 

be explained by the improved model fit statistic, ρ0
2, of the D-Opt model as described previously.  
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Table 4.2: Summary of Headroom Rating Model Parameters 

 Full Model D-Opt Model Rand Model 
 coef. std. err. coef. std. err. coef. std. err. 

L38 2.61 0.368 4.50 0.731 * 2.49 1.449  
W35 2.03 0.359 2.11 0.970  2.83 1.376 * 
H61 12.09 0.491 13.01 2.165 ** 10.61 1.838 * 
L382 -0.74 0.292 -0.76 0.852  -0.23 1.111 ** 
W352 -1.23 0.291 -1.08 1.562  -2.14 1.104 * 
H612 -2.55 0.354 -2.40 1.693  -0.89 1.325 * 
L38*W35 0.19 0.211 -0.16 0.820  0.13 0.826  
L38*H61 -0.32 0.270 -0.16 0.949  -1.15 1.093 * 
W35*H61 0.49 0.261 0.20 0.857  0.85 1.010  
gender -0.78 0.494 -0.56 0.726  0.14 1.115 ** 
stature -2.24 1.008 -1.81 1.425  -0.94 2.763  
resp. σ2

u 2.95 0.452 1.73 0.780  2.57 1.071  

The model parameters in the D-Opt and Rand models are compared to those in the Full 

model using a t-test, in which the null hypothesis is that the model parameters are not different. 

The model parameters in which the null hypothesis can be rejected with 95% confidence are 

marked with *, whereas those rejected with 90% confidence are marked with ** in Table 4.2. As 

seen in the table, the Rand model contains significantly more parameters which differ from the 

Full model than the D-Opt model. Such results are expected due to the lower D-efficiency of the 

Rand experiment, which results in less precise estimates of the model parameters than the higher 

efficiency D-Opt model. 

While the D-optimization algorithm has been shown to be effective for this example, its true 

utility is in experiments with large numbers of product attribute factors (e.g., 6-9) and several 

human attributes. In such a case, the candidate set will be several hundred to several thousands of 

potential points, and the task of choosing the appropriate set of points for each respondent is not 

as straightforward as in the previous example. To demonstrate, an experiment designed for the 

PVM to elicit preferences for the roominess and ingress/egress of the vehicle occupant package 
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is used. In this simplified experiment, eight product factors are examined by eight respondents, 

and it is desired to estimate all linear, quadratic, and all 2-factor E E and E S interactions. 

Respondents are selected based upon three human factors at two levels (a 23 full factorial human 

experiment). The experiment design for the product attributes is conducted by selecting 18 points 

from a 38 full factorial (i.e. 18
6561C ) for each respondent. In this example, the D-optimal 

experimental design is found with the algorithm, and 100 randomly selected experimental 

designs are also generated for comparison as in the previous example. In this comparison, the D-

optimal experiment is the baseline for the efficiency comparison, since comparison to an 

experiment in which each respondent receives the 38 full factorial, product factor experiment (i.e. 

6561 configurations) is not a realistic baseline. In Table 4.3, the mean D-efficiency of the 8 

factor random experiments in this example is compared to the mean D-efficiency of the random 

3 factor experiments of the previous example. As shown, the efficiency of the random 3 factor 

experiment has a mean D-efficiency of 45.0%, whereas the random 8 factor experiment has a 

mean D-efficiency of 29.4%. The variance of the random 8 factor experiment is higher than the 3 

factor experiment as would be expected in selecting 18 points from 6561 ( 18
6561C ) versus 36 ( 18

36C ) 

points for each respondent. As shown previously in Table 4.2, reduced D-efficiency results in 

reduced precision in estimating model parameters. 

Table 4.3: Comparison of Three Factor to Eight Factor Human Appraisal Experiment 

Product Factors 3 Factors, 3 Levels 8 Factors, 3 Levels 
Human Factors 2141 23 
 mean st.dev. mean st.dev. 
D-Optimal Exp. 2.24E+59  8.10E+140  
Random Exp. 6.17E+52 5.3E+52 9.77E+105 1.1E+107 
D-efficiency Random 45.0% 2.1% 29.4% 4.2% 
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4.6 DISCUSSION AND SUMMARY 

An algorithmic approach for selection of the optimal design of experiments for human appraisal 

experiments has been developed, demonstrated, and validated in this chapter. An algorithmic 

approach is necessary for human appraisals due to the large number of potential design and 

human attributes, coupled with issues of respondent fatigue in such experiments. Human 

appraisal experiments have been shown to be unique in that the experiment response is a 

function of both the product attributes and the human attributes of the respondent. They are 

characterized as split-plot designs, in which the respondent human attributes form the hard to 

change whole-plot factors while the product attributes form the split-plot factors. The 

experiments are also characterized by random block effects, in which the configurations 

evaluated by a single respondent form a block. The experimental design algorithm presented 

seeks to identify the experimental design which maximizes the determinant of the Fisher 

Information Matrix, or D-criterion, of a given design, assuming that the model to be estimated is 

an ordered logit model.  

The case study and subsequent discussion demonstrate many of the key features of the 

optimization algorithm. Most importantly, it was shown that the algorithm allows efficient model 

estimation with a minimal number of experiment points. For the vehicle headroom appraisal, 

previous methods had used 3600 experiment points, while a comparable model was estimated 

using 288 experiment points selected using the proposed algorithm. Also, it was shown that 

randomly selecting 288 points from the full 3600 point experiment produces an inferior model, 

and the utility of the algorithm increases as the number of experiment factors increases. The 

optimization algorithm distributes a different set of experiment points to each respondent, 

demonstrating that using a standard fractional factorial to reduce the number of trials per person 
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is not the best alterative for human appraisals. This methodology is used to design a human 

appraisal experiment to understand preferences for automobile occupant package design in 

Chapter 5. The data collected from this human appraisal is used to build random-effects ordered 

logit models which are utilized in the Bayesian Hierarchical Choice Model of Chapter 6. 
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Chapter 5   

MMUULLTTIIVVAARRIIAATTEE  SSTTAATTIISSTTIICCAALL  AANNAALLYYSSIISS  MMEETTHHOODDSS  FFOORR  

HHUUMMAANN  AAPPPPRRAAIISSAALLSS  

In Chapter 4, an algorithmic method to design human appraisal experiments was presented. In 

this chapter, a human appraisal experiment is designed using the algorithmic method, and 

subsequently conducted and analyzed to understand preferences for automobile occupant 

package design. The experiment is conducted on the Ford Programmable Vehicle Model (PVM) 

to understand preferences for occupant package roominess, ingress and egress. The experiment is 

conducted to build predictive parametric models of consumer preferences. While the experiment 

is designed specifically to support random-effects ordered logit modeling using the developed 

algorithm, several issues must be addressed to obtain useful predictive models. An issue with this 

class of experiment is that the heterogeneity of the experimental respondents contributes to the 

response, and this heterogeneity must be understood to separate the influence of design factors 

from that of human factors. Latent class analysis is used to combine multiple responses of the 

human appraisal respondents to an appropriate set of measures. Cluster analysis and smoothing 

spline regression are used to gain an understanding of respondent rating styles and preference 

heterogeneity. These analyses allow estimation of ordered logit models for prediction of 

consumer occupant package preferences. Methods from machine learning are also investigated as 

an alternative to parametric modeling. The methods presented in this chapter are designed to 

understand consumer heterogeneity and address issues unique to human appraisal experiments. 
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The chapter is organized as follows: Section 5.1 introduces the problems in analyzing human 

appraisal experiments; Section 5.2 describes the PVM experiments conducted; Sections 5.3 - 5.5  

describe the latent class, clustering, and smoothing spline analyses; Section 5.6 presents the 

random-effects ordered logit models; and Section 5.7 presents methods from machine learning. 

5.1 INTRODUCTION 

Chapter 4 outlined the process for designing human appraisal experiments, and used a three 

factor headroom experiment conducted using the Ford Programmable Vehicle Model (PVM) to 

demonstrate the methodology. In this chapter, a comprehensive experiment was conducted using 

the Ford Programmable Vehicle Model (Wang et al., 2006) to determine preferences for 

automobile occupant package design, specifically regarding the roominess, ingress and egress 

quality of the package. In the experiment, each respondent is presented with several package 

configurations, for which they evaluate and express their opinion in the form of a rating (e.g., 1-

5, 0-10), a standard method for quantifying preferences for subjective attributes (Keeney and 

Raiffa, 1993). The intent is to use the data collected in the experiments to build ordered logit 

models to predict consumer preferences (i.e. ratings) for a given set of consumers and for a given 

occupant package design.  

Analyzing and creating models from data collected from a human appraisal experiment 

presents unique issues not encountered with data collected from the typical industrial and 

scientific experiments usually considered in design of experiments methodology (Box et al., 

2005; Montgomery, 2005). The key issues in human appraisals are that the responses are more 

difficult to elicit, respondents may utilize different rating styles, the shape of the response-factor 

curve may not be approximately linear, and interactions may be highly significant. To address 

these issues, several analysis and modeling methodologies are employed in this work to combine 



 
 

120 

multiple consumer responses into a set of combined measures, to understand the influence of 

respondent heterogeneity on rating responses, and to gain further insight into the experiment 

using alternate data analysis methods. In the human appraisals, multiple responses are often 

collected from the respondent for a single sub-system design. The reason multiple responses are 

collected for certain sub-systems is because it can be challenging to devise a single survey 

question to capture the respondents’ true opinion of the subsystem design as a whole, and 

multiple questions are used to assess opinion for different aspects of the design. To determine a 

measure to use in the modeling process, Latent Class Analysis (LCA) (McCutcheon, 1987) is 

used to create a combined subsystem measure for each respondent to fully describe his/her 

overall opinion of the subsystem design. Heterogeneity of the survey respondents has much 

influence on the rating responses given. The effect of systematic heterogeneity, which is 

heterogeneity that can be captured with a human variable in the model, is investigated using 

Smoothing Spline Regression (SSR) (Wood, 2004); random heterogeneity, which is heterogeneity 

not directly observed but rather captured in a distribution of respondent-specific intercepts, is 

investigated using Cluster Analysis (CA) (Johnson and Wichern, 2002). The previous analyses 

allow estimation of parametric Random-Effects Ordered Logit (RE-OL) models for the prediction 

of ratings for a given population and given package design, to be used in the Bayesian 

Hierarchical Choice Modeling approach of Chapter 6. In addition to utilizing the results of the 

previous analyses, interaction effects are also investigated in the RE-OL modeling process. In 

addition to the parametric ordered logit models, methods from machine learning are explored. 

Decision trees and Bayesian networks (Witten and Frank, 2005) are used to gain insights into the 

data not easily seen in the previous analyses or parametric modeling methods. The methods 

developed in this work for the analysis of data collected from human appraisal experiments 
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complement our work in Chapter 4 on human appraisal experimental design. The methods 

presented in this chapter provide a clear understanding of the heterogeneous preferences within a 

consumer population, applicable for understanding preferences for system, subsystem, or 

component design.  

5.2 PVM ROOMINESS/INGRESS/EGRESS EXPERIMENTS 

While a human appraisal experiment was presented in Chapter 4 for vehicle occupant package 

headroom, it is desired to complete a comprehensive set of human appraisal experiments to 

develop models for the overall roominess, ingress, and egress preferences for the vehicle 

occupant package. The full design of the Programmable Vehicle Model (PVM) 

roominess/ingress/egress experiment is created using the optimal design of experiments (DOE) 

methodology of Chapter 4. The combined experiment consists of eight product factors, 

determined from a mapping of customer-desired attributes (A) to engineering attributes (E) , to 

influence roominess, ingress, and egress. The eight factors used in the human appraisal 

experiment correspond to dimensions defined for control of the Ford Motor Co. PVM (note: 

SgRP is the Seating Reference Point, which is a fixed point in space within the vehicle interior to 

serve as a measuring reference point, as define by SAE J1100 specification (Society of 

Automotive Engineers, 2002)): 

1. E1: SgRP to Hinge (HNGX) 

2. E2: SgRP to Rocker Y (ROKY) 

3. E3: SgRP to Heel Z (HELZ) 

4. E4: SgRP to Ground Z (GRDZ) 

5. E5: Sill to Heel (StoH) 

6. E6: SgRP to Roof Z (HRZ) 
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7. E7: SgRP to Front Header X (HRX) 

8. E8: SgRP to Side Rail Y (HRY) 

The relationship among the product attributes and roominess and ingress/egress is illustrated in 

Figure 5.1. 
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Figure 5.1: Relationship Among Product Attributes and Roominess/Ingress/Egress 

All product factors, E1-E8, assume three levels to create a response surface ordered logit model, 

in accordance with the power law response assumption discussed in the previous chapter. The 

three levels assumed by each product factor (E) are shown in Table 5.1. 

Table 5.1: Levels of Product Factors (E) used in PVM Experiment (mm) 

Level HNGX ROKY HELZ GRDZ StoH HRZ HRX HRY 
-1 800 380 175 450 0 777 241 122 
0 725 450 288 625 70 877 366 197 

+1 700 520 400 800 140 977 491 272 

Three human attributes have been hypothesized to influence roominess/ingress/egress opinions:  

1. S1: Gender (Gend) 

2. S2: Body Mass Index (BMI) 

3. S3: Stature (Stat) 

In this experiment, gender assumes two levels (i.e. male, female), BMI three levels (i.e. low, 

medium, high), and stature (or height) four levels (i.e. small, medium-small, medium-large, 

large), and human attribute bins are used for both BMI and stature as described in the previous 

chapter. The levels used for the human attributes are shown in Table 5.2. 
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Table 5.2: Levels of Human Factors (S) used in PVM Experiment  

 Gend  BMI  
Stat: M 

(in) 
Stat: F 

(in) 
-1 Male -1 <24 -1 65-68 58-62 
+1 Female 0 24-30 -0.33 68-71 62-65 

  +1 >30 +0.33 71-73 65-68 
    +1 73-78 68-74 

It is desired to estimate the following terms in the resulting roominess/ingress/egress models:  

• Linear terms for all design factors (E) and all demographic factors (S)  (11 terms)  

• Quadratic terms for all E (8 terms)  

• All 2-factor E E and E S interactions (28 E E and 24 E S terms)  

• The ordered logit cut points (all cut points count as 1 term in the X matrix) 

The total number of terms, i.e. the size of the f(x) vector, is 72, which is the number of unique 

configurations required in the experiment. Based upon previous studies conducted by Ford 

Motor Co., it has been found that a respondent can evaluate 18 configurations before fatiguing, 

leading to a block size, B, of 18 for each respondent. Based on the number of terms to be 

estimated and the block size, the minimum number of unique blocks needed in the experiment is 

4. Based on the size of the full factorial demographic design of 24 (213141=24) and the desire to 

have two respondents per demographic class, the experiment requires a total number of 

respondents (or blocks), N, of 48, each evaluating 18 configurations for a total experiment size, 

M, of 3456. In this experiment, there are also several factor combinations to specifically exclude:  

• no pairing of GRDZ=450 and HELZ=400  

• no pairing of GRDZ =450 and StoH=0  

• no pairing of GRDZ =800 and StoH=140  

• no pairing of GRDZ =800, HELZ=175, and ROKY>380  
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With the parameters necessary to run the algorithm of Chapter 4 determined, the experiment is 

designed. The complete design for all four unique blocks is shown in Appendix D, Table D.1.  

An issue encountered with the full experiment is that the resources required for the full 

experiment could not be secured, and therefore only one half of the experiment is conducted. The 

D-optimal algorithm is used to identify a two-part experiment in which the first two blocks (i.e. 

blocks 1 and 2) of 18 enable estimation of 36 selected model terms, while the second two blocks 

(i.e. blocks 3 and 4) are augmented to the original two blocks to allow estimation of the 

remaining 36 terms. The 36 model terms selected which can be estimated with completion of 

blocks 1 and 2 are as follows: 

• Linear terms for design factors (E) and all demographic factors (S)  (8 product terms)  

• Quadratic terms for all E (8 terms)  

• 2-factor E E interactions from E1 E2 through E4 E5 (19 terms)  

• All the ordered logit cut points (1 term) 

Conducting the experiment in 2 parts reduces the D-efficiency to 84.6% of the original 

experiment. The experimental design for unique blocks 1 and 2 used in this study is shown in 

Table 5.3. Blocks 3 and 4 are documented in Appendix D, Table D.2; human appraisals for these 

two blocks were not completed in this work due to PVM resource constraints. Because only 

blocks 1 and 2 will be completed in this work, a fractional factorial experiment for the human 

attribute whole-plots (S) is needed. The D-optimal algorithm is used to identify the most efficient 

fractional factorial design for the demographic attributes shown in Table 5.4. A total of 30 terms 

can be estimated from the whole-plot demographic experiment: 

• Individual block-effects (24 terms) 
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• Linear terms for demographic factors (S) (3 terms) 

• 2-factor S S interactions (3 terms) 

Table 5.3: Block 1 and 2 Experimental Design for Product Factors (E) 

E1 E2 E3 E4 E5 E6 E7 E8 

SgRP to  
Hinge 

SgRP to  
Rocker Y 

SgRP to 
Heel Z 

SgRP to 
Ground Z 

Sill to 
Heel 

SgRP to 
Roof Z  

SgRP to  
Frt Hdr X  

SgRP to  
Side Rail Y 

(HNGX) (ROKY) (HELZ) (GRDZ) (StoH) (HRZ) (HRX) (HRY) 
800 380 175 625 0 807 241 122 
700 380 400 800 70 977 241 122 
700 380 175 450 140 977 241 122 
800 520 400 625 140 977 366 122 
800 380 400 625 0 807 491 122 
700 520 400 625 0 807 491 122 
700 520 175 625 140 877 491 122 
800 380 400 625 140 877 491 122 
725 450 288 625 140 977 491 122 
800 520 400 625 0 877 241 197 
700 380 175 800 0 807 241 272 
800 380 400 800 70 807 241 272 
800 520 288 800 0 977 241 272 
800 520 400 625 140 807 366 272 
700 450 175 450 140 807 491 272 
800 380 175 450 70 977 491 272 
700 520 288 450 140 977 491 272 
700 380 400 625 140 977 491 272 
700 520 400 625 140 807 241 122 
800 380 288 450 70 977 241 122 
700 380 400 625 140 807 366 122 
800 450 288 450 70 877 366 122 
800 380 400 800 0 977 366 122 
800 520 175 625 0 807 491 122 
700 380 175 800 0 807 491 122 
800 380 175 800 70 977 491 122 
700 520 175 625 0 807 241 197 
700 520 400 800 70 807 491 197 
700 520 400 800 0 807 241 272 
800 380 175 450 140 807 241 272 
700 380 175 625 140 807 241 272 
725 520 175 625 70 877 241 272 
800 520 175 450 140 977 241 272 
700 380 288 625 0 877 491 272 
700 520 175 625 0 977 491 272 
800 450 400 625 0 977 491 272 
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Table 5.4: Experimental Design for Demographic Attributes 

S1 S2 S3 
Gender BMI Stature 
(Gend) (BMI) (Stat) 

M <24 65-68 
M >30 65-68 
M >30 68-71 
M <24 71-73 
M 24-30 73-78 
M >30 73-78 
F <24 58-62 
F >30 58-62 
F <24 62-65 
F 24-30 65-68 
F <24 68-74 
F >30 68-74 

With a complete experimental design for E (i.e. split-plot factors) and S (i.e. whole-plot 

factors) complete, the logistics of conducting the experiment are addressed. For each of the 18 

configurations presented, the respondent is asked to evaluate the following subsystem designs 

and to provide ratings as follows (rating scale to be used shown in parentheses): 

1. Ingress: Acceptability (1-4), Effort (1-5), and Space (1-5) 

2. Interior: Headroom (1-5), Leftroom (1-5), Kneeroom (1-5), and Roominess (1-5) 

3. Egress: Acceptability (1-5), Effort (1-5), and Space (1-5) 

An example of the questions give to each respondent is given in Figure 5.2. A complete list of the 

questions asked of each respondent, a definition of the rating scale, and the experimental 

protocol can be found in Appendix E.  
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Figure 5.2: Example PVM Human Appraisal Questions 

An abbreviated example of the recorded ratings for a single respondent is given in Figure 5.3. An 

example of the responses for a completed trial of 18 configurations can be found in Appendix F.  

 
Figure 5.3: Example of PVM Ratings from One Respondent 

In addition to the human attributes used in the experimental design, several additional human and 

socio-economic attributes (referred to as the set of respondent demographic attributes) are 

1. How acceptable is this vehicle configuration for ingress? This is rated on a 1 to 4 scale with 
the following definition for each rating as you can see posted in front of the vehicle: 1 is 
“very unacceptable”, 2 is “somewhat unacceptable”, 3 is “somewhat acceptable” and 4 is 
“very acceptable”. 

 
Very unacceptable Somewhat unacceptable Somewhat acceptable Very acceptable 

1 2 3 4 

 

2. What is the overall ease of ingress, for the vehicle? This includes evaluation of stepping up 
and passing through the door opening. This question is rated on a 1 to 5 scale, again as you 
can see posted in front of the vehicle, with the following definition for each rating: 1 is “very 
strong effort”, 2 is “strong effort”, 3 is “moderate effort”, 4 is “weak effort”, and 5 is “no effort 
at all”. 

 
Very strong effort  Strong effort  Moderate effort Weak effort No effort at all 

1 2 3 4 5 
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recorded at the time of the experiment, including seated height, age, and current vehicle 

ownership. Additionally, as noted in the experimental protocol, the respondent is allowed to 

adjust the position of the seat, and the respondents’ lateral seat positions and seat back angles are 

also recorded. With completion of the experiments and a complete data set for the 24 

respondents, random-effect ordered logit models can be estimated; however, data analysis 

methods are required to preprocess the data to ensure the most useful models are estimated, as 

well as to further understand the data collected. In this work, all factor values are normalized on 

the scale [0, 1] for modeling and analysis, except where noted. 

5.3 LATENT CLASS ANALYSIS FOR RESPONSE REDUCTION 

It is desired to create predictive preference models for each major sub-system attribute, i.e. 

ingress, egress and interior roominess, with the collected data; however, in the survey three 

responses were collected each for ingress and egress (i.e., acceptability, effort, and space) and it 

is not clear how a single measure of ingress or egress preference can be inferred from the 

multiple responses. To understand the relationship among the ten responses collected for 

roominess, ingress, and egress, a correlation matrix (Table 5.5) is estimated, which indicates 

significant correlation among the responses for each response type. 

Table 5.5: Correlation Matrix for Ten PVM Responses 

accept effort space head left knee room accept effort space

i_acceptable 1
i_effort 0.828 1
i_space 0.786 0.727 1
headroom 0.568 0.474 0.664 1
leftroom 0.244 0.265 0.259 0.223 1
kneeroom 0.273 0.294 0.249 0.193 0.522 1
roominess 0.562 0.527 0.660 0.774 0.549 0.444 1
e_acceptabl 0.773 0.739 0.678 0.442 0.256 0.251 0.500 1
e_effort 0.700 0.779 0.629 0.364 0.216 0.247 0.437 0.850 1
e_space 0.682 0.669 0.824 0.526 0.290 0.238 0.580 0.786 0.744 1

Egress
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The following conclusions can be drawn from the correlation matrix and coefficients, r: 

1. Responses for the three ingress questions are highly correlated (r > 0.7). 

2. Responses for the three egress questions are highly correlated (r > 0.7). 

3. Ingress responses are highly correlated to egress responses (r > 0.6). 

4. Headroom and leftroom are highly correlated to roominess (r > 0.5). 

5. Roominess and headroom are moderately correlated with ingress and egress (r > 0.35). 

Based on these observations and the desire to achieve single ingress and egress measures, a 

formal analysis of the responses is conducted using Latent Class Analysis (LCA). LCA is used 

in this work to identify similarity in rating responses, as opposed to similarity in consumer 

populations as in the Discrete Choice Analysis literature (Train, 2003). LCA is a general method 

for data reduction for discrete categorical or ordinal data, analogous to factor analysis used for 

continuous variables (McCutcheon, 1987). LCA assumes that several discrete variables, such as 

the three ratings given by each person for ingress or egress, are indicators of an overall discrete 

latent class (LC), such as an overall opinion of ingress or egress. LCA provides a single latent 

class response for each subsystem response (e.g. ingress), based upon the value of the indicators. 

This predicted LC can be used as the ingress or egress response in a parametric model, such as 

the discrete choice model, analogous to the use of factor scores resulting from factor analysis for 

continuous variables. 

LCA analysis assumes that the several response indicators are correlated, and seeks to divide 

the subsystem responses into a number of latent classes such that the indicators are conditionally 

independent within each class. Conditional independence implies that the correlation between the 

indicators is no higher than “chance” correlation in any class. In order to determine the division 

of subsystem responses to LCs, the number of LCs must be defined a priori for model 
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estimation. The division of subsystem responses is achieved using maximum likelihood 

estimation to estimate the conditional probabilities of each subsystem response given the LC, and 

the probability of each LC. A given model can be tested for conditional independence using the 

likelihood ratio chi-squared test, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

i

i

i
i m

n
nL

ˆ
ln22 , where ni is the observed cell frequency in 

the cross-tabulation table, and im̂ is the expected cell frequency. The null hypothesis is that the 

indicators are conditionally independent within each latent class. Another statistic to consider is 

the index of dissimilarity, Ds, given by ( ) ( )∑ −=
i

ii MmnabsDs 2ˆ ; this measure is the 

proportion of observations that would have to change cells for the model to fit perfectly, with a 

generally accepted criterion of Ds < 0.05. Among different models (i.e. different assumptions on 

the a priori number of latent classes) which display conditional independence, and Ds < 0.05, the 

Akaike Information Criterion (AIC), which is a function of likelihood and the number of classes 

(through the remaining degrees of freedom (df)), is used for model selection. It is given 

by dfLAIC 22 −= ; the model with the lowest AIC is the preferred model, i.e. the model which 

balances goodness of fit with the number of model parameters.  

LCA is conducted for ingress, assuming the 3 ingress questions (i.e., acceptability, effort, and 

space) are indicators of each persons overall opinion of the ingress quality. Different numbers of 

latent classes, between 1 and 10, are assumed. The results of each of the ten models are shown in 

Table 5.6. Based upon the criteria given for L2 and Ds, models with 1-4 latent classes are not 

acceptable models (the 5 class model is borderline w.r.t. the Ds measure, but will be considered a 

viable model). The models with between 5 and10 latent classes are compared based on the log-

likelihood (LL) and the AIC criteria in Table 5.6 and shown graphically in Figure 5.4. The 
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comparison indicates that increases in the number of classes beyond 7 provides no further 

increase in the LL, while the AIC criterion indicates that the 7 class model is preferred 

considering both the LL and the df. 

Table 5.6: Model Fit Parameters for Differing Class Number Assumptions 

LC LL df L2 AIC Ds 
1 -2619.39 88 0.000 1217.79 0.614 
2 -2209.27 76 0.000 421.55 0.384 
3 -2047.40 64 0.000 121.82 0.258 
4 -1969.79 57 0.001 -19.40 0.164 
5 -1944.48 50 0.712 -46.01 0.051 
6 -1942.11 42 0.592 -44.75 0.046 
7 -1936.82 44 0.964 -59.33 0.034 
8 -1936.54 38 0.880 -47.91 0.034 
9 -1937.36 26 0.279 -22.26 0.035 

10 -1937.45 19 0.053 -8.09 0.036 
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Figure 5.4: Log-likelihood & AIC vs. Number of Classes 

The assignment of cases to the latent classes is accomplished using a classification table, in 

which a case is assigned to the latent class in which it has the highest probability of belonging, as 

estimated by the conditional probability, πi, of belonging to each class. Example assignments of 

select cases of the 3 individual ingress responses to the seven latent classes are shown in Table 

5.7. 
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Table 5.7: Assignment of Cases to Latent Classes 

Resp. 
Number 

Ingress 
Acceptability

Ingress 
Effort 

Ingress 
Space 

Latent 
Class 

101 1 2 1 1 
103 1 3 2 2 
105 2 3 2 3 
108 2 3 3 4 
110 3 3 3 5 
115 3 4 4 6 
120 4 5 5 7 

The latent class is used as the response variable in the ordered logit model, just as ingress 

acceptability, effort, or space are used. A comparison using the latent class ingress measure 

versus the original 3 ingress measures is shown in Table 5.8 using ordered logit models for 

comparison (numbers in the Table are ordered logit β coefficients) 

Table 5.8: Ordered Logit Coefficient Comparison of Ingress Measures 

 Ingress Measure 
 acceptability effort space Range latent class 

HELZ 2.017 2.272 1.344 1.34 — 2.27 1.912 
GRDZ -2.026 -2.261 -1.162 -2.26 — -1.16 -1.875 
StoH -1.124 -1.268 -0.731 -1.27 — -0.73 -0.985 
HRZ 2.270 1.745 2.703 1.75 — 2.70 2.196 
HRX 0.550 0.512 0.476 0.48 — 0.55 0.527 
Stat -2.814 -2.790 -4.954 -4.95 — -2.79 -3.150 
Age 3.402 2.878 2.493 2.49 — 3.40 2.956 
BMI -2.382 -1.686 -2.003 -2.38 — -1.69 -2.158 
ρ0

2 0.1886 0.1873 0.1873   0.139 

As seen in the models, the parameters in the latent class model are within the max and min range 

of the parameters in the models using the three indicators as responses, indicating the latent class 

is capturing the effect of all three of the ingress indicators. LCA was also conducted for the three 

egress responses, with a similar result to ingress: the preferred number of classes was found to be 

7, with  L2 = 0.99, Ds = 0.045, and AIC = -53.65. LCA was used to create a model for all six 

ingress/egress responses, assuming ingress and egress responses are indicators of an overall 

opinion of the vehicle opening. This theory is supported by the fact that high correlation was 
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found between ingress and egress responses; however, a model with an acceptable Ds measure is 

not identified with any number of assumed latent classes. Therefore, it can be concluded that the 

three ingress responses are indicators of a respondent’s opinion of ingress, whereas the three 

egress responses are indicators of egress opinion.  

5.4 UNDERSTANDING FACTOR IMPORTANCE AND RATING STYLE 

5.4.1 Analysis of Variation of Rating Responses 

In the previous section, latent class analysis was used to understand the relationship among 

responses, in situations in which multiple responses are assumed to be related to a single 

unobserved latent factor. In this section, methods are used to understand the relationship among 

the factors (product and human attributes), respondents, and the responses. In order to understand 

how the overall variance in the responses is partitioned among the explanatory variables, an 

Analysis of Variation (ANOVA) is conducted. ANOVA analysis is an investigation of how the 

total sum of squares, SST, is decomposed into the sum of squares (SS) contributions from the 

model, SSM, and the error, SSE.  The SSM can be further decomposed to understand the influence 

of the individual product factors, SSTR, and the individual human factors, SSR, including the 

block effect attributable to individual respondents. The block effect is the portion of the 

respondent response not explained by the human factors, with the effect of different 

configurations and human attributes removed. It is realized in a model as a respondent-specific 

intercept (i.e. 24 unique intercepts). The magnitude of the sum of squares is a measure of the 

contribution of each factor and respondent, as well as the error, in explaining the variation in the 

responses (i.e. the ratings). The main effects ANOVAs for the ingress, egress (the latent classes 
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of Section 5.3 are used for the response), and the four roominess responses are shown in Table 

5.9, including the Partial Sum of Squares (P SS) and F value for each factor.  

Table 5.9: ANOVA for the Six PVM Responses 

  Ingress Headroom Leftroom Kneeroom Roominess Egress 
   P SS F P SS F P SS F P SS F P SS F P SS F 

SSM Model 1501.4 17.42 1311.8 27.91 605.1 12.88 369.3 7.86 700.5 14.90 1269.8 27.01
Gend 2.00 1.09 4.22 9.02 2.01 3.32 0.45 0.69 0.39 0.84 0.00 0.00
Stat 27.27 4.96 10.44 7.44 21.86 12.06 9.03 4.56 30.25 21.57 16.40 3.64
BMI 0.01 0.00 5.75 6.14 18.66 15.44 14.31 10.84 4.41 4.72 1.25 0.42
Age 79.56 7.23 17.24 6.14 7.97 2.20 48.81 12.33 25.48 9.09 95.77 10.63

SSR resp. 356.01 10.22 98.63 11.09 72.76 6.34 131.52 10.49 145.36 16.37 340.74 11.94

HNGX 4.92 1.34 0.36 0.39 2.47 2.05 1.65 1.25 0.62 0.67 10.69 3.56
ROKY 1.06 0.29 0.35 0.37 287.97 238.3 66.86 50.66 46.36 49.59 6.71 2.23
HELZ 210.07 57.28 3.22 3.44 1.87 1.55 31.30 23.71 3.55 3.80 275.19 91.61
GRDZ 49.27 13.43 0.36 0.38 1.93 1.60 0.57 0.43 0.74 0.80 75.03 24.98
StoH 18.03 4.92 0.46 0.50 2.83 2.34 2.15 1.63 2.20 2.36 62.79 20.90
HRZ 388.72 105.9 812.97 868.1 18.10 14.98 4.97 3.76 262.16 280.4 177.86 59.21
HRX 46.13 12.58 1.66 1.77 0.92 0.76 3.21 2.44 3.00 3.21 17.30 5.76

SSTR HRY 48.58 13.24 8.79 9.39 0.75 0.62 0.19 0.14 9.34 9.99 18.44 6.14

SSE error 935.3   238.8   308.1   336.6   238.4   766.0   

SST total 2436.6   1550.6   913.2   705.9   938.8   2035.8   
• Values unshaded: significant at the 0.05 level 

As seen in the ANOVA analysis, not every factor is statistically significant, as measured by 

the F-test (assuming significance at the 0.05 level). This finding serves as a guide to determine 

which factors to include in the random-effect ordered logit models estimated for each response. 

The dominant product and human factors are in bold for each response. The analysis also 

demonstrates the importance of the respondent block effect. The magnitudes of the SS block 

effect versus the magnitude of the SS human factors are approximately equal, indicating that 

there is much heterogeneity in responses not captured by the human factors. This unexplained 

heterogeneity can be attributed to human or socio-economic attributes not recorded and therefore 

not included in the analysis (e.g. income, usage), or individual rating styles.  It has been found in 
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previous research that respondents often display distinct rating styles, such as rating 

systematically high or low, or displaying different scale usage, i.e. scale usage heterogeneity. 

Systematic high or low rating is related to the mean rating for a given person, µi, whereas scale 

usage heterogeneity is related to the standard deviation of the ratings for a given person, σu,i. 

Attempts have been made to identify these behaviors and control for them in the modeling 

process (Greenleaf, 1992; Rossi et al., 2001); however, in this work respondents were not given 

the same set of configurations (i.e. differing E) to evaluate due to the blocking (the full 

experiment contains four unique blocks) and each person is characterized by a different S, 

making comparisons of µi and σu,i meaningless. 

5.4.2 Analysis of Rating Style using Hierarchical Clustering 

For the reasons presented in the previous subsection, a general method to control for rating style 

must be developed which does not assume respondents have evaluated the same set of 

configurations, and accounts for the influence of S. In the proposed method, the block effect will 

be used as a means of comparison among different respondents. The block effect is the portion of 

the respondent response not explained by the product or human factors, i.e., it removes the effect 

of varying E and S from the analysis. It is estimated in the modeling process as an individual-

level intercept, β0
n, or in a random-effects model as a distribution (typically Normal) of 

individual-level intercepts with mean 0, and variance τ,  i.e. β0
n ~ N(0, τ). A challenge is using 

the block effect to understand both systematic rating bias, i.e. high rating style vs. low rating 

style, but also scale usage heterogeneity, i.e. selective use of the provided scale. In this work, 

these two phenomena are investigated using a Hierarchical Bayesian (HB) approach to 

estimating the block effect for each person, as will be described in the Methodology subsection.   
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Methodology: The method for using the block-effect resulting from the HB analysis is as 

follows: 

1. Calculate the block-effect for each person for each response using the HB approach. 

2. Use the block-effect to calculate ratings bias, bsn, and scale usage, sun, for each person 

for each response. 

3. Perform factor analysis on bias and scale usage to determine if they are unidimensional 

and an indicator of rating style, or multidimensional, indicating a missing model 

parameter (E or S) or other uncontrolled factor in the experiment. 

4. Perform Cluster Analysis on unidimensional rating style terms (i.e. bias or scale usage) to 

understand the respondent clusters of similar styles (e.g. wide or narrow scale usage). 

The key to this approach is the estimation of a random block effect for each respondent. In 

standard MLE, a fixed block effect (i.e. individual-level intercept) is estimated for each 

individual, β0
n, which contains information about bias only; however, the hierarchical Bayes 

estimation method allows estimation of a random block effect for each person, β0
in, which 

contains information about both bias and scale usage heterogeneity. In the proposed method, a 

three-stage hierarchical prior is set for the random block effect as follows: 

( ) ( ) ( ) ( )
( )
( )

( ) 3) (    ,.~

2) (              ,0~ 

1) (            ,~ where

3
 

2
| 

1
,|

0
3

0
3

0

00

000

levelkgammainv

levelN

levelN

level 
p

level 
pp

level 
pprior

u

un

nnin

uunnnnin

θσ

σβ

τββ

σσβττββ
��
�� ��� �
������


=

. (5.1)

The three levels indicated in the prior are the observation level (level 1), the person level (level 

2), and the population level (level 3). This assignment of priors indicates that the block effect for 

each observation for each person (level 1), β0
in, is distributed normally, with mean β0

n and 
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variance τn; the mean block effect for each for person (level 2),  β0
n, is normally distributed with 

mean 0 and variance σu ; the variance at the population level (level 3), σu, follows a inverse 

gamma distribution, with specified parameters 0
3

0
3  and θk . The hierarchical priors for levels 1 and 

2 are illustrated are illustrated in Figure 5.5. The hierarchical prior relaxes the assumption of a 

fixed block effect for each person, and thus allows for understanding both the mean and variance 

of the block effect for each person. The mean (β0
n) provides information about rating bias and 

the variance (τn) provides information about the scale usage. 

0

( )un N σβ ,0~0

( )nnin N τββ ,~ 00

Person Level (2)Person Level (2) Observation Level (1)Observation Level (1)
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Figure 5.5: Illustration of Bayesian Priors for Block Effects 

An issue with such an approach is that the random block term, β0
in, is redundant with the 

similarly distributed Logistic error term, ( )εσε ,0~ Fin , creating potential identification issues. 

This is overcome in the Bayesian method through the use of the prior which constrains the mean 

of the β0
n to be zero and places a limit on the variance τn through the Inv. Gamma prior 

specification. Although this approach creates models which over-fit the data (i.e. very small error 

εin), the intent of such models is to estimate random block effects rather than to predict ratings. 

In order to use the information to study rating style, the sign and magnitude of the mean 

block effect for each person, β0
n, provides information on rating bias: 
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( ) 000
nnnn Ebs βββ =−= . (5.2)

A positive bsn indicates a biased high rating style and negative bsn indicates a biased low rating 

style compared to the population. To understand scale usage, sun, a comparison is made between 

the variance of each individual’s set of utilities including the block effect and the utilities with 

block effect omitted, i.e. the utility variance for the configurations rated by a respondent of a 

given S: 

( ) ( )nnnn WWsu varvar 0 −+= β . (5.3)

In this formulation, a positive value for scale usage, snu, indicates wider scale usage, while a 

negative value indicates a narrower scale usage compared to the population of a given S. 

Analysis of PVM Data: The hierarchical Bayes analysis is used to create models for each of the 

six responses (using the latent class responses for ingress and egress), and the bias and scale 

usage is recovered for each respondent for each of the six responses. The bias bsn and scale usage 

sun for each person are investigated to determine if a systematic pattern exists for each person for 

each of their six responses. Factor analysis is used to determine if bsn and/or sun are related to a 

single latent factor, i.e. the rating style, or if they are related to multiple latent factors, which 

would be indicative of a missing explanatory variable in the model. The number of latent factors 

for a given set of indicator variables is determined by the magnitude of eigenvalues of the 

covariance matrix: the general rule is that only factors with eigenvalues greater than 1.0 be 

retained (Johnson and Wichern, 2002). In addition to the factor analysis Cronbach’s alpha is also 

calculated, which is a measure of the reliability of indicators to a factor (Cortina, 1993). 

Cronbach’s alpha is a confirmation that the variables are in fact indicators of a single factor, with 

a value greater that 0.7 generally used as the metric for unidimensionality. The results of the 



 
 

139 

factor analysis conducted on the bias and scale usage for each of the six responses are shown in 

Table 5.10. The factor analysis conducted on the bias terms indicates that there is only one latent 

factor, consistent with the rating style hypothesis, while the analysis of scale usage terms 

indicates two latent factors, indicating scale usage is not related to an individual rating style. The 

Cronbach’s alpha confirms that the bias indicators are related to a single factor with a high 

reliability of 0.91. 

Table 5.10: Factor Analysis for Block Mean and Variance 

 Bias bsn Scale Usage sun 
 Factor1 Factor1 Factor2 
Ingress 0.789   0.695 
Headroom 0.793 0.420   
Leftroom 0.735 0.685   
Kneeroom 0.757 0.566   
Roominess 0.945 0.725   
Egress 0.744   0.783 
    

Average correlation 0.629 0.234 
Cronbach's alpha 0.911 N/A 

In the case of bias (bsn), cluster analysis is used to identify the dominant rating styles of the 

respondents, i.e. systematically high or low raters. For the bias terms, cluster analysis is 

conducted using both the non-hierarchical k-means cluster analysis (assuming three clusters), 

and complete linkage hierarchical clustering (an a priori assumption of number of clusters is not 

required) to cluster similar rating styles. Because scale usage does not satisfy the hypothesis of 

indicating consistent respondent-level rating styles, it is not further analyzed. The results of the 

k-means cluster analysis, with the bias cluster assignments, are summarized Table 5.11. The 

results of the complete linkage hierarchical clustering analysis (based upon a Euclidean distance 

measure) are shown in Figure 5.6.  
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Table 5.11: k-means Cluster Analysis of Bias 

 Ingress Interior Room Egress  
id LC headrm leftrm kneerm room LC Cluster 

resp 1 6.726 6.034 4.812 7.035 6.849 10.450 2 
resp 2 -1.928 1.073 0.124 1.410 -4.780 -2.846 1 
resp 3 2.082 0.917 1.367 1.290 1.984 1.775 2 
resp 4 -2.211 -2.401 -2.132 -5.075 -2.481 -4.880 1 
resp 5 2.274 -4.292 -3.071 -0.312 3.464 4.473 2 
resp 6 3.128 10.380 3.181 11.120 6.782 2.186 1 
resp 7 0.640 2.749 2.033 1.415 -0.327 -0.444 1 
resp 8 6.022 2.767 2.997 2.121 3.728 3.080 2 
resp 9 1.482 -6.126 1.515 -5.421 -2.259 -1.126 1 
resp 10 0.523 0.605 -1.589 -0.844 -1.353 -0.047 1 
resp 11 -3.777 -0.264 0.044 5.468 -1.913 -6.355 1 
resp 12 0.743 1.350 -0.527 -0.141 1.956 0.856 1 
resp 13 0.347 -2.294 3.661 2.345 1.931 -1.827 3 
resp 14 1.034 -4.605 -4.708 -3.706 -3.308 2.583 2 
resp 15 -0.453 1.975 -0.992 2.367 0.838 2.701 3 
resp 16 0.096 1.424 2.201 5.937 6.395 2.631 2 
resp 17 1.502 -0.477 3.343 -5.648 1.412 1.475 1 
resp 18 -0.510 3.491 -0.080 -0.828 1.275 -0.796 1 
resp 19 -3.386 -6.550 -3.246 -4.579 -4.169 -4.461 1 
resp 20 -3.585 -4.207 -1.401 -4.582 -2.762 -3.193 1 
resp 21 -0.517 5.074 -2.220 -1.534 0.995 0.673 3 
resp 22 6.493 7.507 1.612 2.152 3.326 6.292 2 
resp 23 -2.561 -7.188 -8.716 -10.010 -8.894 -4.011 3 
resp 24 -2.940 -8.655 -2.681 -1.442 -6.107 -3.180 1 
resp 25 1.673 6.363 4.902 8.666 6.149 0.533 2 
resp 26 -5.829 -3.265 0.290 1.714 1.189 -4.731 3 
resp 27 9.179 2.216 9.650 5.663 4.245 5.409 2 
resp 28 -0.341 2.761 -1.201 -0.811 -0.791 -1.437 2 
resp 29 -1.897 -3.244 -4.067 -10.520 -5.406 -0.666 1 
resp 30 -5.909 -7.334 0.830 0.769 -3.728 -8.125 3 
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Figure 5.6: Hierarchical Complete Linkage Cluster Analysis 
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With respect to bias cluster classification, there is strong agreement between the k-means and 

hierarchical clustering, with the hierarchical method confirming the assumption of three unique 

clusters, and only three cluster classification discrepancies between the two methods. The three 

cluster model separates the respondents into groups in which each respondent’s set of bias terms, 

bsn, is close to zero (Neutral Raters), positive (High Raters), or negative (Low Raters). 

With the cluster assignments identified for each respondent, a rating style variable, Styl, can 

be defined and added as a respondent level factor in the ANOVA analysis. The style variable is a 

categorical variable, i.e. [0,1,2], indicating the cluster assignment for each respondent. The result 

of adding the style factor is shown in Table 5.12. As seen, the random block effect is significantly 

reduced, and the sum of squares contribution of the style factor is quite large, indicating that a 

significant portion of the unexplained random respondent effect can be attributed to the rating 

style of the respondent. 

Table 5.12: Inclusion of the Rating Style Variable 

 Ingress Headroom Leftroom Kneeroom Roominess Egress 
Model 1501.35 1311.83 605.13 369.31 700.45 1269.80 
Gend 11.01 15.41 5.82 1.83 11.84 23.07 
Stat 22.50 4.52 5.52 2.22 2.68 37.62 
BMI 8.25 4.82 16.99 8.75 0.74 14.35 
Age 69.77 19.48 11.73 63.06 25.39 69.90 
Styl 69.37 23.05 19.58 45.70 51.07 61.27 
resp 143.66 56.47 61.54 95.02 61.51 106.85 
HNGX 4.92 0.36 2.47 1.65 0.62 10.69 
ROKY 1.06 0.35 287.97 66.86 46.36 6.71 
HELZ 210.07 3.22 1.87 31.30 3.55 275.19 
GRDZ 49.27 0.36 1.93 0.57 0.74 75.03 
StoH 18.03 0.46 2.83 2.15 2.20 62.79 
HRZ 388.72 812.97 18.10 4.97 262.16 177.86 
HRX 46.13 1.66 0.92 3.21 3.00 17.30 
HRY 48.58 8.79 0.75 0.19 9.34 18.44 
error 935.25 238.81 308.09 336.58 238.39 766.00 
total 2436.59 1550.64 913.22 705.89 938.84 2035.80 
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5.4.3 Ordered Logit Model with Rating Style 

To better illustrate the use of the style factor, random-effects ordered logit models are estimated 

with and without inclusion of style variables in Table 5.13, illustrated using the LC Ingress 

response in Table 5.13. For the modeling process, style is represented using two dummy 

variables for high rating style, stylH, and neutral rating style, stylN, to represent the three clusters 

of rating styles.  

Table 5.13: Comparison of Ordered Logit Models for LC Ingress 

 Without Style With Style 
 coef. t-value coef. t-value 

ROKY 0.324 1.91 0.320 1.89 
HELZ 2.371 11.04 2.371 11.06 
GRDZ -2.207 -7.40 -2.217 -7.42 
StoH -0.863 -4.00 -0.866 -4.02 
HRZ 2.822 13.33 2.818 13.32 
HRX 0.745 4.22 0.746 4.23 
gend -0.380 -0.64 0.619 1.35 
stat -0.313 -1.03 0.341 1.39 

BMI 0.229 0.68 0.100 0.40 
age -1.164 -1.44 0.408 0.64 
stylH   2.307 5.38 
stylN  1.611 2.04 
σu 1.48 0.64 
ρ0

2 0.184 0.194 

Random respondent variation is reduced significantly with the inclusion of explanatory variables 

for ratings style: the fraction of unexplained variance at the respondent level, σu, reduces from 

1.48 to 0.64 with the inclusion of style variables. In addition, the goodness-of-fit of the model, 

ρ0
2 (a measure between 0 and 1), improves from 0.184 to 0.194.  This indicates there is less 

unexplained ratings heterogeneity among respondents with inclusion of the style terms. The 

benefit of including the style term in the predictive model is a reduction in the variation of the 

block effect distribution, which results in smaller standard errors in the human/socio-economic 

model terms and improved understanding of the heterogeneity in rating responses. Assuming the 
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population sampled in the experiment is representative of the population as whole, controlling 

for the rating style explicitly in the model will provide better predictions than those obtained by 

integrating over the respondent variance. Also, by knowing people have certain ratings styles, a 

pre-experiment calibration technique could be used to determine a respondent’s rating style 

before the appraisal is conducted to ensure better consistency in rating style in future 

experiments (Greenleaf, 1992). 

5.5 SMOOTHING SPLINE REGRESSION TO UNDERSTAND RESPONSE BEHAVIOR 

With a set of responses determined in Section 5.4 and an understanding of the factor/response 

relationship determined in Section 5.5, the modeling process can be conducted. A remaining 

issue is an understanding of the functional relationship between the factors and responses. As 

was noted in Section 4.1, it has been generally found that a human response to stimuli follows a 

power law relationship, which provides guidance for determining the form of the product factors 

in the model. However, in the case of human or socio-economic attributes, such a general theory 

does not exist. In addition, as noted in Section 5.2, the actual human attributes of each person 

were collected during the experiment and will be used in model estimation, such that higher 

ordered terms can be estimated for these terms. A general method to understand the relationship 

between the response and a factor is the use of Smoothing Spline Regression. Smoothing spline 

regression is similar to piecewise linear regression; however, the breakpoints are connected with 

polynomials as opposed to lines. Smoothing spline regression is used to better understand the 

relationship between response and factor, and decide upon the factor forms (e.g., linear, 

quadratic, cubic) to include in the subsequent random-effects ordered logit models. In this work, 

smoothing spline linear regression models will be fit to the PVM data and the results will be used 

to provide guidance in determining factor forms for the ordered logit modeling, in which the 
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utility function is linear additive. This is due to the fact that readily available smoothing spline 

software is available for linear regression but not ordered logit modeling. 

Plots of representative smoothing spline regression relations are shown in Figure 5.7 a), b), 

and c) (dashed lines represent 95% confidence intervals). These three plots represent the three 

dominant types of relationships found in the modeling process: 

1. Linear Relationship: As illustrated in Figure 5.7 a), using the SgRP to Ground factor 

(GRDZ) as an example, many of the factors, both product and demographic, have a linear 

relationship with the rating response. 

2. Power Law Relationship: As illustrated in Figure 5.7 b), using the SgRP to Roof Z factor 

(HRZ) as an example, several of the product factors exhibit a power law relationship. In 

such a relationship the rate of increase of the rating response decreases as the magnitude 

of the stimuli increases. This is important to capture in the modeling process and for the 

vehicle level optimization presented in Chapter 6 because increasing the magnitude of 

these dimensions, such as HRZ, results in a diminishing rate of increase in the expected 

rating.  

3. Critical Level Relationship: As illustrated in Figure 5.7 c), using Seated Height as an 

example, several of the demographic attributes display a critical level relationship. In 

such a relationship, the rating response is constant over certain factor levels, such as very 

small or very large seated heights, but displays a linear (or higher) relationship over other 

levels of the factor, such as medium statures. It is important to capture such relationships 

in the modeling process, particularly if the model is to be used in optimization, since the 

demographic of the target population for the product may fall in different portions of the 

plot (e.g. medium seated height), which will determine if a significant relationship exists.  



 
 

145 

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

SgRP to Ground Z

E
ffe

ct
 o

f S
gR

P
 to

 G
ro

un
d 

Z

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

SgRP to Roof Z

E
ffe

ct
 o

f S
gR

P
 to

 R
oo

f Z

 

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

Seated Height

E
ffe

ct
 o

f S
ea

te
d 

H
ei

gh
t

 
Figure 5.7: Examples of Linear, Power Law, and Critical Level Attributes 

With an understanding of the various relationships created using polynomial splines, a 

straightforward method is required to approximate these relationships in the random-effects 

ordered logit models described in Section 2.3.3. The three behaviors identified can be 

approximated closely through combinations of linear, quadratic, and cubic terms. The linear 

relationship only requires a linear term, the power relationship a linear and quadratic term, and 

the critical level relationship a linear, quadratic, and cubic term (and thus can only be 

implemented for the demographic attributes). This method is utilized and demonstrated in a 

a) b) 

c) 
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random-effects ordered logit model for the ingress rating response (using the latent class ingress 

response created in Section 5.3). The results of the model are shown in Table 5.14. 

Table 5.14: Random-Effects Ordered Logit for LC Ingress Response 

 coef. t-value 
ROKY 0.29 1.71 
HELZ 6.95 2.83 
HELZ

2 -4.75 -1.92 
GRDZ -1.87 -6.03 
StoH -0.79 -3.58 
HRZ 35.95 3.72 
HRZ

2 -33.15 -3.45 
HRX 5.43 1.81 
HRX

2 -4.73 -1.57 
stylH 3.05 4.72 
stylN 1.41 2.04 
gender 1.25 1.61 
age -5.02 -1.78 
age2 5.12 1.61 
BMI 1.37 1.88 
seated 832.33 1.68 
seated2 -1636.61 -1.66 
seated3 805.13 1.65 

Using the coefficients from Table 5.14, the effect of three factors shown in Figure 5.7 (i.e. GRDZ, 

HRZ, Seated Height) are plotted in Figure 5.8, and compared to the smoothing spline regression 

plots to determine if the proposed modeling approximations are close to the smoothing spline 

regression results, and if the effects of the three factors are similar in the random-effects ordered 

logit model. In the plots of Figure 5.8, the actual linear, quadratic, and cubic terms of the factor 

are shown in the legend. In general, the shapes of the factor responses in the random-effects 

ordered logit model match the shapes of those in the smooth spline linear regression; however, 

the overall scale is different, since the linear regression model is on the scale of ratings, whereas 

the RE-OL model is on the scale of utility. Additional higher-ordered terms were tested in the 

RE-OL model, but the relationships identified in the smoothing spline regression were found to 

be applicable for the RE-OL, and thus no other higher ordered terms were found to be 
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significant. Similar findings were made with the other collected PVM responses, i.e. headroom, 

leftroom, kneeroom, roominess, and egress. Based upon this study, smoothing spline regression 

is an effective method for guiding the selection of terms to be included in the prediction model.  
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Figure 5.8: Model Factors using Linear, Quadratic, and Cubic Terms 

5.6 RANDOM-EFFECTS ORDERED LOGIT MODELS FOR ROOMINESS AND INGRESS/EGRESS 

With the set of responses determined using Latent Class Analysis in Section 5.3, an 

understanding of the significant responses and the effect of rating style in Section 5.4, and an 

understanding of the shape of the factor-response relationship in Section 5.5, random-effects 

Ordered Logit models are fit to the data. The previous methods did not study the effect of the 

interactions, which will be investigated in the modeling process.  
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5.6.1 Comparison of Ordered Logit to Linear Regression 

Before fitting the ordered logit models, a comparison will be made to linear regression modeling 

to illustrate the benefits of ordered logit modeling. As an example, the PVM based headroom 

model was estimated using linear regression by maximum likelihood estimation (MLE), instead 

of the more common least squares method, to allow comparison of the goodness of fit, ρ0
2, 

measures. Using this approach yields ρ0
2=0.257 for the linear regression (LR) model, compared 

to ρ0
2=0.364 for the ordered logit model (OL), indicating the ordered logit model better fits the 

data from the PVM-based survey. This is illustrated in the histogram of Figure 5.9, comparing 

LR and OL predictions to the actual ratings distribution in the PVM survey.  

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3 4 5

Rating Category

Fr
eq

ue
nc

y

Actual
OL
LR

 
Figure 5.9: Comparison of Ordered Logit and Linear Regression Model Fit 

5.6.2 Random-Effects Ordered Logit Models and Interpretation 

With confirmation that the RE-OL model is the proper model specification for the collected 

rating data, models are created with the specific task to include the effects of significant 

interactions. The two RE-OL models for the latent class ingress and egress responses with 

significant terms, including interactions, are shown in Table 5.15 (OL cut-points omitted). RE-
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OL models for the roominess responses, i.e. headroom, leftroom, kneeroom, and roominess, are 

shown in Table 5.16 (OL cut-points omitted). 

Table 5.15: Ingress-Egress RE Ordered Logit Models 

 LC Ingress   LC Egress 
 coef. t-value   coef. t-value 
Gend -33.53 -2.35  Age -6.64 -1.26 
Seated -786.25 -1.43  Age2 6.57 1.23 
Seated2 1399.74 1.29  ROKY 3.53 2.27 
Seated3 -632.79 -1.18  HELZ -11.52 -2.57 
Age -51.67 -3.33  HELZ

2 -5.23 -1.79 
Seated Gend 35.65 2.37  GRDZ -0.74 -0.34 
Seated Age 55.64 3.37  StoH -4.27 -2.54 
ROKY 0.28 2.18  HRZ 41.41 3.64 
HELZ -16.75 -3.80  HRZ

2 -41.13 -3.64 
HELZ

2 -5.43 -2.01  HRX 1.48 1.05 
GRDZ -1.75 -1.33  ROKY HELZ 3.93 1.83 
StoH -4.09 -5.53  ROKY GRDZ -7.73 -1.95 
HRZ 45.78 4.20  ROKY StoH -2.32 -1.28 
HRZ

2 -47.01 -4.33  ROKY HRX -3.17 -1.64 
HRX 1.07 5.48  HELZ GRDZ 6.77 2.4 
HRY 7.71 2.12  HELZ StoH 5.74 6.04 
HRY

2 -10.49 -2.99  HELZ HRZ 12.89 4.34 
ROKY HELZ 2.78 1.39  HELZ HRX 2.95 2.55 
ROKY GRDZ -5.48 -2.52  StylH 2.70 6.12 
ROKY HRY 4.84 2.97  ρ 0.214 
HELZ GRDZ 6.21 2.25  ρ0

2 0.274 
HELZ StoH 4.66 5.09     
HELZ HRZ 22.94 7.69     
StylH 2.16 4.72     
ρ 0.155      
ρ0

2 0.262     
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Table 5.16: Roominess RE Ordered Logit Models 

 Roominess   Headroom 
 coef. t-value   coef. t-value 
Seated -11.08 -2.82   Gend 6.65 2.81 
Age -44.67 -2.99   Seated 901.88 2.03 
Age2 16.17 2.90   Seated2 -1896.38 -2.16 
Seated Age 30.42 2.10   Seated3 990.29 2.28 
ROKY 15.47 1.79   Age -16.52 -2.39 
ROKY

2 -29.31 -3.53   Age2 18.07 2.67 
HELZ -2.33 -2.54   BMI 2.13 2.06 
HRZ 50.53 4.49   Gend Age -10.23 -2.52 
HRZ

2 -57.09 -5.18   HNGX -2.76 -1.74 
HRY 6.93 1.91   ROKY 1.63 2.04 
HRY

2 -6.25 -1.72   HELZ -7.72 -2.29 
ROKY HELZ -3.48 -2.26   HRZ 83.34 6.75 
ROKY HRZ 28.76 6.34   HRZ

2 -74.99 -6.15 
HELZ GRDZ -5.11 -2.65   HRY 1.12 4.53 
HELZ HRZ 7.44 3.97   HNGX ROKY -3.92 -1.69 
StylH 2.51 5.07   HELZ HRZ 9.58 2.18 
ρ 0.216   StylH 2.17 3.51 
ρ0

2 0.408   ρ 0.251 
    ρ0

2 0.536 
 

 Leftroom   Kneeroom 
 coef. t-value    coef. t-value 
Seated 1360.97 1.83  Age -11.99 -1.66 
Seated2 -2694.32 -1.83  Age2 15.12 2.06 
Seated3 1332.40 1.82  BMI -1.31 -1.27 
BMI -8.49 -1.32  ROKY 2.95 4.64 
BMI2 7.80 1.17  HELZ 5.37 2.09 
ROKY 4.84 16.40  HELZ

2 -3.88 -1.51 
GRDZ -0.45 -1.61  HRZ 0.59 2.81 
StoH -0.47 -2.10  HRX 1.79 1.37 
HRZ 1.26 6.31  ROKY HRX -2.17 -1.12 
ρ 0.263  StylH 1.95 3.45 
ρ0

2 0.307  ρ 0.333 
    ρ0

2 0.225 

As seen in comparing among the models for ingress-egress and roominess, factors thought to be 

primarily associated with roominess, such as HRZ, HRX, and HRY, appear in the ingress-egress 

models, and factors thought to be associated with ingress-egress, such as HNGX, appear in the 

roominess models. The reason for this could be two-fold: respondents’ opinions of ingress-egress 
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also influence their opinions of roominess, or the factors actually contribute to the ingress-egress 

or roominess experience directly. Different demographic attributes and demographic attribute 

interactions appear in the models. For example, gender, seated height, and age appear in the 

ingress model, whereas only age appears in the egress model. This could be explained by the fact 

that it is generally easier for respondents to exit the vehicle than enter the vehicle, and thus 

factors such as seated height and anthropomorphic gender differences do not influence the rating 

for egress as they do for ingress.  

5.6.3 Effect of Explicitly Modeling Heterogeneity  

The effect of including both systematic (S) and random heterogeneity (σu) on the rating 

predictions can be seen using a simple example in which the headroom model is re-estimated 

without S, without σu, and without both S and σu. The models estimated with different 

representations of heterogeneity are compared in terms of their ability to match the first four 

moments of the actual ratings distribution, as shown in Table 5.17. 

Table 5.17: Comparison of Inclusion of Heterogeneity in Model 

 OL without S OL with S RE-OL without S RE-OL with S 
 Sample Error Sample Error Sample Error Sample Error 
Mean 3.321 -0.15% 3.322 -0.14% 3.315 -0.35% 3.318 -0.25% 
Variance 2.049 -26.41% 2.315 -16.86% 2.203 -20.85% 2.389 -14.20%
Skewness -0.109 -68.19% -0.249 -27.35% -0.168 -50.93% -0.264 -22.94%
Kurtosis 1.178 -18.92% 1.349 -7.11% 1.276 -12.14% 1.360 -6.36% 
ρ0

2 0.380 0.483 0.518 0.536 

A primary difference among the models can be seen in the goodness of fit, ρ0
2, which increases 

as either systematic, random, or both, types of heterogeneity are included in the model. The 

effect of the improved model goodness of fit results in improved moment matching, as can be 

seen in the decreasing error in each moment as heterogeneity is more explicitly represented. An 

exception to this finding is the ability of each of the models to match the mean, since all models 
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are unbiased estimates of the mean; improvements resulting from modeling heterogeneity are 

only seen in matching the higher moments. The improved model fit can be seen graphically 

using a comparison of histograms of the OL model without S and σu versus the OL with S and σu 

(i.e. RE-OL) in Figure 5.10. It can be seen that the OL model without S and σu does a poor job of 

matching the actual ratings distribution, whereas the OL model with S and σu is much better at 

matching the actual ratings distribution. 
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Figure 5.10: Comparison of Lowest to Highest Goodness of Fit Model 

5.7 ALTERNATE DATA ANALYSIS METHODS  

While the focus of this work is to estimate parametric models to be used in the hierarchical 

choice modeling approach, other model forms are also investigated to gain further insight into 

the data, and to confirm the RE-OL modeling approach. Data mining machine learning methods 

are investigated to determine if such methods can aid or replace traditional statistical modeling 

methods, such as the ordered logit model. The data mining methods investigated in this work are 

classification methods, i.e. methods to predict the ratings class (i.e. 1-5 rating) based upon the 

attribute values. Two applicable approaches to classification data mining are investigated: a C4.5 

Decision Tree and a Bayesian Network. The five classes to be estimated are the five (or 4) 

Low ρ0
2: Model without S and σu High ρ0

2: Model with S and σu
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ratings: 1, 2, 3, 4, 5. An issue with these approaches is that the mainstream implementation of the 

Decision Tree and Bayesian network is based upon the assumption that attribute values, Z, 

including both product attributes E and human attributes S, are discrete variables. This is not a 

significant issue for the PVM product factors, which only assume three levels and therefore can 

be considered discrete; however, they will be treated as nominal as opposed to interval (or ratio) 

level variables in these analyses. The demographic attributes are generally continuous interval 

level variables (except gender), and thus will be divided into discrete categories based upon their 

continuous values. 

5.7.1 Decision Tree for Ratings Classification  

A Decision Tree is created using the PVM dataset. A decision tree is created through a process in 

which a number of observations or cases, s, within a training data set, Tn, are classified into a 

number subsets with respect to a class variable (i.e. a response), Rp, based upon a rule concerning 

a “splitting” attribute value, Z (i.e. a product or demographic attribute). The tree building process 

continues to add branches until no further information can be gained. The decision tree is then 

pruned using a cost criterion to maximize the classification accuracy relative to the complexity of 

the tree (Witten and Frank, 2005). The goal is to create a non-parametric model capable of 

predicting the class (rating) based on the value of the attributes. In this respect, a decision tree is 

similar to the ordered logit model, in that the goal is to predict a rating based upon attribute 

values (e.g. HRZ, Stature). Therefore, a decision tree can be viewed as a non-parametric 

alternative to the ordered logit model.  
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The rule for selecting a splitting attribute is determined by selecting the attribute which 

maximizes the information gain for a given split, gain(Z), based on a measure of information, 

info: 

( ) ( ) ( ){ }sinfosinfoZgain Z−=max , (5.4)

The average information, info(s), is expressed in the units of bits and can be calculated from the 

number of occurrences of a particular class Rp in s, given as freq(Rp,s): 
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The average information is calculated over the entire training set, s = Tn, for the first split, and 

over number of cases at the root attribute for all subsequent splits. The information associated 

with a split on attribute Z, infoZ(s), is given by: 

( ) ( )j

J

j

j
Z sinfo

s

s
sinfo ⋅= ∑

=1
 (5.6)

where sj is a subset of cases created by performing J splits on attribute Z. The tree building 

process continues to add branches until no further information can be gained. The decision tree is 

then pruned using a cost criterion to maximize the classification accuracy relative to the 

complexity of the tree. As an example, a simplified decision tree is built for the headroom 

response as shown in Figure 5.11 (variables un-normalized for clarity), and the model goodness-

of-fit statistics are shown in Table 5.18. All units in the figure are cm except for BMI in standard 

units kg/m2; the number in the box is the rating class, and the number below the rating class is the 

number of predicted observations belonging to each rating class based on the classification rule. 
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Figure 5.11: C4.5 Decision Tree for Headroom Rating 

Table 5.18: Summary Statistics for the C4.5 Decision Tree 

1 2 3 4 5 <-- classified as 
141 0 7 3 1 1  
20 1 14 8 2 2  
22 8 22 14 8 3  
3 1 12 25 35 4  
0 0 3 4 228 5  

Correctly Classified 417 (71.65%) 
Incorrectly Classified 165 (28.35%) 

Root mean squared error 0.293 
Kappa statistic 0.595 

The decision tree can provide insights not gained readily in traditional parametric modeling 

methods, such as ordered logit modeling. One such observation is that 85% of configurations 

receiving a rating of 5 occur when HRZ (E6) is at its maximum value, regardless of other product 

or demographic attribute values. This indicates that increasing HRZ is a straightforward method 

for achieving a high headroom rating. While the HRZ attribute is dominant in the ANOVA 

analysis, the decision tree provides information regarding how specific attribute values influence 

specific rating frequencies. Another interesting observation is that the combination of low values 

of HRZ coupled with respondents of large seated height and overall stature account for the 

majority of the low ratings (69%). A more enlightening finding is that HRZ at its minimum value 
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coupled with high seated height, low stature, and low BMI account for 31% ratings of 1. This 

could possibly be explained by the seating position of low BMI respondents versus high BMI 

respondents, because low BMI respondents may position their seat differently in terms of lateral 

position and tilt angle, leading to a different experience of headroom for a given configuration 

for respondents of the same stature. This can be captured in a model through the inclusion of a 

BMI-seated height interaction term, which should be positive in sign. In conclusion, these 

findings indicate that HRZ, BMI, seated height, stature and a BMI-seated height interaction are 

important variables in the parametric modeling process.  

A decision tree was also conducted for Ingress Effort, as shown in Appendix G. As seen 

previously in the ANOVA analysis for ingress, there is not a dominant attribute in explaining 

ingress ratings, as for HRZ in the headroom model. The tree indicates that ROKY, HELZ, GRDZ, 

StoH, HRZ, and HRX are important to classifying the ratings, consistent with the ordered logit 

model for ingress. Seated height and gender appear to be the most important demographic 

attributes, with age, stature and gender appearing to be less important. Interactions of seated 

height and gender and seated height and BMI should be tested in the modeling process. In 

general, large levels of HELZ (E3) and HRZ (E6) lead to branches with high ratings for ingress, 

which is expected because these two variables control the vertical height of the door opening. 

Decision trees can be created for the other attributes as well to better understand the 

relationship between factors and rating responses. The decision tree is useful for understanding 

important variables to consider in the modeling process, and can also point to trends not seen 

easily in a parametric modeling process. On the other hand, the decision tree does not account for 

individual rating styles, or allow for standard statistical interpretation of the factors, which are 

added to the model based upon the information gain criterion of Eq. (5.4). Another issue is that 
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the decision tree does not provide continuous functions of the factors, but rather classifies based 

on threshold values of the factors (i.e. <, >), making it an inefficient tool to study the effect of 

changing attribute values upon ratings. Additionally, the hierarchical choice modeling approach 

to be developed in Chapter 6 relies upon the use of parametric models in the framework. Based 

upon the advantages and disadvantages of the decision tree, it is considered a preprocessing tool 

for the ordered logit modeling process rather than a competing modeling methodology. 

5.7.2 Bayesian Network for Ratings Classification and Associations 

The use of Bayesian networks in analyzing and modeling the PVM data is investigated in this 

subsection. The Bayesian network can be used in two distinct implementations, supervised and 

unsupervised. In the supervised implementation, the Bayesian network is used a classifier in 

which attribute values are used to predict a class, e.g. a rating. In the unsupervised 

implementation, no assumption is made regarding responses (dependent variables) and factors 

(independent variables), but rather the network identifies dependent and independent variables. 

The two implementations of the Bayesian network will be investigated. 

Supervised Bayesian Network: The supervised Bayesian network is a classifier in which a class 

Ri, such as a rating, is predicted based upon the conditional probability of the attribute Z values. 

In the supervised network, the class to be predicted is defined a priori. Therefore, the Bayesian 

network is used as a method to determine the probability of being in each class Ri, (i.e. each 

rating category) for each observation (i.e. each respondent), just as in the ordered logit model. 

The probability of the class assuming a certain value Ri (i.e. rating of 1,2,3,4 or 5), given a set of 

attribute values Z, is determined using Bayes law: 
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The Bayes network uses the assumption of conditional independence. Conditional independence 

requires that each attribute, Zj, is conditional only on the immediate, or parent, attributes and not 

upon the distant relative attributes (i.e. grandparents, great-grandparents, etc.). Using this 

assumption, the conditionally independent probabilities can be multiplied to find the joint 

probability of Z: 
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Using the assumption of conditional independence, Eq. (5.7) can be written (omitting the 

normalizing term { }JZZ ,,Pr 1 … ): 
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⋅==
J

j
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1
1 parents,|PrPr,,|Pr …  (5.9)

Eq (5.9) demonstrates that the supervised Bayesian network is a form of non-parametric 

regression. The Bayesian network ratings predictions can therefore be directly compared to the 

ordered logit regression predictions of Eq.(4.8): 

[ ] ( ) ( )ZβZβ ′−−′−== −11 ,,|Pr ppJi kFkFZZRR …  

where F is the cumulative logistic distribution. An advantage of the Bayesian network is that no 

assumptions are made on the error distribution (i.e. logistic or normal distribution) because it is 

non-parametric. The rating predictions from both the Bayesian network and the ordered logit 

model are compared in Figure 5.12. 
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Figure 5.12: Comparison of Ratings Predictions 

As seen in the histogram, the Bayesian network results in similar ratings classification to the 

ordered logit model. The superior performance of the ordered logit model can be attributed to the 

enforcement of the ordinal constraint (i.e. adjacent ratings are correlated), as opposed to the 

nominal assumption of the Bayesian network, and the discretizing of attributes to nominal 

categories in the Bayesian network. The Bayesian network also identifies the conditional 

relationships as shown in Figure 5.13, with arrows going from the parent attributes to the child 

attributes. In this case the effect of E6 (i.e. HRZ) is conditional on the value of seated height, 

indicating that an interaction term of HRZ Seated Height should be investigated. 

 
 

Figure 5.13:  Supervised Bayesian Network Graph for Headroom 

For datasets in this work (e.g., the PVM data) which are structured for random-effects ordered 

logit modeling and do not have missing values, the Bayesian network offers few advantages over 
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ordered logit modeling. Because the supervised Bayesian network is non-parametric and is a 

form of machine learning, like the decision tree, it can be viewed as a pre-processing tool to 

better understand relationships in the data. 

Unsupervised Bayesian Network: As opposed to the supervised Bayesian network which can be 

viewed as an alternative to the ordered logit model, the unsupervised Bayesian network is used to 

understand relationships in the data. In the unsupervised Bayesian network, no distinction is 

made between responses and factors with the goal of understanding the relationships within the 

data sets rather than predicting a class. For this reason, the focus is upon identifying the joint 

distribution of attributes Z (in this case the rating response is considered another attribute) in 

terms of the conditional distributions: 

[ ] ( ){ }∏
=

=
J

j
jjJ ZZZZ

1
1 parents|Pr,,Pr …  (5.10)

An unsupervised Bayesian network for the PVM dataset (with only the headroom response 

included) is shown in Figure 5.14, with the arrows going from parent to the child attributes. 

HeadroomGender
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Seated_height
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Age

e1

e2 e3
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e8

Score: -3435.873 
 Relscore: 1

 
Figure 5.14: Unsupervised Bayesian Network Including Headroom 
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The joint distributions of attributes Z are expressed as the product of the conditional 

probabilities. The conditional probabilities identified to have parent attributes are as follows: 

• [Headroom|Gender;Seated height;BMI;Age;E6] 

• [Age|Gender;Stature;Seated height;BMI]  

• [Stature|Seated height;BMI] 

• [Seated height|Gender;BMI] 

• [BMI|Gender] 

• [E1|Headroom] 

• [E4|Headroom] 

• [E7|Headroom] 

The relationships identified indicate that not all demographic attributes collected are 

independent, i.e. there are correlations among the demographics. For example, age is conditional 

upon the values of gender, height, seated height, and BMI, which can be confirmed using a 

regression analysis as shown in Table 5.19. 

Table 5.19: Regression of Age on Other Demographic Attributes 

Age coef. t-value 
gender -0.364 0.00 
height -0.232 0.03 
seated height -0.610 0.00 
BMI 0.177 0.00 
constant 0.985 0.00 

Such a regression is hard to interpret from the cause-effect standpoint as assumed in regression, 

since the prediction of age based upon other demographic attributes does not make intuitive 

sense. On the other hand, prediction of height based upon seated height and BMI is more 
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plausible. In general, the Bayesian network is identifying correlations within the data, which 

may or may not represent proper cause-effect regressions.  

The issues created by correlation among demographic attributes in the modeling process are 

redundancy and suppression. Redundancy and suppression occur when certain correlation 

patterns are present among multiple independent (Z) and dependent variables (Y). An example of 

redundancy can be seen in Figure 5.15 in which two Z and one Y are positively correlated. When 

redundancy is present and one of the Z is removed, the magnitude of the remaining Z increases. 

An example of suppression is also shown in the figure, in which two Z are positively correlated 

with the Y, but the Z negatively correlated with each other. When suppression is present and one 

of the Z is removed, the magnitude of the remaining Z may decrease or the sign may change. If 

there are more than two Z, the patterns are very difficult to diagram, and both redundancy and 

suppression may occur. 
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Figure 5.15: Correlation Patterns Creating Redundancy and Suppression 

In the context of the hierarchical modeling framework, the predictive ability of a model is not 

hurt by redundancy or suppression, but these phenomena make it difficult to interpret the effect 

of the demographic attributes individually. Coefficient interpretation is important for model 

validation, ensuring that model coefficients match or can be explained from an understanding of 

the problem. Another issue is that in the hierarchical choice modeling approach developed in 
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Chapter 6, multiple data sets may be merged with different combinations of redundancy and 

suppression, leading to issues in model estimation with the combined data. 

An approach to the problem is to assume the demographics are related to a smaller number of 

uncorrelated latent factors. Therefore, a latent variable analysis is conducted using the 

demographic attributes collected in the PVM appraisal. It is found that there are two significant 

factors. Using the iterated principle factor (IPF) method of solution and performing an 

orthogonal rotational (so that the 2 factors are uncorrelated) gives the result shown in Table 5.20. 

Table 5.20: Factor Analysis for Collected Demographic Attributes 

 Factor 1 Factor 2 Uniqueness 
gender   -0.765 -0.420 0.335 
height 0.861 -0.196 0.169 
seated height 0.970 -0.072 0.033 
BMI 0.059 0.269 0.929 
age -0.092 0.724 0.447 

The interpretation is that gender, height, and seated height are related to a latent factor related to 

size, primarily vertical size. Factor 2 consists primarily of age, while BMI is primarily unique. 

Possible modeling solutions include either using factor scores for correlated demographic 

attributes, or using either height or seated height, but not both, in a model together with BMI and 

age, which are not highly correlated with height or seated height. Gender can be used in the 

modeling since it is not as highly correlated as height and seated height; however, it may cause 

some level of suppression or redundancy in the model and may not be easily interpreted. Factor 

scores can be used in the ordered logit models as well, but in the Bayesian hierarchical modeling 

framework, in which multiple data sets are to be used and models to be updated, the use of factor 

scores will complicate the process and is not recommended in this application.  
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5.8 DISCUSSION AND SUMMARY 

Methods for the analysis of human appraisal experiments to understand and predict consumer 

preferences for new or existing product designs were developed in this chapter. The methods 

developed are for the purpose of preprocessing data, reduction of data, capturing respondent 

heterogeneity, and creating random effects ordered logit models to understand consumer 

preferences and enable prediction of preferences for new product offerings. Latent Class 

Analysis is shown to be effective for combining several responses given by a consumer during an 

appraisal into a smaller number of latent classes related to their overall opinion of key product 

features. ANOVA analysis is used to understand the relative importance of the product and 

human attributes on the different rating responses provided in the survey. In these analyses, the 

respondent block effect, or unexplained respondent heterogeneity is found to be large. Cluster 

analysis of the block effect is used to identify systematic ratings styles of the respondents, which 

explain a significant portion of the unexplained heterogeneity. Adding new variables to control 

for rating style in the modeling process significantly reduces the unexplained heterogeneity. The 

use of smoothing spline regression is demonstrated to be an effective tool to understand the 

shape of the response-factor curve and guide the form of factors (i.e. linear, quadratic, cubic) to 

be introduced in the subsequent ordered logit modeling.  

With data preprocessing, response reduction, and an understanding of respondent 

heterogeneity, random effects ordered logit models are estimated for each response. The 

importance of interactions and the benefits of explicitly modeling systematic heterogeneity and 

random heterogeneity are demonstrated in the ability of the distribution of the predicted ratings 

to match the actual distribution of ratings, an important feature of a model to be used to predict 

preferences for different populations and different designs. Machine learning methods from data 
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mining are also applied to the PVM data. The decision tree provides additional insights into the 

relationship among the product factors, human factors, and rating responses not easily identified 

in the parametric ordered logit model. The unsupervised Bayesian network provided insights into 

the relationships among the human factors not easily seen in methods such as correlation 

analysis. The methods developed in this section are crucial to not only understanding consumer 

heterogeneity in human appraisal experiments, but also creating predictive models for use in the 

Bayesian Hierarchical Choice Model introduced in Chapter 6.  
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Chapter 6 
BBAAYYEESSIIAANN  HHIIEERRAARRCCHHIICCAALL  CCHHOOIICCEE  MMOODDEELLIINNGG  FFOORR  

EENNGGIINNEEEERRIINNGG  DDEESSIIGGNN  

In Chapter 3, the PAFD tool was presented for engineering design decision making, built upon 

Decision-based Design principles; however, the case study design example was a component 

design characterized by quantitative choice attributes. A more general choice modeling approach 

is required to accommodate a complex system, with both quantitative and qualitative choice 

attributes. The hierarchical choice modeling approach for complex system design presented in 

Section 2.3 utilizes multiple model levels to create a link between qualitative attributes 

considered by consumers when selecting a product and quantitative attributes used for 

engineering design. In this chapter, the approach is expanded to the Integrated Bayesian 

Hierarchical Choice Modeling (IBHCM) framework, estimated using an integrated multi-stage 

solution procedure. This approach utilizes choice data as well as other preference data, such as 

that collected using the Ford Programmable Vehicle Model presented in Chapters 4 and 5, to 

create a comprehensive choice model to support complex system design. This new framework 

addresses the shortcomings of the previous method while providing a highly flexible modeling 

framework to address the needs of complex system design. In this framework, both systematic 

and random consumer heterogeneity is explicitly considered, the ability to combine multiple 

sources of data for model estimation and updating is significantly expanded, and the integrated 

estimation method is introduced to mitigate error propagation throughout the model hierarchy. In 
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addition to developing the new choice model approach, the importance of including a complete 

representation of consumer heterogeneity in the model framework is provided. The new 

modeling framework is validated using several metrics and techniques. The benefits of the 

IBHCM method are demonstrated in the design of an automobile occupant package. 

This chapter is organized as follows: Section 6.1 introduces the hierarchical choice modeling 

approach, Section 6.2 presents the Integrated Bayesian Hierarchical Choice Model framework, 

Section 6.3 provides a vehicle design case study, and Section 6.4 provides validation of the 

IBHCM.  

6.1 INTRODUCTION 

A large-scale design problem is characterized by attribute hierarchies in demand model 

estimation, a hierarchy of consumer demographic descriptors (S), and data from multiple sources 

with varying degrees of richness (e.g., in-house marketing surveys, purchase data). Existing 

demand modeling approaches in the design literature require that product attributes considered in 

the choice model be quantitative. However, many criteria used by customers to choose between 

complex engineering systems tend to be qualitative, especially those at the system level. Also, as 

noted in Section 1.1, existing demand modeling approaches used in engineering design do not 

adequately account for consumer heterogeneity, nor do they adequately consider multiple data 

sources. To deal with the attribute hierarchy inherent in the design of a complex system (e.g., 

automotive design), the Hierarchical Choice Modeling framework has been developed as 

described in Section 2.3 (Kumar et al., 2009) and illustrated in Figure 6.1.  
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Figure 6.1: Hierarchical Choice Modeling Method 

The proposed approach uses customer ratings R for qualitative customer-desired attributes 

(A) in the choice model, which are expressed in terms of quantitative engineering attributes 

through the hierarchy of linking models. Qualitative attributes in the top-level discrete choice 

analysis (DCA) model, labeled M1, are linked to engineering attributes through a series of 

ordered logit (OL) ratings prediction models for the subsystems, labeled M2 and M3, as 

illustrated in Figure 6.1. In this framework, the top level choice model only contains a reasonable 

set of system-level customer-desired attributes A (including price P) and demographic attributes, 

S. For example in vehicle design, A can include interior roominess and exterior styling, and S 

can include income and age. The lower level ratings models at the component and subsystem 

levels establish the relationships between qualitative customer perceptual attributes A as 

functions of quantitative engineering design attributes E and S, i.e., A=f(E, S). For example, the 

lower level models can link E, such as occupant package and styling dimensions, and S, such as 

stature and gender, to the A defined at the top level. This structure ensures a more manageable 

model at each level, and mitigates the model estimation issues that accompany an all-in-one 

approach. The hierarchical choice model framework is used as the basis for an enterprise-driven 
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engineering design decision making process to set targets for key system attributes, as illustrated 

in Figure 6.2.  

 
Figure 6.2: Overview of the Hierarchical Choice Modeling Method 

In this framework, engineering and demographic attributes are mapped to the attributes in the 

choice model (M1 level), which enables estimation of product demand Q. Creating an enterprise 

utility function as a function of Q, as well as Price, P, and Cost, C, allows target levels for the 

engineering attributes to be determined through maximization of enterprise utility. 

While Section 2.3 laid out the general hierarchical modeling framework, several issues exist. 

A primary issue is the lack of a mechanism to mitigate error propagated in the hierarchy, 

since each of the models, i.e., M1, M2, and M3, is estimated separately in the current 

implementation. This limitation is a significant issue because it inhibits the quantification of 

uncertainty at the top level choice model needed for decision making, and also provides no 

mechanism to ensure that the model accurately captures consumer preferences. Another issue 

identified in the hierarchical modeling approach is the challenge of data collection to enable 

model estimation over the entire model hierarchy. As noted, in the design of a complex system, it 
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is unrealistic to expect that the necessary data for the complete model estimation process is 

present in a single data set. Our previous work introduced the Nested Logit (NL) method to 

combine multiple subsystem surveys to estimate the M1 level choice model; however, this 

method does not fully address the problem because it is only valid at the choice level (i.e., M1 

level) and does not address how to combine data collected at different times. Another issue is that 

the current framework only captures systematic heterogeneity (illustrated in Figure 2.3), and 

lumps random heterogeneity into the overall error term. In this work, systematic heterogeneity 

is observed and described by an attribute of the customer, S, to explain his/her choice behavior. 

Random heterogeneity is not observed and is captured assuming the model parameters are 

random, as opposed to fixed, across respondents, as illustrated in Figure 6.3. Random 

heterogeneity accounts for the fact that two people with the same S, facing the same product 

attributes A, can make different choices. It was seen in the ANOVA analysis (Section 5.4) that 

random heterogeneity can be significant. 

 
Figure 6.3: Example of Parameter Distribution Associated with Random Heterogeneity 

Modeling the heterogeneity of customer preferences in a complete way is a challenge in 

choice modeling for complex engineering system design. Most existing approaches in the design 

literature do not consider heterogeneity of preference in modeling (i.e. systematic and random 

heterogeneity do not appear in the demand model). Li and Azarm (2000), and Michalek et al. 

(2005) used conjoint analysis, in which systematic heterogeneity was not considered; Michalek 

βn 
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et al. (2005) considered random heterogeneity only in using a mixed logit DCA model. Cook 

(1997) used a linear model derived from Taylor Series expansion which used product value and 

price to estimate demand. Wassenaar et al. (2003; 2005) considered systematic heterogeneity 

only by including a limited number of demographic attributes (e.g., age, gender) in a DCA 

model.  

To address the issues described, a unified Integrated Bayesian Hierarchical Choice Model 

(IBHCM) framework is developed to capture both systematic and random heterogeneity at all 

levels of the hierarchy, as well as to provide a method to estimate the predictive models from 

multiple data sources. An integrated multi-stage model solution methodology is introduced to 

mitigate error propagated through the model hierarchy and quantify uncertainty. Bayesian choice 

modeling has been applied primarily for estimating the mixed logit choice model to capture 

random heterogeneity (Train, 2003), and has been developed for this purpose in a variety of 

product marketing contexts, such as to model repeated purchase behavior (Rossi and Allenby, 

2003; Rossi et al., 2005). Limited investigation of the use of Bayesian  methods for combining 

multiple information sources has been conducted (Neelamegham and Chintagunta, 1999; Erdem 

and Keane, 1996), but not specifically in the choice modeling context. Specifically, the use of the 

Bayesian estimation method to estimate a complete hierarchy of random parameter or “mixed” 

models from a variety of data sources has not been presented in the literature. The automobile 

vehicle occupant packaging problem of Section 1.3 is used to demonstrate the methodologies 

developed in this research. The occupant packaging problem contains the proper level of 

complexity to demonstrate the features of the methodology. 
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6.2 INTEGRATED BAYESIAN HIERARCHICAL CHOICE MODELING APPROACH  

Bayesian estimation methods offer many advantages over classical methods in estimating the 

hierarchical choice model. Bayesian estimation differs from classical methods in that the 

posterior distribution of the parameters is identified in the solution process, as opposed to point 

estimates specified model parameters (i.e. β, Σ). Bayesian estimation uses Gibbs sampling to 

sample from the posterior distribution.  The Bayesian paradigm is also well aligned with the 

challenges of creating a design decision tool. Throughout the product design cycle and the 

product life, new information about demand may become available. This information may result 

from additional product surveys (SP) conducted or new actual purchase data (RP) acquired. With 

regard to actual purchase data, the growth of the internet, and the resulting growth in 

information, points to a future in which new information will be obtained at an almost 

continuous rate (Varian, 1995). Incorporating this increased knowledge must be considered in the 

product planning phase and throughout the product life to ensure products will be competitive 

and profitable throughout the lifecycle in which they compete. Such considerations point to the 

use of a Bayesian methodology for estimating the choice model. 

6.2.1 Formulation of Choice and Ratings Models Incorporating Heterogeneity 

The Bayesian Hierarchical Choice Model framework proposed in this work is a system of 

predictive models which captures consumer heterogeneity at all levels in the hierarchy, allows 

for estimation using multiple data sources, and provides a method for mitigating error propagated 

and quantifying uncertainty using integrated model estimation. The following models are used in 

the hierarchy of Figure 6.1: 

• M1 (choice): Mixed Logit (MXL)  
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• M2, M3 (ratings): Random-Effects Ordered Logit (RE-OL) 

The MXL and RE-OL models are random parameter models which capture the effect of system 

design attributes, as well as both systematic and random heterogeneity, in modeling consumer 

choices or ratings. The MXL model (Train, 2003) is used to model consumer choice as a function 

of both system customer desired attributes A and consumer demographic descriptors S. The RE-

OL models (Hedeker and Gibbons, 1994) express consumer ratings as a function of engineering 

attributes E, or sub-system ratings R, and S  (Figure 6.1).  

The MXL and RE-OL models assume the choice or rating is a discrete expression of an 

unobserved, latent consumer utility for a product or system design. The concept of choice (M1) 

or rating utility (M2, M3) is derived assuming that the individual’s, n, true choice utility, u, for a 

design alternative, i, consists of an observed part W, and an unobserved random disturbance ε 

(unobserved utility): 

ininin Wu ε+=  . (6.1)

Observed utility, Win, is parameterized in terms of model coefficients, β, and A, E, and S. As 

noted in the previous section, S accounts for systematic taste heterogeneity. Random taste 

heterogeneity is accounted for using random model coefficients. This is achieved by allowing 

each individual person, n, to have his/her own set of model coefficients, βn (Train, 2003; Train 

and McFadden, 2000; Rossi et al., 2005). In the MXL model, all customer-desired model 

parameters, βA,n, are random, while the βS are fixed to avoid the identification problems caused 

by allowing a β to vary over alternatives i and people n (Train, 2003). The observed utility, Win, 

in the MXL is given by: 
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( ) ( )SAβSβAβ ⋅′+′+′= ⋅SAS,AMXL ninW . (6.2)

In the RE-OL model, the random intercept term, β0
n, captures random consumer heterogeneity. 

The observed utility, Win, in the RE-OL model is given by:  

( ) ( )SEβSβEβ ⋅′+′+′+= ⋅SESE
0OL-RE ninW β . (6.3)

To prevent identification issues created by confounding of the random intercept and the error 

term, the random intercept must be estimated on multiple observations for each person n (i.e. 

panel data is required).  

The MXL choice probability is expressed as (Train, 2003): 
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The directly analogous random-effects ordered logit model to the choice model of Eq. (6.4) is 

formulated as: 
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where Rp is a rating and kp is an ordered logit cutpoint (Hedeker and Gibbons, 1994). Using 

Bayesian model estimation (as described in Section 2.2.2), the individual-level model 

coefficients ( 0
, , nn βAβ ) are estimated, with uncertainty in the estimate decreasing as more choices 

or ratings per respondent are observed. In this work, random taste heterogeneity is considered as 

a form of uncertainty in preference behavior, since model predictions are generally not made for 

the sampled population used in the training data set, but rather the target population as a whole. 
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Therefore, the calculated distribution of βn is of interest in this work, as opposed to individual-

specific values of βn. 

6.2.2 Importance of Modeling Heterogeneity  

The importance of accounting for heterogeneity, S and Σ,  throughout the hierarchical choice 

modeling process results from the non-linear relationship between observed customer choice 

utility, Win, and choice, Prn(i), (or rating, Prn(Rp)) probability. Probabilistic choice modeling was 

developed within mathematical psychology (Luce, 1959) to capture the probabilistic nature of 

individual choice behavior, i.e. individuals do not always select the alternative with highest 

expected utility. The non-linear, S-shaped (i.e. logistic) relationship between Win and Prn(i) 

implies that an equal change to Win for a given design alternative for all individuals n, such as 

that resulting from a design change (e.g. a change in value of A), results in a different change in 

Prn(i) for each individual. This behavior can be interpreted as individuals with strong preferences 

(positive or negative) for a particular alternative are not as likely to modify their choice behavior 

when design changes are made, as are individuals with weaker preferences.  

The role of demographic descriptors (i.e. systematic heterogeneity), S, is to capture 

individual-level attributes which influence utility, Win, to enable a better estimate of individual-

level choice probability, Prn(i). The effect of preference heterogeneity is demonstrated 

graphically in Figure 6.4, in which a MNL model without S (black line) and a MNL with S (gray 

lines) are estimated. For the training data set with a given set of demographics, both estimate a 

choice share for an alternative i of 0.5. If a change is made to the design (i.e. ∆E=0.75), this 

change results in an equal utility change for all consumers in the data set; however, the aggregate 

logit method overestimates the increased choice probability, and hence choice share (i.e. 0.2 
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increase), vs. the more accurate estimate from the disaggregate method (i.e. [0.1+0.05]/2 = 0.075 

increase).Inclusion of S explicitly in the choice model also allows for choice predictions to be 

made for a new target market with a different demographic distribution than the survey market 

used for model estimation.  
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Figure 6.4: Effect of S upon Choice Probability 

The effect of including random heterogeneity is that it provides both a more rigorous 

representation of preference heterogeneity as well as a relaxation of the Independence of 

Irrelevant Alternatives (I.I.A.) property of the discrete choice model (Train, 2003). Unlike a fixed 

parameter model, a random parameter model requires that the expected value of the choice 

probabilities be determined; therefore, each respondent utility function is an integration over β to 

find the expected value of Prn(i). This expected value of choice probability is different than the 

probability calculated using the mean value of β (i.e. the plug-in approach (Rossi et al., 2005)) 

due to the non-linear utility vs. probability curve described previously. The other benefit of 

considering random heterogeneity is that the mixed logit (MXL) choice model relaxes the I.I.A. 

property of the multinomial logit (MNL) choice model. As was shown in Brownstone and Train 
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(1998), the MXL model results in much different predictions of choice shares for a given design 

change than the MNL model due to the relaxation of I.I.A.: I.I.A. restricts the pair-wise choice 

probability ratios for each set of alternatives in the choice set to remain unchanged for a given 

design change. When using the MXL model to make choice estimates for a new market, the 

random heterogeneity of the new population is assumed to exhibit the same random 

heterogeneity as that in the model training data.  

6.2.3 Model Fusion and Updating 

In addition to capturing heterogeneity, use of the IBHCM allows the models within the hierarchy 

to be estimated from several data sources. There are two methods to combine these multiple data 

sources: fusion is used when no single survey contains the complete information necessary to 

estimate all the desired model parameters, and updating is used when new information becomes 

available to update all model parameters. As illustrated in Figure 6.5, fusion is associated with 

creating a model at a single time period from multiple data sources, whereas updating is 

associated with updating a model as new data becomes available.  

UpdatingUpdating
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+ + Model 1Model 1Model 1Data A1
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Data B1 Data j

InformationInformation

+ +Data A2 Data B2 Data k
Model 2Model Model 22
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UpdatingUpdatingUpdatingUpdating

PriorPrior
FusionFusionFusionFusion

+ + Model 1Model 1Model 1Data A1
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Data B1 Data j

InformationInformationInformationInformation

+ +Data A2Data A2 Data B2Data B2 Data kData k
Model 2Model Model 22

PriorPrior Posterior,
Period 2

InformationInformationInformationInformation  
Figure 6.5: Data in the Hierarchical Choice Model Approach 

This framework is based upon the Bayesian tradition of estimation, in which a prior distribution 

is assumed and the new data form the information, allowing estimation of a posterior 
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distribution. The prior may be a non-informative prior and the information may be several fused 

data sets. The methodologies for model fusion and updating are described in this subsection. 

Model Fusion: Whenever data from multiple surveys are fused (e.g., data sets labeled 1 and 2) to 

create a single model with pooled utility function Wpooled, the error variances in each of the 

datasets may in fact be different, thus violating the assumption of an independently and 

identically distributed (I.I.D.) error term in the resulting model. Differences in error variance 

affect the scale of the model parameters because only differences in utility matter in the utility 

function, and thus the scale of the utility function is set based on the variance associated with a 

given dataset. The scale is set by scaling the overall model error variance, var(εin), to a given 

value kniS σε =)(var  (e.g. 62πσ =k ), by dividing Win, and hence model parameters β, by a 

scale factor µk (e.g. )6()var( 2πεµ ink = ) to achieve σk. Thus the β coefficients in a choice or 

ratings model are confounded with the scale factor (i.e. kµββ *= ) and cannot be separately 

identified. This presents an issue when estimating a choice model with multiple data sets in that 

the error variance, and thus µk, will differ for each data set. Thus a method is needed to ensure 

the scale factors from all data sets are equal (i.e. µ1 = µ2 = µk) to ensure β coefficients estimated 

from different data sets are on the same scale in the pooled utility function, Wpooled. 

The Nested Logit (NL) methodology has been adapted previously to combine multiple data 

sets with different error variances as described in Kumar et al. (2009). A method to combine data 

from multiple sources using the MXL or RE-OL model is formulated in this section. To enable 

use of multiple data sets in the MXL methodology formulated in Eq. (6.4) or the RE-OL method 

of Eq. (6.5), a random term, ηk, of mean 0 and variance τk (i.e. ηk ~ N(0, τk)) is assigned to each 
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dataset-specific uin to account for the different error variances associated with each dataset to 

enable a common model error term, εin. This is expressed as follows (Brownstone et al., 2000): 

1   1,1,1 ∈++= iWu ininin εη ,   2   2,2,2 ∈++= iWu ininin εη , (6.6)

where η1 and η2 are the survey-specific error component terms which are estimated together with 

the other model parameters (note: the ηk associated with the data set with the lowest variance is 

set to 0 for model identification). These additional error terms, η1 ...ηk, account for the 

differences in error variances in different data sets, and ensure that the overall common model 

error, εin, is I.I.D. (i.e. var(ε1,in) = var(ε2,in)= var(εin)). This equivalence is achieved by allowing 

the additional error term, ηk, to contain the additional variance greater than the base variance, 

var(εin); for example: 

( ) ( ) ( ) ( ) ( ) ( )ininininin  s.t. εεεηεηε varvar    ,varvarvarvar ,222,2 >+=+= . (6.7)

This approach therefore relies on the ability to separately estimate var(η1),…, var(ηk)  such that 

the error variance associated with each data set is var(εin). To estimate the ηk, it is necessary that 

each survey, and thus each observed utility function W1 and W2, shares some common attributes, 

given by Acom or Scom to determine the survey-specific error component terms, base on the fact 

that model parameters for shared attributes indicate differences in model scale. Estimation of 

η1 ...ηk is enabled by the condition that the β coefficients for shared attributes, Acom or Scom, are 

equivalent and that η1 ...ηk are positive.  

This approach is unlike the previous Nested Logit approach (Kumar et al., 2009) in which the 

individual utility functions, W1 and W2, must be scaled by a scaling factor, µ, to create Wpooled. In 
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the MXL and RE-OL approach, the pooled observed utility is simply the sum of W1 and W2 with 

a single set of common parameters, indicated by the subscript com: 

( ) ( ) comcomcomcompooledW SβAβSβAβSβAβ SASASA ,,22,22,11,11, ′+′+′+′+′+′= . (6.8)

Model Updating: The Bayesian framework provides a convenient means for updating the 

hierarchical model as new data becomes available, for example as new model year surveys are 

conducted for an automobile. In this case, the current model parameters are the prior distribution 

and the new survey is the information necessary to calculate the new posterior distribution of the 

model parameters. Updating can be useful when the initial model is estimated using survey data 

acquired from prototype hardware. In Bayesian estimation, model parameters (including ordered 

logit cut points k) are updated according to the ratio of variances in the prior distribution versus 

that in the information (i.e. vehicle) data set (Johnson and Albert, 1999). Therefore, the prototype 

based model can be updated with the limited vehicle survey to both update the model parameters, 

β, to account for the influence of actual vehicle preferences, and to update the cut points, k, to 

ensure that OL model rating predictions are reflective of actual vehicle ratings. 

6.2.4 Integrated Choice Model Formulation  

With mixed formulations for the M1 level choice model (Eq. (6.4)) and the M2 and M3 level 

ratings models (Eq. (6.5)), an integrated formulation of the hierarchical choice model is derived 

for estimation of the model. The general integrated model framework is shown in Figure 6.6. The 

theoretical advantages of such a framework are as follows: 

1. Mitigate error and quantify uncertainty by propagating the distribution of β throughout the 

model hierarchy. 

2. Track the respondent effect for a single person throughout the model hierarchy. 
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3. Quantify uncertainty to create the enterprise level utility function for decision making. 

Lower-level Utilities:Lower-level Utilities:
LowLowLowLowW Zβ+= 0β

Mid-level Utilities:Mid-level Utilities:
TotLowMidMidW ν+= Wβ

Top-level Utility:Top-level Utility:
...+= MidTopTopW Aβ

IntegratedIntegrated

Lower-level Utilities:Lower-level Utilities:
LowLowLowLowW Zβ+= 0β

Mid-level Utilities:Mid-level Utilities:
TotLowMidMidW ν+= Wβ

Top-level Utility:Top-level Utility:
...+= MidTopTopW Aβ

IntegratedIntegrated

 
Figure 6.6. Integrated Choice Model Estimation 

The framework uses a propagation of cumulative respond-level utility (W), including cumulative 

respondent-level error ν, through a complete hierarchy of models from the bottom level (Low) to 

the top level (Top). The complete hierarchy of models uses integrated multi-stage estimation to 

fit model parameters (i.e. β) in upper-level models to model predictions from lower level models 

to minimize prediction error when using the system of models to make choice share predictions. 

The method for propagating utility, including respondent-level error through the model 

hierarchy is formulated. To quantify error, the error distribution at each level of the model 

hierarchy must be accounted for in the final choice prediction. This problem has been solved for 

linear regression modeling, using instrumental variable techniques. Specifically, two-stage least 

squares regression (Greene, 2002) has been used to account for error propagation in a 2-level 

linear regression model system. The approach has been generalized by Lancaster (2004) using 

Bayesian solution methods for linear regression systems with more than two models. In the 

approach of Lancaster, error from the lower model level, denoted as MLow, is propagated to the 
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top level model, MTop, such that the total error due to both models, ( )TopLowTot f εεε ,= , is 

estimated. This approach is demonstrated assuming a 2-level model hierarchy: 

2

1

εβξ
εδγ

++=
++=

xy
zx

. (6.9)

The lower-level equation for x is substituted into the upper-level equation for y, and y is rewritten 

as follows: 

122
*

2
*

  , βεενβγξξ

νβδξ

+=+=

++= zy
. (6.10)

In this new form, the posterior distribution of ξ* and ν2 is found, thus identifying the 

cumulative intercept and error term directly in the upper-level model. This method can be 

extended to any j-level model hierarchy. 

The issue with applying this approach to the hierarchy of choice and ratings models is that 

the error terms are not directly estimable in such models: the error variance is confounded with 

the β terms. This confounding occurs because only differences in utility matter in the 

choice/ratings model, and thus β and Var(ε) in each model cannot be separately identified (Train, 

2003; Lancaster, 2004). Thus the method of finding the posterior distribution of εTot developed 

for least squares regression cannot be applied directly for the IBHCM problem.  

To account for the error propagated in the hierarchical choice model, an error components 

interpretation of the random term is applied (Train, 2003). In the random-effects ordered logit 

model, the β0 term is added to the utility expression to capture the random respondent effect (Eq. 

(6.3)). The β0 term is the random intercept and can be interpreted as the portion of the overall 

model error which is attributed to individual respondents (Hedeker and Gibbons, 1994). Thus, 
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the part of the error attributed to respondent-level variation is observable, and we use a 

formulation analogous to that presented in Lancaster (2004) for least-squares regression, with 

modifications as required by the model form. The respondent-level error is propagated through 

all levels of ratings models (M2 and M3 in the current discussion) and the total observed error for 

each system rating quantified at the M1 level choice model.  

As shown in Eq. (6.5), the expected rating predicted by the ordered logit model is a function 

of the utility, Win, with expected ratings predicted by the M3 and M2 level models expressed as a 

function of engineering and demographic attributes, Z ( { }SEZ ,= ): 

( ) ( )
( ) ( )32

0
222

33
0

333

MMMMM

MMMMM

fWfR

fWfR

Rβ

Zβ
′+==

′+==

β

β
. (6.11)

As seen in Eq. (6.11), the upper-level equation for RM2 is a function of expected ratings predicted 

by the lower level model, RM3. In order to enable the error term to be propagated through the 

model hierarchy, utility, W, is propagated through the model hierarchy instead of the expected 

rating, R: 

( ) ( )32
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MMMMM
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β

β
. (6.12)

Using utility instead of expected ratings allows an approach analogous to two-stage least squares 

regression to be used to estimate a total error term, given by νM2: 

( ) ( )
�� ��� �
 2

0
32

0
233232

0
22

M

MMMMMMMMMMW

ν

βββ βZββWβ ′++′′=′+=  (6.13)

The posterior distribution of νM2 thus captures the cumulative respondent-level error (β0) from all 

preceding levels in the model hierarchy. The posterior distribution of νM2 is sampled directly in 
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the solution process, therefore simplifying model estimation. With this formulation, the predicted 

rating for each subsystem for each vehicle alternative, i, for each person, n, is estimated for 

customer-desired attributes, A, appearing in the M1-level choice model: 

( )2332 MMMMf νZββA +′′= . (6.14)

With expressions for each level in the model hierarchy and a method for integrated multi-

stage model parameter estimation given in Eq. (6.13), the integrated choice model framework is 

formulated. Because the models are estimated simultaneously, β parameters from one model, 

such as the M3 headroom model, can be correlated with β parameters in another model, such as 

the M2 roominess model or the M1 choice model. The set of models is solved simultaneously 

using Markov Chain Monte Carlo (MCMC) sampling methods (Rossi et al., 2005).  

When using the estimated model to calculate choice probabilities, the logit probabilities for 

each person n and each alternative i must be integrated over the full distribution of β or ν in each 

model of the hierarchy (i.e. M1, M2, M3): 

( ) ( ) ( )∫= νβΣbνβνβ dd,gLi nin |,,Pr M21M . (6.15)

Integration over the distribution of model parameters is used instead of the individual-level 

βn, which are recoverable from the Bayesian solution, because the model training data is a 

population sample and the distribution of βn is assumed to be representative of the population as 

a whole. The random parameters, β and ν, are defined by a mean vector, b (b=0 for ν 

parameters), and a full variance-covariance matrix, Σ, of the parameters estimated in the IBHCM 

solution process (β, ν ~N(b, Σ)). 
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6.3 CASE STUDY: VEHICLE OCCUPANT PACKAGE DESIGN  

6.3.1 Integrated Bayesian Hierarchical Choice Model Estimation 

Vehicle occupant package design is used as an example to demonstrate the use of the IBHCM in 

system design. The focus is to present the features and benefits of the hierarchical choice 

modeling approach in an illustrative manner, rather than completing a comprehensive design 

optimization of the entire vehicle package. The scope of the case study is restricted to the 

driver’s occupant package. The IBHCM framework and vehicle dimensions for this problem are 

shown in Figure 6.7. The vehicle dimensions considered are the eight dimensions used in the 

Programmable Vehicle Model (PVM) human appraisal experiment described in Section 5.2. 
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Figure 6.7. Case Study Hierarchical Model Structure 

Data Available for Model Estimation: Three data sets are available for model estimation: two 

clinical studies—an interior packaging-based survey (DS1) and an exterior styling-based survey 

(DS2)—and a combined roominess, ingress, and egress (DS3) study performed on the Ford 

Programmable Vehicle Model (PVM). The interior and exterior clinical surveys were conducted 

on four vehicles in the full-size luxury segment. In the interior package survey, 73 respondents 

are asked to rate package attributes at both sub-system (e.g., overall roominess, ingress/egress) 

and component levels (e.g., head room, knee room) for four vehicles. In the exterior survey, the 
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same 73 respondents are asked to rate exterior appearance attributes and choose between the 

same set of vehicles. In addition to the packaging attributes, demographic attributes S1 and S2 

(age, income, stature, gender) are recorded. Five vehicle attributes are included in the M1 choice 

model: (1) roominess (Room), (2) ingress (Ing), (3) quality of materials (Q Mat.), (4) exterior 

styling (Ext), and (5) willing-to-pay (W to P). The attribute values are in the form of ratings on a 

1-10 scale for each attribute for each respondent. The following demographic descriptors (S) are 

used in the M1 model: (1) gender, (2) stature (i.e. height), (3) income, (4) age.  

The Ford PVM, described in Section 4.5, is a computer controlled vehicle model which can 

simulate a large number of vehicle configurations, and hence is efficient for gathering preference 

data. A comprehensive combined roominess, ingress, and egress human appraisal was conducted 

using the PVM, consisting of 30 respondents each rating 18 vehicle configurations. The appraisal 

was designed using the optimal experiment design method for human appraisals of Chapter 4. In 

the designed experiment, the 8 engineering attributes of Figure 6.7 and 3 demographic attributes 

were varied as described in Section 5.2. The PVM data is used to estimate M2 and M3 level 

roominess, ingress, and egress RE-OL models in the hierarchy. 

Models to be Estimated: The hierarchical model used to model consumer choices and 

preferences for the occupant package roominess and ingress/egress used in the case study is the 

random parameter IBHCM described in Section 6.2. This model links the preferences for 

roominess and ingress/egress at the choice level with the vehicle variables which determine the 

roominess and ingress/egress design (i.e. E1–E8). This model estimation is presented later in this 

section. RE-OL M2 and M3 level models linking the vehicle variables to the preferences for 

exterior styling are also created. For these models, a height-to-width ratio variable, (GRDZ + 
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HRZ)/ ROKY, called H/W, and a height-to-length variable, (GRDZ + HRZ)/ HNGX, called H/L are 

created to capture the finding that respondents view styling in terms of the ratio of dimensions, 

rather than the absolute dimensions. Also, HELZ, GRDZ, and StoH are expressed in terms of 

H130, the Step Height to the driver’s door, as GRDZ - HELZ + StoH. The exterior styling M2 and 

M3 models, estimated using an integrated multi-stage approach, are shown in Table 6.1. 

Table 6.1: Exterior M2 and M3 Models 

M3: Front Appearance 
 coef. t-value 
H/W -0.799 -10.15 
Gend -0.304 -3.65 
age 0.318 1.95 

M3: Side Appearance 
H130 -0.219 -2.19 
H/L -0.732 -8.07 
Gend -0.262 -3.08 
age 0.281 1.75 

M3: Rear Appearance 
H/W -0.840 -10.52 
Gend -0.318 -3.69 
age 0.644 3.61 
M2: Exterior Appearance 
front 0.45 19.59 
side 0.66 8.76 
rear 0.35 13.35 

Variance-Covariance Matrix of Random Effects 

Front (M3) 0.99       
Side (M3) 0.90 0.98    
Rear (M3) 0.86 0.93 1.07   
Exterior (M2) 0.69 0.76 0.72 0.83 

RE-OL Model Updating: An issue to address is that the M2 and M3 model estimation data for the 

occupant package is collected using the PVM, while the resulting model estimated is to be used 

for predicting ratings for actual vehicle designs. The PVM lacks vehicle-specific features and 

styling. This is important because PVM-based ratings models will not include the influence of 



 
 

188 

customer perceptions created by unique styling and layout features, in addition to the influence 

of the purely dimensional PVM features. Using actual vehicles to gather survey data for model 

estimation is challenging because it is difficult to achieve the necessary factor randomization and 

variation to achieve efficient model parameter estimates as described in Chapter 4. However, the 

IBHCM framework can be utilized for updating the PVM-estimated ordered logit model with the 

limited actual vehicle survey data (i.e. DS1) to include the influence of vehicle styling features in 

the model and ensure the predicted ratings are relative to the actual vehicles.  

IBHCM Estimation: The model hierarchy and the use of the data sets for the 

roominess/ingress/egress model estimation are shown in Figure 6.8.  
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Figure 6.8. Integrated Bayesian Hierarchical Choice Model 

In order to illustrate the benefits of the IBHCM approach, four versions of the hierarchical choice 

model are estimated. The alternative model versions use fixed (i.e. no random heterogeneity) 

versus random coefficients, and separate versus integrated model estimation in these 

combinations: 
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• Scenario 1: Fixed parameters, each model individually estimated (SEP). 

• Scenario 2: Fixed parameters, integrated approach (INT). 

• Scenario 3: Random parameters, each model individually estimated (SEP). 

• Scenario 4: Random parameters, integrated approach (INT) (as in Section 6.2.4). 

In Scenarios 1 and 3, each of the three models (M1, M2, and M3) is estimated independently, 

whereas Scenarios 2 and 4 utilize the integrated estimation; however, only Scenario 4 utilizes the 

full error propagation method described in Section 6.2.4. Additionally, Vehicle 4 is the vehicle 

under design, and thus is the only vehicle in the choice set linked to the M2 and M3 level models. 

The IBHCM was estimated using WinBUGS (Spiegelhalter et al., 2003), interfaced with R-

Project (Ihaka and Gentleman, 1996) for data pre- and post-processing. 

The results (i.e., model β coefficients) of the 4 model scenarios are shown in Table 6.2 (note: 

the ordered logit cut points are not shown for simplicity, see Appendix H for full model results). 

The variance and variance-covariance matrices for the two random effects models are shown in 

Table 6.3. For the Random SEP model, covariance between parameters in different models 

cannot be estimated since each model is estimated separately. In the Random INT model, 

covariance can be estimated between parameters in different models. All variance-covariance 

values in the M2 and M3 models are significant at greater than the 99% confidence level. While 

significant covariance was found among the parameters in the M3 and M2 level models, 

significant covariance was not found between the ratings models at the M3 and M2 levels and the 

parameters in the M1 level model. Studies of the M1 level choice model indicated that the 

covariance between M1 model parameters is statistically insignificant, and thus a diagonal 

variance matrix can be specified to aid in convergence.  
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Table 6.2: Results of Four Model Scenarios 

 Fixed SEP Fixed INT Random SEP Random INT 
 M3: Headroom 
 coef. t-value coef. t-value coef. t-value coef. t-value

ROKY 1.53 8.26 1.50 8.10 1.55 8.53 1.60 6.74 
GRDZ -0.19 -0.97 -0.18 -0.89 0.11 0.54 0.09 0.46 
HRZ 4.02 18.80 3.90 16.81 4.64 19.91 4.67 16.05 
HRY 1.36 9.01 1.29 8.50 1.67 10.43 1.67 10.97 
Stat -2.16 -6.84 -2.20 -7.23 -3.27 -8.00 -3.13 -7.92 
BMI 1.46 4.84 1.53 5.23 1.76 4.56 1.62 4.43 
Age -0.84 -3.47 -0.87 -2.71 -1.18 -3.72 -1.07 -3.67 
 M3: Leftroom 

ROKY 3.48 16.83 3.45 18.27 3.54 17.16 3.51 18.16 
GRDZ -1.53 -8.24 -1.64 -9.77 -1.44 -7.67 -1.37 -8.00 
StoH 0.28 1.63 0.25 1.59 0.27 1.55 0.29 1.51 
HRZ 1.72 10.30 1.63 9.65 1.71 10.59 1.69 9.87 
Stat -2.17 -6.88 -2.13 -6.15 -3.17 -8.07 -3.07 -8.62 
BMI -1.21 -4.33 -1.08 -3.90 -1.87 -5.29 -1.78 -5.07 
Age -0.36 -1.44 -0.32 -1.22 -0.63 -2.03 -0.30 -0.92 
 M3: Kneeroom 

ROKY 1.38 9.62 1.44 8.88 1.36 8.98 1.36 8.55 
HELZ 1.01 6.70 1.03 6.62 1.05 6.93 1.04 6.80 
StoH -0.36 -2.22 -0.34 -2.32 -0.34 -2.06 -0.38 -2.24 
HRZ 0.81 5.04 0.86 5.51 0.84 5.06 0.88 4.82 
Stat -1.40 -4.52 -1.38 -4.41 -1.02 -2.37 -1.67 -4.25 
BMI -1.01 -3.55 -1.06 -4.19 -1.42 -4.13 -1.42 -4.25 
Age 1.02 4.13 0.92 3.56 1.70 5.15 1.08 3.50 
 M2: Roominess 
Head 0.38 6.93 0.27 2.90 0.52 9.53 0.21 2.02 
Left 0.48 6.50 0.39 2.50 0.66 7.63 0.42 1.32 
Knee 0.59 8.00 -0.18 -1.15 0.58 7.47 -0.53 -1.23 
 M2: Ingress/Egress 

ROKY 0.83 5.39 0.86 5.55 0.80 5.26 0.81 5.77 
HELZ 1.86 10.31 1.93 12.81 1.87 10.56 1.85 10.91 
GRDZ -2.03 -10.83 -2.09 -11.53 -2.26 -11.57 -2.23 -12.67 
StoH -2.79 -14.97 -2.79 -15.32 -2.83 -15.30 -2.84 -16.53 
HRZ 1.87 10.23 1.81 11.46 1.86 9.95 1.88 10.90 
Stat -2.28 -6.82 -2.03 -5.98 -2.92 -7.41 -2.87 -8.06 
Age -1.04 -3.53 -1.01 -3.88 -1.75 -4.83 -1.66 -6.68 
Gend -0.09 -0.60 -0.01 -0.04 -0.31 -1.11 0.02 0.10 
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 M1: Choice Model 
Roominess 0.53 4.11 0.90 1.30 1.17 4.45 1.90 2.30 
Ingress/Egress 0.43 3.75 0.44 0.95 1.25 2.99 1.10 2.74 
Quality Materials 0.41 3.90 0.51 4.82 1.45 4.05 1.30 3.14 
Ext. Appearance 1.48 5.22 1.52 4.87 2.68 3.70 2.69 5.03 
Willing to Pay 0.39 2.06 0.34 1.65 0.87 1.83 0.89 1.49 
Gend Alt2 0.03 0.06 -0.10 -0.18 0.35 0.37 0.09 0.12 
Gend Alt3 -0.03 -0.05 -0.01 -0.02 0.11 0.12 0.08 0.11 
Gend Alt4 -0.24 -0.43 -0.31 -0.62 -0.37 -0.39 -0.35 -0.48 
Stat Alt2 -0.54 -0.54 -1.57 -1.52 -2.02 -1.08 -3.09 -1.96 
Stat Alt3 -0.89 -0.79 -1.14 -0.99 -2.34 -1.31 -3.11 -2.17 
Stat Alt4 -0.18 -0.16 0.00 0.00 -1.77 -1.00 -1.16 -0.77 
Inc Alt2 0.87 0.77 -0.01 -0.01 1.59 0.77 -0.06 -0.04 
Inc Alt3 0.23 0.20 0.00 0.00 0.84 0.43 0.45 0.31 
Inc Alt4 -0.17 -0.13 -1.18 -1.18 1.51 0.67 -1.16 -0.75 
Age Alt2 0.93 0.94 2.16 2.06 2.34 1.44 3.76 1.97 
Age Alt3 0.71 0.71 1.22 1.10 1.72 1.10 3.16 1.70 
Age Alt4 1.29 1.24 1.51 1.75 2.33 1.49 3.00 1.57 
σpackaging 1.31 2.44 0.98 3.28 1.27 2.26 0.95 3.67 

Table 6.3: Variance-Covariance Matrix for Random Effects Models 

M2 & M3 Variance (-Covariance) Matrices 
Random SEP   Random INT 

Headroom (M3) 1.94  Headroom (M3) 3.96     
Leftroom (M3) 2.31  Leftroom (M3) 3.54 5.40    
Kneeroom (M3) 2.16  Kneeroom (M3) 3.26 4.35 4.64   
Roominess (M2) 1.99  Roominess (M2) 3.32 3.86 3.71 4.05  
Ingress/Egress (M2) 1.15  Ingress/Egress (M2) 3.08 3.52 3.22 3.35 3.94

M1 Variance (-Covariance) Matrices 
Random SEP   Random INT 

Roominess 0.93  Roominess 1.29     
Ingress/Egress 2.00  Ingress/Egress -0.10 1.19    
Quality Materials 1.54  Quality Materials -0.08 -0.21 1.38   
Ext. Appearance 1.00  Ext. Appearance — — — 0.98  
Willing to Pay 1.61  Willing to Pay — — — 0.09 1.81

The actual distributions of the random parameters for the Random INT model (i.e., random effect 

for the M2 and M3 models and random betas for the M1 model) are shown in Appendix I. 
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6.3.2 Vehicle Occupant Package Design Optimization 

A vehicle package optimization formulation is used to demonstrate the benefits of the estimated 

IBHCM in setting package design targets. The package optimization problem is to select the 

HNGX, ROKY, HELZ, GRDZ, StoH, and HRZ dimensions to maximize choice share for Vehicle 

4, of the four vehicles in the clinical surveys, while meeting vehicle-level requirements (i.e., fuel 

economy and weight). The six dimensions to be optimized are shown in Figure 6.9 (solid line 

oval), as well as the overall vehicle dimensions which will be used in the constraint functions 

(dashed line oval).The height, a function of GRDZ and HRZ, is limited by the overall vehicle 

height, given by H100, assumed to have a limit of 58 inches. Also, it is assumed that the weight 

of the vehicle is limited to 3500 lbs maximum for overall performance reasons, and that the fuel 

economy must be at least 24 mph to meet federal standards.  

HELZ
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StoH

GRDZ

HRZ

L103

HELZ

H100

StoH

GRDZ

HRZ

L103

ROKY

HNGX

ROKY

HNGX

 

Figure 6.9: Relationship among Vehicle Packaging Dimensions (Society of Automotive Engineers, 
2002) 

The optimization problem is summarized in Table 6.4. The optimization is conducted using 

both the integrated random parameter model, and the integrated fixed parameter models to 

compare the difference in results between the two approaches. While the choice model captures 

consumers’ trade-offs among interior and exterior attributes, it is necessary to mathematically 

express the relationships between packaging dimensions and other vehicle design performances 



 
 

193 

(e.g., weight, fuel economy) to capture vehicle-level design trade-offs. Data to estimate linear 

regression models is collected for a total of 77 vehicles from the automotive website 

Edmunds.com (Edmunds Inc, 1995-2007), based on the segment of the vehicles in the occupant-

based packaging survey DS1. From Kumar (2007), fuel economy is modeled as a function of 

weight, engine size, and width/length ratio, and the weight is expressed as a function of vehicle 

dimensions as summarized in Table 6.4.   

Table 6.4. Vehicle Choice Share Optimization Problem 

GIVEN 
a) Vehicle Dimensions (L103, W103, H100) for Vehicle 4 
b) Preference Models for M1, M2, and M3 ( 
c) Table 6.2, Table 6.1) 
d) Models for fuel economy and weight 
e) Target Market Demographics (S) 

FIND: 
    Dimensions: HNGX, ROKY, HELZ, GRDZ, StoH, HRZ 

to MAXIMIZE 
    Choice share, Q, for Vehicle 4 

Subject to: 
• H100 ≤ 58 in. 
• Fuel Economy f(engine size, L103, W103, H100, weight) ≥ 24.0 

mpg 
• Weight =f(L103, W103, H100) ≤ 3500 lbs 

Relationships: 
• L103 = 165.4 in. + HNGX 
• W103 = 41.8 in. + 2 ROKY 
• H100 = 2.0 in. + GRDZ + HRZ[cos (8 deg)] 

The results of the optimization are shown in Table 6.5, with the current values of the six 

dimensions to be optimized listed under stating value. The initial choice share estimated using 

the hierarchical choice model is 32.65%. The optimization converges with the final optimum 

values for the six dimensions listed in the table, leading to a choice share increase to 40.07 % 

using the Random INT model vs. 41.97% for the Fixed INT model. The final values of fuel 



 
 

194 

economy, weight, and vehicle height are also presented below, with GRDZ and StoH reaching the 

lower constraint on their values. The optimum values of the variables and the maximum choice 

share solution are different when using the fixed parameter model. Because, as will be shown in 

Section 6.4, the goodness of fit of the random parameter model is significantly higher than the 

fixed parameter model and the choice share prediction accuracy higher, the choice share 

prediction accuracy is higher for the random parameter model. 

Table 6.5. Optimization Results for the Package Design  

  Optimum Value 
Attribute Starting Value Random INT Fixed INT 

HNGX 29.5 in. 31.5 in. 31.5 in. 
ROKY 16.1 in. 15.4 in. 16.1 in. 
HELZ 12.2 in. 13.0 in.  13.0 in. 
GRDZ 22.0 in. 21.6 in.  21.6 in. 
StoH 5.6 in. 5.3 in. 5.3 in. 
HRZ 32.2 in. 36.3 in.  33.6 in. 
Fuel Economy 24.2 mpg 24.2 mpg 24.0 mpg 
Weight 3480 lb 3460 lb 3475 lb 
Vehicle Height (H100) 56.9 in. 56.7 in. 55.2 in. 
Vehicle Choice Share 32.65% 40.07% 41.97 % 

6.4 VALIDATION OF THE INTEGRATED BAYESIAN HIERARCHICAL CHOICE MODEL 

The IBHCM is validated both to ensure convergence of the model as well as to test the fit of the 

model and its ability to accurately predict choices within the data set. The four model scenarios 

presented in Section 6.3.1 are used for comparison purposes. 

IBHCM Convergence: Convergence of the Monte Carlo Markov Chains (MCMC) is assessed to 

determine if the posterior distribution is stationary and thus is a reasonable approximation of the 

actual posterior distribution. The most popular practical measure of MCMC convergence is the 

Gelman-Rubin R̂  statistic (Brooks and Roberts, 1998). In order to test for convergence, at least 

two chains must be utilized and two intermediate measures must be determined to calculate the 
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R̂  statistic. A measurable quantity of the each iteration of each chain for each model parameter 

(i.e. b, Σ) is defined as ω. The first measure is the between-chain variance, B, and the second 

measure is the within-chain variance, W, as illustrated in Figure 6.10. The expressions for B and 

W are given in Eq. (6.16) as: 
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where m is the number of parallel chains, n is the number of realizations of each chain, ω is the 

overall mean value of all m n realizations, kω  is the mean of the n realizations of chain k, and 

jkω  is the jth realization of chain k.  
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Figure 6.10: Example of Between vs. Within Chain Variance 

Using the measures B and W, the R̂  statistic is defined as: 

( ) ( )
W

BnWnR 111ˆ +−
= . (6.17)

The within-chain variance, W,  will initially be small as the sampler will not fully explore the 

state space, whereas the between-chain variance, B, will initially be large before the j chains have 

converged to the posterior distribution. Therefore, R̂  will initially be large, but will converge to 

1.0 as the j chains converge to the posterior distribution (Lancaster, 2004). While there is no 
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formal definition for acceptable convergence, it is recommended by Gelman-Rubin that a value 

of R̂  of less than 1.2 is a reasonable measure of convergence for a chain (Gelman et al., 2004). 

Histograms of R̂  for each of the model parameters (i.e. b, Σ) are shown in Figure 6.11. As 

seen in the figures, each of the models generally converged with R̂ less than 1.2; however, each 

of the models has a few (less than 5%) of the chains with R̂ greater than 1.2. These outliers have 

been investigated and found to be related either to the ordered logit cut points, or the variance 

components, and not the model parameters in the utilities functions (i.e. β). The cut points have 

more difficulty in converging, possibly due to the ordinal constraint upon them. 
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Figure 6.11: R-hat Statistic Distribution for Parameters in Each Model Scenario 
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IBHCM Model Fit and Prediction Tests: Unlike physics-based models, model validation for 

behavioral models is challenging in that a physical experiment may be difficult to conduct to 

validate the model. Validation must be done utilizing the same data available for model 

estimation in most situations. The following validation techniques are used for behavioral 

models: 

1. Goodness-of-Fit Measures: Goodness-of-fit measures based upon the log-likelihood of 

the converged model, such as the likelihood ratio index ρ0
2, are measures of how well the 

estimated model predicts actual individual choices in the data set. Higher values of ρ0
2 

indicate better prediction of the choices. 

2. Comparison Bayesian MXL to MLE NL: As described in the previous section, the method 

for data fusion used in the Bayesian MXL method is different than that used in the 

Maximum Likelihood Nested Logit method.  

3. Choice Share/Segment Prediction Tests: Due to the hierarchical nature of the model, 

prediction errors in the lower level models propagate to the choice level model, creating 

inaccuracies in choice prediction. Therefore, a test is conducted to determine overall 

vehicle choice share prediction accuracy, as well as a test of predictions on specific 

segments of the market, for example predictions on several segments of human stature 

(Ben-Akiva and Lerman, 1985).  

4. Confirmation of Effect of Modeling Heterogeneity: The effect of including both 

systematic and random heterogeneity in the model is shown. 
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Hierarchical choice models were estimated for the four scenarios outlined previously. The log-

likelihood and the statistic ρ0
2 for each of the models within the hierarchical model framework 

are reported in Table 6.6.  

Table 6.6: Comparison of the Model Fits of the 4 Scenarios 

 Fixed SEP Fixed INT Random SEP Random INT 
 L-L ρ0

2 L-L ρ0
2 L-L ρ0

2 L-L ρ0
2 

M1 Model -209.99 0.353 -228.88 0.294 -67.00 0.793 -135.71 0.582
M2 Ingress/Egress -1198.18 0.316 -1197.03 0.317 -906.63 0.483 -924.24 0.473
M2 Roominess -867.99 0.471 -1086.98 0.338 -733.56 0.553 -810.70 0.506
M3 Headroom -1104.35 0.339 -1101.91 0.340 -845.64 0.494 -865.22 0.482
M3 Leftroom -1146.00 0.320 -1144.64 0.320 -804.25 0.523 -827.82 0.509
M3 Kneeroom -1204.12 0.307 -1205.65 0.307 -889.15 0.489 -907.28 0.478
 -5730.6235   -5965.0935   -4246.233   -4470.96   
 
Goodness-of-Fit: As seen in the table, significantly higher log-likelihood and subsequently ρ0

2 

values are achieved using the random parameter models versus the fixed parameter models. This 

is to be expected as the random parameter model captures random taste heterogeneity in addition 

to the systematic taste heterogeneity of the fixed parameter models. The inclusion of random 

heterogeneity provides the largest improvement to the M1 level choice model, indicating that 

there is much taste variation at the choice level not accounted for by the choice of model 

parameters. Additionally, the models estimated separately have better goodness-of-fit statistics 

than the integrated estimated models. This is due to the fact that the parameters in the integrated 

models are fit to models in which the response is predicted by a model as opposed to the actual 

responses.  

Comparison Bayesian MXL to MLE NL: A comparison of the Bayesian MXL versus the Nested 

Logit method is shown in Table 6.7 for the customer-desired attribute (A) in the model. The 

MLE NL results are scaled to be on the same scale as the Bayesian MXL results, because, as 

discussed earlier in this chapter, MLE identifies the mode of the parameter distribution versus 
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Bayesian which identifies the mean of the distribution. As seen in the table, there is strong 

agreement between the two methods. 

Table 6.7: Comparison Bayesian MXL vs. Nested Logit Data Fusion 

 Bayesian MXL MLE NL Scaled NL Difference
Roominess 0.53 4.11 0.51 3.78 0.53 0.07% 
Ingress/Egress 0.43 3.75 0.41 3.55 0.43 0.81% 
Quality Materials 0.41 3.90 0.40 3.77 0.42 2.83% 
Ext. Appearance 1.46 5.22 1.36 5.06 1.43 2.10% 
Willing to Pay 0.39 2.06 0.38 1.92 0.39 1.49% 
Sigma/scale 1.31 2.44 1.15 0.14     

The NL or MXL method of combining data can be compared to a MNL method in which the 

multiple data sets are merged into a single set and a single scale, µ, based upon the pooled 

variance of both data sets is used. Because all parameters in such an approach are scaled by the 

same pooled scale factor, the MNL approach will over or under-estimate the importance of 

model coefficients. For example, estimating the M1 model using the single scale MNL approach 

and comparing to the NL approach demonstrates that the exterior styling-to-interior packaging 

ratio decreases from 76.253./46.1 =  estimated using the MXL approach, to 52.254./36.1 =  

using the MNL approach. As seen, the importance for interior packaging would be overestimated 

while the importance for exterior styling is underestimated using the MNL approach.  

Choice Share Predictions: The models are compared based upon the error in choice share 

predictions for the four different vehicles in the choice set as shown in Table 6.8. 

Table 6.8: Comparison of Choice share Predictions for the 4 Scenarios 

  Fixed Parameter C.S. Predictions Random Parameter C.S. Predictions 

 Actual  SEP  % Error INT % Error SEP  % Error INT  % Error 
Veh. 1 0.1410 0.1412 0.124 0.1370 2.855 0.1353 4.060 0.1441 2.180 
Veh. 2 0.3803 0.3579 5.900 0.3677 3.324 0.3764 1.036 0.3758 1.194 
Veh. 3 0.1795 0.1753 2.333 0.1958 9.089 0.1727 3.781 0.1774 1.163 
Veh. 4 0.2991 0.3256 8.843 0.2995 0.119 0.3157 5.534 0.3027 1.188 
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The error for both fixed parameter models is relatively high; however, the integrated approach 

successfully minimizes the error of the vehicle under design (Veh. 4) from 8.84% to 0.12%. 

Introducing random parameters has the effect of more evenly distributing the error among the 

C.S. predictions, thus reducing the maximum choice share errors. The integrated estimation with 

random parameters has a similar effect as the integrated fixed parameter estimation in that it 

significantly reduces the error of the vehicle under design (Veh. 4), but also lowers the C.S. 

prediction error for the other vehicles as well.  

The market segment prediction test is conducted for three segments of Stature (small, 

medium, large) and three segments of Age (low, medium, high). The results of the Stature market 

segmentation test are shown in Table 6.9 and the results of the Age market segment test are 

shown in Table 6.10. In order to determine a 95% confidence interval for the segments, the 

variance of the observed choice share is calculated using the binomial proportion confidence 

interval (Ben-Akiva and Lerman, 1985): 

( )
sn

ppzp
ˆ1ˆˆ 2

−
± α , (6.18)

where p̂ is the observed choice share proportion, 96.12 =αz for a 95% confidence interval, and 

ns is the number of people in each market segment. 
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Table 6.9: Stature Market Segment Test 

 Fixed Parameter SEP  Fixed Parameter INT 
 Small Stature Segment 
 Veh. 1 Veh. 2 Veh. 3 Veh. 4  Veh. 1 Veh. 2 Veh. 3 Veh. 4 
Predicted 0.094 0.348 0.226 0.332  0.084 0.384 0.248 0.284 
Observed 0.100 0.388 0.238 0.275  0.100 0.388 0.238 0.275 

95% C. I. 0.034 
0.166 

0.281 
0.494 

0.144 
0.331 

0.177 
0.373  

0.034 
0.166 

0.281 
0.494 

0.144 
0.331 

0.177 
0.373 

% Error 6.00% 10.09% 4.84% 20.58%  15.70% 0.95% 4.42% 3.24% 

 Medium Stature Segment 
Predicted 0.159 0.405 0.146 0.291  0.157 0.408 0.172 0.264 
Observed 0.125 0.513 0.175 0.188  0.125 0.513 0.175 0.188 

95% C. I. 0.053 
0.198 

0.403 
0.622 

0.092 
0.258 

0.102 
0.273  

0.053 
0.198 

0.403 
0.622 

0.092 
0.258 

0.102 
0.273 

% Error 26.88% 21.00% 16.86% 55.20%  25.36% 20.47% 1.60% 40.59% 

 Large Stature Segment 
Predicted 0.174 0.317 0.153 0.357  0.173 0.307 0.165 0.355 
Observed 0.203 0.230 0.122 0.446  0.203 0.230 0.122 0.446 

95% C. I. 0.111 
0.294 

0.134 
0.326 

0.047 
0.196 

0.333 
0.559  

0.111 
0.294 

0.134 
0.326 

0.047 
0.196 

0.333 
0.559 

% Error 14.41% 38.09% 25.66% 20.05%  14.85% 33.74% 35.77% 20.36% 

 Random Parameter SEP  Random Parameter INT 
 Small Stature Segment 

 Veh. 1 Veh. 2 Veh. 3 Veh. 4  Veh. 1 Veh. 2 Veh. 3 Veh. 4 
Predicted 0.080 0.386 0.238 0.296 0.086 0.396 0.240 0.278 
Observed 0.100 0.388 0.238 0.275 0.100 0.388 0.238 0.275 

95% C. I. 0.034 
0.166 

0.281 
0.494 

0.144 
0.331 

0.177 
0.373 

0.034 
0.166 

0.281 
0.494 

0.144 
0.331 

0.177 
0.373 

% Error 20.00% 0.41% 0.25% 7.64% 13.70% 2.14% 1.18% 0.95% 

 Medium Stature Segment 
Predicted 0.147 0.428 0.128 0.297 0.150 0.438 0.153 0.259 
Observed 0.125 0.513 0.175 0.188 0.125 0.513 0.175 0.188 

95% C. I. 0.053 
0.198 

0.403 
0.622 

0.092 
0.258 

0.102 
0.273 

0.053 
0.198 

0.403 
0.622 

0.092 
0.258 

0.102 
0.273 

% Error 17.52% 16.47% 26.69% 58.24% 20.32% 14.58% 12.63% 38.13% 

 Large Stature Segment 
Predicted 0.182 0.310 0.150 0.357 0.203 0.266 0.157 0.373 
Observed 0.203 0.230 0.122 0.446 0.203 0.230 0.122 0.446 

95% C. I. 0.111 
0.294 

0.134 
0.326 

0.047 
0.196 

0.333 
0.559 

0.111 
0.294 

0.134 
0.326 

0.047 
0.196 

0.333 
0.559 

% Error 10.01% 35.05% 23.36% 19.85% 0.05% 15.98% 29.36% 16.26% 
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Table 6.10: Age Market Segment Test 

 Fixed Parameter SEP  Fixed Parameter INT 
 Low Age Segment 
 Veh. 1 Veh. 2 Veh. 3 Veh. 4  Veh. 1 Veh. 2 Veh. 3 Veh. 4 
Predicted 0.177 0.354 0.164 0.306  0.186 0.341 0.185 0.288 
Observed 0.174 0.419 0.163 0.244  0.174 0.419 0.163 0.244 

95% C. I. 0.094 
0.255 

0.314 
0.523 

0.085 
0.241 

0.153 
0.335  

0.094 
0.255 

0.314 
0.523 

0.085 
0.241 

0.153 
0.335 

% Error 1.38% 15.53% 0.43% 25.35%  6.54% 18.54% 13.51% 18.10% 

 Medium Age Segment 
Predicted 0.093 0.333 0.190 0.384  0.083 0.350 0.215 0.352 
Observed 0.100 0.314 0.200 0.386  0.100 0.314 0.200 0.386 

95% C. I. 0.030 
0.170 

0.206 
0.423 

0.106 
0.294 

0.272 
0.500  

0.030 
0.170 

0.206 
0.423 

0.106 
0.294 

0.272 
0.500 

% Error 7.50% 6.05% 5.00% 0.41%  16.80% 11.20% 7.50% 8.66% 

 High Age Segment 
Predicted 0.146 0.385 0.175 0.294  0.131 0.414 0.191 0.264 
Observed 0.141 0.397 0.180 0.282  0.141 0.397 0.180 0.282 

95% C. I. 0.064 
0.218 

0.289 
0.506 

0.094 
0.265 

0.182 
0.382  

0.064 
0.218 

0.289 
0.506 

0.094 
0.265 

0.182 
0.382 

% Error 3.40% 3.22% 2.40% 4.36%  6.88% 4.08% 6.30% 6.35% 

 Random Parameter SEP  Random Parameter INT 
 Low Age Segment 
 Veh. 1 Veh. 2 Veh. 3 Veh. 4  Veh. 1 Veh. 2 Veh. 3 Veh. 4 
Predicted 0.170 0.361 0.159 0.310  0.178 0.369 0.163 0.290 
Observed 0.174 0.419 0.163 0.244  0.174 0.419 0.163 0.244 

95% C. I. 0.094 
0.255 

0.314 
0.523 

0.085 
0.241 

0.153 
0.335  

0.094 
0.255 

0.314 
0.523 

0.085 
0.241 

0.153 
0.335 

% Error 2.47% 13.69% 2.64% 26.95%  1.83% 11.80% 0.12% 18.84% 

 Medium Age Segment 
Predicted 0.086 0.367 0.186 0.361  0.092 0.343 0.209 0.357 
Observed 0.100 0.314 0.200 0.386  0.100 0.314 0.200 0.386 

95% C. I. 0.030 
0.170 

0.206 
0.423 

0.106 
0.294 

0.272 
0.500  

0.030 
0.170 

0.206 
0.423 

0.106 
0.294 

0.272 
0.500 

% Error 14.10% 16.67% 6.85% 6.40%  8.50% 9.07% 4.50% 7.52% 

 High Age Segment 
Predicted 0.141 0.402 0.176 0.281  0.145 0.402 0.181 0.272 
Observed 0.141 0.397 0.180 0.282  0.141 0.397 0.180 0.282 

95% C. I. 0.064 
0.218 

0.289 
0.506 

0.094 
0.265 

0.182 
0.382  

0.064 
0.218 

0.289 
0.506 

0.094 
0.265 

0.182 
0.382 

% Error 0.07% 1.08% 1.89% 0.35%  3.12% 1.03% 0.95% 3.62% 
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In general, the choice shares vary more substantially by Stature market segment than by Age 

segment. In the Stature study, only 2 choice share predictions are outside the 95% confidence 

intervals; one prediction is from the Fixed Parameter SEP model, while the other is from the 

Random Parameter SEP model. No observations are outside the 95% confidence intervals in the 

Age study.  

Modeling Heterogeneity: The non-linear choice vs. utility curve implies that the model with the 

best representation of heterogeneity and the least restrictions on the choice probabilities (i.e. 

I.I.A.) will provide the best estimate of the choice share for a design change or the introduction 

of a new design. To demonstrate this concept, a comparison among five DCA models (i.e. M1 

level only models) estimated for the set of four competing vehicles in DS1 and DS2 is provided. 

The five choice models estimated are as follows: 

• Model 0: Aggregate Logit model estimated using average vehicle ratings. 

• Model 1: MNL model with no demographics (no S). 

• Model 2: MNL model with demographics included (S). 

• Model 3: MXL model with no demographics (no S). 

• Model 4: MXL model with demographics included (S). 

The five models are estimated, resulting in initial choice shares for each of the four vehicles of 

[0.141, 0.380, 0.180, 0.299]. Case studies are conducted in which various hypothetical changes 

to the design of each of the vehicles are made individually, which are assumed to increase the 

respondent ratings by two points (e.g. rating 4 increases to 6) for each change. The effects of the 

design changes upon the choice share of the changed vehicle are shown in Table 6.11 for each of 

the four cases investigated. For example, the Ingress (Ing) and Exterior Styling (Ext) ratings are 



 
 

204 

increased (+) for Vehicle 1 (Case 1) in the first case study, with the predicted choice share (C.S.) 

estimated using each model (Model 0–Model 4) for the improved design shown in the respective 

row.  

Table 6.11. Effect of Design Changes on Choice Share using Different Models 

 
Case 1 

C.S. 
Case 2 

C.S. 
Case 3 

C.S. 
Case 4 

C.S.  
Initial C.S.  0.141 0.380 0.180 0.299  

+ Ing + Room + Room + Q Mat.  Attribute 
Change + Ext + Ext + Ext + W to P ρ0

2 
Model 0 0.418 0.830 0.814 0.489 0.056 
Model 1 0.270 0.588 0.383 0.416 0.350 
Model 2 0.260 0.595 0.395 0.407 0.381 
Model 3 0.318 0.592 0.411 0.466 0.678 
Model 4 0.313 0.600 0.429 0.472 0.806 

The differences among the five models are characterized by the goodness-of-fit measure, ρ0
2, 

which ranges between 0-1, with higher values indicating better model fit. The ρ0
2 metric 

indicates that the MXL with S model has the best fit, while the aggregate (i.e. average rating) 

model has the worst fit. Considering only the aggregate logit model in comparison to the four 

other models for each case, it is seen that the aggregate model always overestimates the effect of 

a design change. In the first case study using Vehicle 1, the models without S tend to 

overestimate the effect of the change for a given model type (i.e. MNL and MXL), while the 

MNL models underestimate the effect of the change versus the respective MXL models (i.e. with 

S and without S). Other patterns of over- or under-estimation are seen in the case studies for 

Vehicles 2-4. 

6.5 DISCUSSION AND SUMMARY 

The Integrated Bayesian Hierarchical Choice Modeling framework proposed in this work utilizes 

multiple model levels to create a link between qualitative attributes considered by consumers 
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when selecting a product and quantitative attributes used for engineering design. This new 

framework addresses the shortcomings of previous methods while providing a highly flexible 

modeling framework to address the needs of complex system design, such as the vehicle design 

problem considered in this work. In the proposed framework, both systematic and random 

consumer heterogeneity is explicitly modeled at all levels of the model hierarchy. The 

importance of including a complete representation of consumer heterogeneity in the model 

framework is clearly demonstrated using the vehicle design example. The ability to combine 

multiple sources of data for model estimation and updating is significantly expanded over 

previous methods. A comprehensive method to mitigate error propagated throughout the model 

hierarchy is developed and its effectiveness demonstrated. The new modeling framework is 

demonstrated for the vehicle occupant package design, in which optimal vehicle package 

dimensions are identified. The modeling approach is validated using several metrics and 

techniques, demonstrating the ability of the new approach to better capture heterogeneous 

consumer preferences and mitigate error propagated.  

The integrated Bayesian hierarchical choice model, formulated for model updating and 

model fusion, can be incorporated into the overall economic benefits equation of Figure 6.2 (i.e. 

CQPV −= ), forming the selection criterion used in the enterprise utility function. The role of 

the Bayesian hierarchical choice model is illustrated in Figure 6.12. Initially, at time t=0, the 

prior information and the evidence are combined to estimate the β parameters of the choice 

model (including M1, M2, and M3 levels), which together with an estimate of the total market 

size, D(t), enables estimation of Q. To complete the profit function, costs and relevant 

uncertainties are quantified as was demonstrated in the sensor case study in Section 3.5. With a 

profit function available and the risk attitude of the enterprise, the enterprise utility function can 
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be formulated. As illustrated in Figure 6.12, the demand model can be updated in future time 

periods (e.g., t = t1, t2,…,tj) as more information becomes available, as preferences change, or a 

combination of both information and preference change. 
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Figure 6.12: Bayesian Choice Modeling Framework 

The hierarchical choice modeling approach presented in this chapter will make possible the 

realization of a comprehensive Decision-Based Design framework for complex systems, in 

which a hierarchy of systems and sub-systems exist, as well as multiple sources of survey data 

over different time periods. Using this method, detailed design decisions can be made on a single 

or multiple sub-systems, or for the entire system.  
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Chapter 7 
CCOONNCCLLUUSSIIOONNSS  AANNDD  IINNTTEELLLLEECCTTUUAALL  MMEERRIITT  

7.1 CONTRIBUTIONS OF THE DISSERTATION 

The primary research contribution of this work is the development of the comprehensive 

Enterprise-Driven Design approach to support design decision-making for configuring 

complex engineering systems, considering the heterogeneity of the consumers for these systems. 

The specific tools and methodologies which comprise the system configuration approach are 

necessary for the design of complex systems in which there is a hierarchy of sub-systems and 

product attributes, consumer heterogeneity results in different experiences and preferences for 

the system design, and there is a need to combine multiple sources of data, update models, and 

quantify uncertainty for decision making. This framework is built upon the principles of the 

Decision-based Design (DBD) paradigm, providing a tool to implement the DBD method in 

application, a method to conduct the surveys required to support preference modeling, and a 

comprehensive choice modeling approach to support engineering design. The proposed approach 

provides a rigorous design approach which is suitable for use on a wide variety of engineering 

systems in a wide variety of markets.  

The specific research contribution of each of the new tools and methodologies comprising 

the enterprise-drive design approach is detailed as follows. The Product Attribute Function 

Deployment (PAFD) method is developed to offer a mathematically rigorous, decision-theoretic 

process tool for use during the product planning phase of a product development program. Such 

a method is needed based on an investigation of the flaws of current methods, such as Quality 
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Function Deployment, which could lead to a faulty design decision process. The PAFD method 

extends the QFD mapping matrix concept to qualitatively identify relationships and interactions 

among product design attributes while employing the DBD principles to provide rigorous 

quantitative assessments for design decisions. The PAFD method can be implemented for a real 

design problem, with a team composed of marketing science, engineering, and manufacturing 

experts.  

The Optimal Design of Human Appraisal method can be widely applied to assess 

consumer preference for any system in which an interaction between the design and a human 

user exists. In this work, the attributes of the consumer which were believed to influence the 

consumer’s experience of the system where human attributes, such as the consumer’s height, 

weight, or gender; however, the demographics used in the design of the experiment can be much 

broader, such as usage context or skill level of the user of the system. The optimal design of 

human appraisal method is a necessary development to complement the development of flexible 

prototype hardware, such as the Programmable Vehicle Model, which can assume a wide variety 

of configurations for evaluation.  

The methods for Statistical Data Analysis of Consumer Heterogeneity can be applied to a 

wide variety of human appraisal data and the respective predictive models estimated using the 

data. These methods are developed specifically for separating the effect of the different types of 

respondent heterogeneity from the influence of the product design attributes. Application of the 

methods will result in better predictive models for forecasting the impact of new designs or 

design improvements on consumer opinion, and ultimately enterprise profitability. 

The proposed Integrated Bayesian Hierarchical Choice Modeling approach provides the 

necessary comprehensive choice modeling methodology to guide the design of a complex 
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system, characterized by a hierarchy of component, sub-system, and system design activities. 

This approach explicitly captures the effect of consumer heterogeneity in the choice process, and 

is formulated to address the challenges of complex system design, such as qualitative choice 

attributes, multiple data sets, and the need to quantify uncertainty for decision making. This 

methodology could find wide spread use in setting target levels of performance for complex 

systems, such as automobiles, airplanes, medical devices, or power tools in which the system 

design must meet the needs of a diverse consumer population. The approach could also find 

application in other disciplines, such as in the design of services, which are characterized by 

multiple data sets, preference heterogeneity, and mapping from qualitative choice attributes (e.g. 

convenience of a service) to quantitative measures (e.g. hours service is offered).   

The methods developed in this research can be applied to several trends within industry 

today. One such trend is the development and management of incremental innovation. Much 

focus has been directed to breakthrough innovation, in which a new technological breakthrough 

creates a brand new market, with no immediate competitors and potentially high profits. These 

types of breakthroughs are rare, however (Pine, 1993; Otto and Wood, 2001); it has been noted 

most recently in the Harvard Business Review (Kanter, 2006) that attention must also be paid to 

incremental innovations, which are capable of creating competitive advantages for a firm in 

existing markets, to enable incremental improvements in profitability and/or market share. These 

incremental innovations must be implemented in product configurations to ensure consumer 

acceptance and profitability. Without solid methods for decision-making to manage innovation, 

enterprises must overly rely upon mimicking (benchmarking) successful competitors, creating 

superficial cosmetic changes to existing products to generate interest, or introducing a wide 

variety of disparate products to mitigate the uncertainties of the market place. The methods 
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provided in this dissertation can be used to guide the design process for configuring systems to 

include incremental innovations. 

Another issue to address is the increasingly rapid obsolescence of product designs. For 

example, in the cell phone industry, product cycles are short and consumers demand new 

products at an ever increasing rate. As noted recently in Business Week (Crockett, 2007), 

companies are looking toward updating popular products to maintain interest throughout the 

product life, rather than waiting for introduction of entirely new products. These changes are 

intended to improve the base design, as well as to optimize the features to correspond with 

current consumer preferences. The Integrated Bayesian Hierarchical Choice Model provides a 

method to update consumer preference models at any time throughout the product design life 

cycle, and make decisions upon feature improvements. 

7.2 RECOMMENDATIONS FOR FUTURE WORK 

PAFD Method: The recommended future work for the PAFD method is to study the use of the 

method for the design of a complex system, such as the vehicle problem. When the PAFD tool is 

used in the conceptual design phase, it is not reasonable to expect that the detailed survey data 

used in the hierarchical choice modeling approach would be available. Also, the knowledge 

needed to conduct the PAFD analysis may be spread over several disciplines, requiring the use of 

multidisciplinary optimization techniques. Therefore, research is required to determine how to 

implement the method considering the unique issues present in the selection of a preferred 

complex system concept. Another area of future work is extension of the PAFD method for use 

in the detailed design phase, such as the target setting process for the vehicle problem. While it is 

intended that the PAFD method be applied throughout the design process, from the conceptual 

design phase through the detailed design phase, it has been demonstrated in this work for use in 
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conceptual design. The principles of mapping qualitative customer-desired attributes to 

quantitative engineering attributes are applicable to the design of a human appraisal experiment 

presented in Chapter 4 and to guide the modeling described in Chapters 5 and 6. 

Optimal Design of Human Appraisal Experiments: The primary research need for the Design of 

Human Appraisal Experiment method is an improved search method. Currently several tries are 

used to identify the optimal design, with no methodology available for determining the number 

of tries needed to indentify an acceptable design.  Improvements to the efficiency of the search 

algorithm should be investigated using memetic or stochastic evolutionary algorithms, which 

would eliminate the need for multiple tries and potentially lead to more repeatable results using 

the algorithm. Another future research area is to adapt the method to design choice experiments 

to support building the discrete choice model at the top level of the model hierarchy. This could 

be accomplished using the basic framework in place for the design of human appraisal 

experiments, but replacing the information matrix for the random effects ordered logit model 

with the information matrix for the MNL or MXL model.  

Analysis of Human Appraisal Experiments: Methods have been developed for preprocessing the 

data collected in a human appraisal experiment, specifically for response reduction, 

understanding the factor-response relationship, and general methods to guide the random effects 

ordered logit modeling process. The use of machine learning methods from data mining, 

specifically a decision tree and a Bayesian network, were also investigated as methods to better 

understand the data. The primary future work in this area is further exploration and use of the 

machine learning methods to support the modeling process. The machine learning methods have 

a primary advantage in that they can identify the important factors which influence the 

classification process, such as selection of a rating or a choice made from among a choice set. 
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Further, a better understanding of the advantages and disadvantages of the parametric modeling 

methods, such as ordered logit and discrete choice analysis, versus the machine learning 

classification methods would be beneficial to the Decision-based design paradigm. For example, 

design situations in which a well structured data set with defined choice sets does not exist may 

be better served with the use of a Bayesian network or Decision Tree. 

Integrated Bayesian Hierarchical Choice Model: Several areas for future work remain in for the 

Bayesian hierarchical choice modeling approach. Convergence of the hierarchical model, as 

measured by the Gelman-Rubin statistic, is a challenge for such models. In this work, a 

simplified set of models at the M1, M2, and M3 levels was used to demonstrate the method; 

however, it is desired to utilize more descriptive models, such as the complete random-effects 

ordered logit models of Chapter 5, in the hierarchy. The Bayesian framework has been developed 

with the ability to both combine multiple data sources to estimate the choice model, as well the 

ability to update the model over time. An example of combining data at the choice model level, 

and updating at the ratings level was provided; however, an example in which data from several 

product segments is combined to estimate the models, or in which the entire set of models is 

updated with a complete set of data from another model year is used should be investigated. 

Also, the use of other types of data sets, for example actual purchase data (i.e. revealed 

preference) such as data collected by J. D. Power and Associates, should be investigated.  
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Appendix A: Choice Set and Analytic Relationships for PAFD 

Example 

Table A.1: Sample of Choice Set Used for Estimation of DCA Model 

 Demographic S  

Customer Region 
Market 

Segment Purchase 
Customer 1 N. America $30,000.00 Our 
Customer 2 N. America $29,000.00 Our 
Customer 3 Asia $22,000.00 Sensor A 
Customer 4 N. America $24,000.00 Sensor B 
Customer 5 N. America. $24,500.00 Sensor B 
Customer 6 Asia $34,000.00 Sensor C 

    
 
 

Table A.2: Analytical Relationships between E and X 

 Concept 1 Concept 2 
Engineering Attribute E E as a function of X1 E as a function of X2 
Sense element accuracy   ε(calibration) + ε(A/D) ε(calibration) + ε(A/D) 
Full scale span   k*∆l/l ε0εrA/∆d 

Temperature range  Min[Tmax(IC), 
Tg(Housing)] 

Min[Tmax(IC),  
Tg(Housing)] 

Housing footprint  Housing width*length Housing width*length 
Natural frequency    
Connector mating force  25, 35 , 40 25, 35 , 40 

 

4ALEICn j ρ 4ALEICn j ρ
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Appendix B: Information Matrix Computation for Algorithmic 

Implementation  

This appendix provides a method for expressing the information matrix, M, and estimating the 

prediction variance of a given extended design point, f(x), for use in the optimization algorithm. 

The ordinal data GLM information matrix of Eq. (4.9) can be written in analogous fashion to the 

GLS formulation of Eq. (4.7) (Johnson and Albert, 1999). An Hn matrix is defined as a matrix of 

derivatives of the logistic CDF as ( )( )121 ,,diag −= Pnnnn fff …H . The extended design point f(xin) 

for a given respondent and given configuration is defined as: 
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A Cn matrix defined as: 
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With Cn, Hn and f(x) defined, the information matrix can be written as (Johnson and Albert, 

1999): 

∑
=

−′=
N

n
nnn

1

1FWFM  (B.3)

where nnnnnn HCVCHW 11 −− ′= , and F is the extended design matrix composed of the f(x). 
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Appendix C: Example of 3 Experimental Configuration Blocks  

Config L38 W35 H61 Gender Stature Resp. 
1 -1 -1 -1 -1 -0.33 1 
2 -1 -1 1 -1 -0.33 1 
3 -1 0 -0.33 -1 -0.33 1 
4 -1 0 1 -1 -0.33 1 
5 -1 1 -1 -1 -0.33 1 
6 -1 1 0.33 -1 -0.33 1 
7 -1 1 1 -1 -0.33 1 
8 0 -1 -1 -1 -0.33 1 
9 0 -1 1 -1 -0.33 1 

10 0 0 1 -1 -0.33 1 
11 0 1 -1 -1 -0.33 1 
12 1 -1 -1 -1 -0.33 1 
13 1 -1 -1 -1 -0.33 1 
14 1 -1 0.33 -1 -0.33 1 
15 1 0 1 -1 -0.33 1 
16 1 1 -1 -1 -0.33 1 
17 1 1 0.33 -1 -0.33 1 
18 1 1 1 -1 -0.33 1 
1 -1 -1 -1 1 0.33 2 
2 -1 -1 -1 1 0.33 2 
3 -1 -1 1 1 0.33 2 
4 -1 0 1 1 0.33 2 
5 -1 1 -0.33 1 0.33 2 
6 -1 1 -0.33 1 0.33 2 
7 -1 1 1 1 0.33 2 
8 0 -1 -1 1 0.33 2 
9 0 0 -1 1 0.33 2 

10 0 0 -0.33 1 0.33 2 
11 0 1 1 1 0.33 2 
12 1 -1 -0.33 1 0.33 2 
13 1 -1 1 1 0.33 2 
14 1 -1 1 1 0.33 2 
15 1 0 1 1 0.33 2 
16 1 1 -1 1 0.33 2 
17 1 1 -1 1 0.33 2 
18 1 1 1 1 0.33 2 
1 -1 -1 -1 1 1 3 
2 -1 -1 -1 1 1 3 
3 -1 -1 1 1 1 3 
4 -1 -1 1 1 1 3 
5 -1 1 -1 1 1 3 
6 -1 1 -1 1 1 3 
7 -1 1 1 1 1 3 
8 -1 1 1 1 1 3 
9 0 1 -0.33 1 1 3 

10 0 1 1 1 1 3 
11 1 -1 -1 1 1 3 
12 1 -1 -1 1 1 3 
13 1 -1 1 1 1 3 
14 1 -1 1 1 1 3 
15 1 0 -1 1 1 3 
16 1 1 -1 1 1 3 
17 1 1 0.33 1 1 3 
18 1 1 1 1 1 3 
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Appendix D: PVM 4 Block Human Appraisal Designs 

 
Table D.1: Full 1-Part 4 Block Experiment 

x1 x2 x3 x4 x5 x6 x7 x8  
SgRP to 
Hinge 

SgRP to 
Rocker Y 

SgRP to 
Heel Z 

SgRP to 
Ground Z

Sill to  
Heel 

SgRP to 
Roof Z  

SgRP to 
Frt Hdr X  

SgRP to 
Side Rail Y  

(PtoH) (ROKY) (HELZ) (GRDZ) (StoH) (HRZ) (HRX) (HRY) Block
800 380 288 450 70 777 241 122 1 
700 520 400 625 140 777 241 122 1 
800 520 175 625 140 977 241 122 1 
725 380 175 800 70 777 366 122 1 
800 380 400 800 0 977 366 122 1 
800 520 175 625 0 777 491 122 1 
800 380 400 625 140 877 491 122 1 
700 380 175 800 0 977 491 122 1 
700 520 175 625 0 777 241 197 1 
700 380 175 625 140 777 241 272 1 
725 520 175 625 70 877 241 272 1 
700 520 400 625 0 977 241 272 1 
725 380 400 625 140 977 241 272 1 
800 520 400 625 140 777 366 272 1 
700 380 400 625 0 777 491 272 1 
800 380 175 800 0 777 491 272 1 
800 380 175 450 70 977 491 272 1 
700 520 288 450 140 977 491 272 1 
800 380 175 625 0 777 241 122 2 
800 380 400 625 140 777 241 122 2 
700 380 175 450 140 977 241 122 2 
700 520 400 800 0 877 366 122 2 
800 450 288 450 70 877 366 122 2 
700 380 175 450 140 777 491 122 2 
725 380 400 625 0 977 491 122 2 
800 520 400 625 70 977 491 122 2 
800 380 175 800 70 977 491 122 2 
725 450 288 625 140 977 491 122 2 
700 380 175 800 0 777 241 272 2 
700 520 288 450 70 777 241 272 2 
800 380 175 450 140 777 241 272 2 
800 520 175 625 140 777 241 272 2 
800 520 288 800 0 977 241 272 2 
800 520 400 800 0 777 491 272 2 
700 520 175 625 0 977 491 272 2 
700 380 400 625 140 977 491 272 2 
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700 520 400 625 0 777 241 122 3 
800 520 175 450 140 777 241 122 3 
800 380 175 800 0 877 241 122 3 
800 380 288 450 70 977 241 122 3 
700 380 400 625 140 777 366 122 3 
800 520 400 625 140 977 366 122 3 
800 380 400 625 0 777 491 122 3 
700 520 175 450 70 977 491 122 3 
700 520 400 800 70 777 491 197 3 
800 380 400 800 70 777 241 272 3 
700 380 400 625 0 977 241 272 3 
700 520 175 625 140 977 241 272 3 
800 520 175 625 0 777 366 272 3 
700 450 175 450 140 777 491 272 3 
700 380 288 625 0 877 491 272 3 
800 450 400 625 0 977 491 272 3 
700 380 175 800 70 977 491 272 3 
800 520 175 625 140 977 491 272 3 
700 380 175 450 70 777 241 122 4 
800 520 288 800 70 777 241 122 4 
725 520 175 625 0 977 241 122 4 
700 380 400 800 70 977 241 122 4 
700 520 400 625 0 777 491 122 4 
700 380 175 800 0 777 491 122 4 
700 520 175 625 140 877 491 122 4 
800 380 175 450 140 977 491 122 4 
800 520 400 625 0 877 241 197 4 
700 450 288 625 70 977 366 197 4 
700 520 400 800 0 777 241 272 4 
800 380 400 625 0 977 241 272 4 
800 380 175 800 70 977 241 272 4 
800 520 175 450 140 977 241 272 4 
800 520 175 450 70 777 491 272 4 
725 380 400 625 140 777 491 272 4 
700 380 288 450 70 977 491 272 4 
800 520 400 800 70 977 491 272 4 
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Table D.2: Blocks 3 and 4 to be Augmented in 2-Part Experiment 

x1 x2 x3 x4 x5 x6 x7 x8  
SgRP to 
Hinge 

SgRP to 
Rocker Y 

SgRP to 
Heel Z 

SgRP to 
Ground Z

Sill to  
Heel 

SgRP to 
Roof Z  

SgRP to 
Frt Hdr X  

SgRP to 
Side Rail Y  

(PtoH) (ROKY) (HELZ) (GRDZ) (StoH) (HRZ) (HRX) (HRY) Block
700 520 400 625 0 777 241 122 3 
800 520 288 800 70 777 241 122 3 
700 520 400 625 140 777 241 122 3 
800 380 175 800 0 877 241 122 3 
800 380 288 450 70 977 241 122 3 
700 380 175 450 140 977 241 122 3 
800 520 175 625 0 777 491 122 3 
700 380 175 450 140 777 491 122 3 
700 380 175 800 0 977 491 122 3 
800 520 400 625 70 977 491 122 3 
700 520 288 450 70 777 241 272 3 
700 380 400 625 0 977 241 272 3 
800 520 288 800 0 977 241 272 3 
725 380 400 625 140 977 241 272 3 
700 380 400 625 0 777 491 272 3 
800 380 175 800 0 777 491 272 3 
700 380 288 450 70 977 491 272 3 
800 520 175 625 140 977 491 272 3 
700 380 175 450 70 777 241 122 4 
800 520 175 450 140 777 241 122 4 
725 520 175 625 0 977 241 122 4 
700 380 400 800 70 977 241 122 4 
725 380 175 800 70 777 366 122 4 
800 380 400 625 0 777 491 122 4 
700 520 175 625 140 877 491 122 4 
725 380 400 625 0 977 491 122 4 
800 380 175 450 140 977 491 122 4 
700 450 288 625 70 977 366 197 4 
700 520 400 800 0 777 241 272 4 
800 380 175 450 140 777 241 272 4 
800 520 175 625 140 777 241 272 4 
800 380 400 625 0 977 241 272 4 
700 520 175 625 140 977 241 272 4 
725 380 400 625 140 777 491 272 4 
700 380 175 800 70 977 491 272 4 
800 520 400 800 70 977 491 272 4 
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Appendix E: PVM Investigation Questionnaire 

 
PVM Roominess and Ingress/Egress Experimental Protocol 

Northwestern URP 
March 2008 

 
Setup (for the test administrator): 
At the beginning of each day of experiments: 

1. Setup the video camera to capture motion. 

2. Determine the set of configurations and the configuration order for each respondent. 

3. Ensure all platforms needed for the respondents to be tested are available and close to the 
PVM. 

4. Install A-pillar, B-pillar, armrest 

5. Have hinge pillar and sill inserts handy 

6. Ensure scale, chair and meter are ready to get anthropometric dimensions from subjects 

7. Ensure seat motion is turned on 
For each respondent: 

1. Place the PVM in configuration 1 for the given respondent. 

2. Place the driver’s seat in a “neutral” position (lowest and rearmost) 

3. Ensure the armrest is in the correct position for configuration 1 

4. Read the “Description of Experiments” to the respondent. 

5. Record the respondent’s demographic attributes: gender, age, and current vehicle 
ownership. 

6. Measure and record the respondent’s anthropomorphic dimensions: height, seated height, 
weight, shoe size, heel height. 

7. Respondent enters the PVM as a practice for the experiments. 

8. Once the respondent is in the vehicle, read the complete Ingress questions to get the 
respondent familiar with the questions 

9. The respondent adjusts the driver’s seat position in the vertical (z) and frontal (x) positions 
and the seat back angle (α) to attain a comfortable driving position. Record the seat 
position. 

10. Close the door and read the complete Roominess questions to get the respondent familiar 
with the questions 

11. Open the door and let the respondent exit the PVM. Read the complete Egress questions to 
get the respondent familiar with the questions 
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Description of Experiments (read to the respondent): 
You will be evaluating 18 different vehicle configurations for ingress, egress and roominess of 
the driver’s compartment.  

Before you begin the experiments, I will record the age group you belong to, the current vehicle 
you drive and will measure your height, seated height, weight, shoe size and heel height. 

You will then be asked to enter the PVM to practice the procedure, as well as to adjust the 
driver’s seat to your preferred position in the vertical and frontal directions, and the seat back 
angle. The seat adjustment will be done this one time only for the rest of the experiment. Once 
you enter the vehicle for the practice run I will read the experiment questions regarding Ingress 
so that you get familiar with them. You can then adjust the driver's seat and I will record the 
adjustment. I will then close the door and read the questions regarding Roominess. I will then 
open the door for you and once you exit the vehicle, I will read the questions regarding Egress. 
All your responses will be given as ratings which are posted in front of the vehicle. In each case 
I will indicate which of the three scales we are going to be using. 
 

The experiment procedure is as follows. 

1. Enter the vehicle on the driver’s side when instructed by the test administrator, but do not 
close the door.  

2. Evaluate the ease of entering the vehicle. 

3. Wait for the test administrator to close the door.  

4. Evaluate the driver’s compartment amount of head room, the room to the left of the driver 
seating area, the knee room in the driver’s compartment and the overall roominess. 

5. I will open the door for you and you may exit the vehicle. 

6. Evaluate the ease of exiting the vehicle. 

7. We may repeat these steps as necessary to ensure the evaluation is accurate. 

In few cases, I will need to make adjustments to the vehicle dimensions before evaluating 
roominess, in which case you will need to evaluate ingress and egress first and then reenter the 
vehicle to evaluate roominess only. I will let you know when this is the case. 

You may now enter the vehicle. Please adjust the seat to a comfortable position. 

[wait for subject to adjust seat and record adjustment] 

 These will be the ingress questions: 
1. How acceptable is this vehicle configuration for ingress? This is rated on a 1 to 4 scale with 

the following definition for each rating as you can see posted in front of the vehicle: 1 is 
“very unacceptable”, 2 is “somewhat unacceptable”, 3 is “somewhat acceptable” and 4 is 
“very acceptable”. 

Very unacceptable Somewhat 
unacceptable 

Somewhat 
acceptable 

Very acceptable 

1 2 3 4 
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2. What is the overall ease of ingress, for the vehicle? This includes evaluation of stepping up 
and passing through the door opening. This question is rated on a 1 to 5 scale, again as you 
can see posted in front of the vehicle, with the following definition for each rating: 1 is “very 
strong effort”, 2 is “strong effort”, 3 is “moderate effort”, 4 is “weak effort”, and 5 is “no effort 
at all”. 

Very strong effort  Strong effort  Moderate effort Weak effort No effort at all 

1 2 3 4 5 

 
3. How would you rate the space available for ingress? This includes evaluation of the step-up 

height and the size of the door opening. This is rated on a 1 to 5 scale, with the following 
definition for each rating: 1 is “very insufficient”, 2 is “insufficient”, 3 is “barely sufficient”, 4 is 
“sufficient”, and 5 is “excellent”. 

Very insufficient Insufficient Barely sufficient Sufficient Excellent 

1 2 3 4 5 

 
I will now close the door as will be done when you evaluate roominess. 
 
[Evaluator closes the door] 
 
The questions you will be answering to evaluate the roominess are as follows. All questions are 
rated on a 1 to 5 scale, with the following definition for each rating: 1 is “very insufficient”, 2 is 
“insufficient”, 3 is “barely sufficient”, 4 is “sufficient”, and 5 is “excellent”, as posted in front of the 
vehicle. The questions are: 

1. How do you rate the amount of headroom? This includes space above, to the left side, and 
in front of your head. 

2. How do you rate the overall room to the left of the driver seating area? This includes the 
space between your shoulder, upper arm, hips, elbows, and the left side of the vehicle. 

3. How do you rate the amount of knee room? This includes the space to the left, and in front 
of your knees. 

4. How do you rate the overall roominess of the driver’s compartment? This includes to the left, 
in front, and above you. 

Very insufficient Insufficient Barely sufficient Sufficient Excellent 

1 2 3 4 5 
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 [Open the door] 
 
You may now exit the vehicle. 
 

These will be the egress questions: 
1. How acceptable is this vehicle configuration for egress? This is rated on a 1 to 4 scale with 

the following definition for each rating as you can see posted in front of the vehicle: 1 is 
“very unacceptable”, 2 is “somewhat unacceptable”, 3 is “somewhat acceptable” and 4 is 
“very acceptable”. 

 

Very unacceptable Somewhat 
unacceptable 

Somewhat 
acceptable 

Very acceptable 

1 2 3 4 

 

2. What is the overall ease of egress for the vehicle? This includes evaluation of stepping up 
and passing through the door opening. This question is rated on a 1 to 5 scale, again as you 
can see posted in front of the vehicle, with the following definition for each rating: 1 is “very 
strong effort”, 2 is “strong effort”, 3 is “moderate effort”, 4 is “weak effort”, and 5 is “no effort 
at all”. 

 

Very strong effort  Strong effort  Moderate effort Weak effort No effort at all 

1 2 3 4 5 

 
3. How would you rate the space available for or egress? This includes evaluation of the step-

up height and the size of the door opening. This is rated on a 1 to 5 scale, with the following 
definition for each rating: 1 is “very insufficient”, 2 is “insufficient”, 3 is “barely sufficient”, 4 is 
“sufficient”, and 5 is “excellent”. 

 

Very insufficient Insufficient Barely sufficient Sufficient Excellent 

1 2 3 4 5 

 
 
Now that you have completed the practice run, we will begin the experiments. 
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Appendix F: Sample Respondent Data 

 
 



 
 

234 

Appendix G: C4.5 Decision Tree for Ingress Response 
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Appendix H: Full M2 and M3 Models with Cut points 

 Fixed SEP Fixed INT Random SEP Random INT 
 M3: Headroom 
 coef. t-value coef. t-value coef. t-value coef. t-value 

ROKY 1.53 8.26 1.50 8.10 1.55 8.53 1.60 6.74 
GRDZ -0.19 -0.97 -0.18 -0.89 0.11 0.54 0.09 0.46 
HRZ 4.02 18.80 3.90 16.81 4.64 19.91 4.67 16.05 
HRY 1.36 9.01 1.29 8.50 1.67 10.43 1.67 10.97 
Stat -2.16 -6.84 -2.20 -7.23 -3.27 -8.00 -3.13 -7.92 
BMI 1.46 4.84 1.53 5.23 1.76 4.56 1.62 4.43 
Age -0.84 -3.47 -0.87 -2.71 -1.18 -3.72 -1.07 -3.67 
cut 1 -4.97 -7.01 -5.03 -6.78 -6.73 -8.55 -6.61 -9.13 
cut 2 -3.99 -8.19 -4.08 -7.12 -5.75 -9.68 -5.63 -10.04 
cut 3 -2.64 -7.86 -2.73 -5.94 -4.33 -9.38 -4.23 -9.48 
cut 4 -1.97 -6.53 -2.06 -4.80 -3.56 -8.32 -3.45 -8.24 
cut 5 -1.08 -3.84 -1.17 -2.88 -2.43 -6.00 -2.30 -5.87 
cut 6 -0.05 -0.17 -0.14 -0.36 -0.97 -2.45 -0.85 -2.24 
cut 7 1.18 4.17 1.07 2.68 0.79 1.99 0.91 2.33 
cut 8 2.38 8.30 2.26 5.59 2.55 6.13 2.71 6.59 

 M3: Leftroom 

ROKY 3.48 16.83 3.45 18.27 3.54 17.16 3.51 18.16 
GRDZ -1.53 -8.24 -1.64 -9.77 -1.44 -7.67 -1.37 -8.00 
StoH 0.28 1.63 0.25 1.59 0.27 1.55 0.29 1.51 
HRZ 1.72 10.30 1.63 9.65 1.71 10.59 1.69 9.87 
Stat -2.17 -6.88 -2.13 -6.15 -3.17 -8.07 -3.07 -8.62 
BMI -1.21 -4.33 -1.08 -3.90 -1.87 -5.29 -1.78 -5.07 
Age -0.36 -1.44 -0.32 -1.22 -0.63 -2.03 -0.30 -0.92 
cut 1 -6.19 -8.71 -6.32 -9.02 -9.07 -11.59 -8.74 -10.69 
cut 2 -5.40 -9.96 -5.54 -9.56 -8.26 -12.89 -7.96 -11.60 
cut 3 -4.40 -10.77 -4.48 -9.97 -7.15 -13.52 -6.86 -12.02 
cut 4 -3.40 -9.99 -3.45 -8.95 -6.02 -12.80 -5.70 -11.42 
cut 5 -2.08 -6.78 -2.12 -5.98 -4.25 -9.90 -3.91 -8.60 
cut 6 -0.92 -3.08 -0.96 -2.79 -2.37 -5.76 -2.02 -4.85 
cut 7 0.41 1.39 0.38 1.13 -0.07 -0.18 0.30 0.74 
cut 8 1.42 4.71 1.38 4.11 1.70 3.94 2.10 5.27 

 M3: Kneeroom 

ROKY 1.38 9.62 1.44 8.88 1.36 8.98 1.36 8.55 
HELZ 1.01 6.70 1.03 6.62 1.05 6.93 1.04 6.80 
StoH -0.36 -2.22 -0.34 -2.32 -0.34 -2.06 -0.38 -2.24 
HRZ 0.81 5.04 0.86 5.51 0.84 5.06 0.88 4.82 
Stat -1.40 -4.52 -1.38 -4.41 -1.02 -2.37 -1.67 -4.25 
BMI -1.01 -3.55 -1.06 -4.19 -1.42 -4.13 -1.42 -4.25 
Age 1.02 4.13 0.92 3.56 1.70 5.15 1.08 3.50 
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cut 1 -4.95 -7.29 -4.97 -7.34 -5.99 -7.72 -6.86 -9.00 
cut 2 -3.63 -8.30 -3.62 -8.15 -4.59 -8.30 -5.44 -10.21 
cut 3 -2.69 -7.83 -2.68 -7.60 -3.56 -7.54 -4.41 -9.35 
cut 4 -1.74 -5.96 -1.74 -5.88 -2.46 -5.66 -3.29 -7.29 
cut 5 -0.67 -2.45 -0.66 -2.38 -1.05 -2.51 -1.87 -4.41 
cut 6 0.47 1.77 0.48 1.82 0.71 1.72 -0.11 -0.26 
cut 7 1.67 6.17 1.68 6.42 2.67 6.39 1.86 4.38 
cut 8 2.58 9.19 2.60 9.41 4.22 9.75 3.44 7.62 

 M2: Roominess 
Head 0.38 6.93 0.27 2.90 0.52 9.53 0.21 2.02 
Left 0.48 6.50 0.39 2.50 0.66 7.63 0.42 1.32 

Knee 0.59 8.00 -0.18 -1.15 0.58 7.47 -0.53 -1.23 
cut 1 2.03 2.46 1.46 -5.66 2.84 1.90 -9.30 -7.05 
cut 2 4.26 5.77 5.77 -8.92 5.35 6.15 -7.23 -10.34 
cut 3 5.23 8.58 8.58 -9.72 6.45 8.44 -6.32 -11.17 
cut 4 6.92 12.37 12.37 -10.27 8.46 11.89 -4.87 -10.37 
cut 5 8.76 15.45 15.45 -7.10 10.70 14.69 -3.10 -7.26 
cut 6 10.73 17.55 17.55 -1.97 13.08 16.81 -1.16 -2.78 
cut 7 12.93 19.33 19.33 4.10 15.81 18.58 1.12 2.60 
cut 8 14.68 20.73 20.73 8.68 17.97 19.72 3.15 6.87 

 M2: Ingress/Egress 

ROKY 0.83 5.39 0.86 5.55 0.80 5.26 0.81 5.77 
HELZ 1.86 10.31 1.93 12.81 1.87 10.56 1.85 10.91 
GRDZ -2.03 -10.83 -2.09 -11.53 -2.26 -11.57 -2.23 -12.67 
StoH -2.79 -14.97 -2.79 -15.32 -2.83 -15.30 -2.84 -16.53 
HRZ 1.87 10.23 1.81 11.46 1.86 9.95 1.88 10.90 
Stat -2.28 -6.82 -2.03 -5.98 -2.92 -7.41 -2.87 -8.06 
Age -1.04 -3.53 -1.01 -3.88 -1.75 -4.83 -1.66 -6.68 

Gend -0.09 -0.60 -0.01 -0.04 -0.31 -1.11 0.02 0.10 
cut 1 -7.48 -12.81 -12.81 -12.73 -10.39 -15.65 -9.98 -14.94 
cut 2 -6.36 -14.73 -14.73 -14.82 -9.03 -17.27 -8.70 -16.61 
cut 3 -5.24 -14.25 -14.25 -15.07 -7.60 -17.46 -7.33 -17.52 
cut 4 -4.48 -12.68 -12.68 -13.60 -6.56 -16.08 -6.32 -16.72 
cut 5 -3.78 -10.83 -10.83 -11.75 -5.58 -14.27 -5.37 -14.84 
cut 6 -2.47 -7.18 -7.18 -7.53 -3.69 -9.65 -3.49 -10.33 
cut 7 -1.22 -3.58 -3.58 -3.39 -1.80 -4.70 -1.59 -4.71 
cut 8 -0.02 -0.06 -0.06 0.50 -0.01 -0.01 0.27 0.77 
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Appendix I: Distribution of Beta Parameters M1, M2, M3 Models 
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Figure I.1: M1 Level (Choice) Beta Distributions 
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Figure I.2: M2 Level (Ratings) Random Respondent Effect Distribution 
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Figure I.3: M3 Level (Ratings) Random Respondent Effect Distribution 



 
 

239 

Vita 

NAME   Christopher Hoyle 

EDUCATION 

PhD in Mechanical Engineering, Northwestern University, Evanston, IL, Dec 2009. 

MS Mechanical Engineering, Purdue University, West Lafayette, IN, May 1994. 

BS General Engineering, University of Illinois, Urbana-Champaign, IL, June 1988. 

EMPLOYMENT 
NASA Ames Research Center, Mountain View, CA. 6/2006 − 9/2006 

Summer Research Intern  
Motorola, Inc., Deer Park, IL.  5/1994 – 3/2004  

Mechanical Engineering Manager  
ITW Deltar, Frankfort, IL. 9/1989 – 12/1991 

Project Engineer 

TEACHING 
• Teaching Assistant for ISEN Introduction to Energy Systems for the 21st Century, Spring 2009. 
• CAD Instructor for Engineering Design and Innovation M.S. Boot Camp, Fall 2008. 
• Teaching Assistant for ME 341 Computational Methods for Engineers, Fall 2007, 2008. 
• Teaching Assistant for ME 398 Engineering Design, Winter 2006, 2007, 2008, 2009. 
• Teaching Assistant for ME 359 Reliability Engineering, Spring 2007. 

HONORS  
• Presidential Fellowship Nominee: 2007. 
• Walter P. Murphy Fellowship: 2005-2006. 
• Altair Corporation Fellowship: 2008.  

PUBLICATIONS 
Journal Publications: 

Hoyle, C., Chen, W., Ankenman, B., Wang, N., “Optimal Experimental Design of Human Appraisals 
for Modeling Consumer Preferences in Engineering Design”, In Press: (ASME) Journal of 
Mechanical Design, 2009. 

Hoyle, C., Mehr, A., Tumer, I., Chen, W., “Health Management Allocation during Conceptual System 
Design”, Journal of Computing & Information Science in Engineering, Vol. 9, No. 2, 2009. 

Hoyle, C. and Chen, W., “Product Attribute Function Deployment (PAFD) for Decision–Based 
Conceptual Design”, IEEE Transactions on Engineering Management, Vol. 56, No. 2, 2009. 

Kumar, D., Hoyle, C., Chen, W., Wang, N., Gomez-Levi, G., Koppelman, F., “A Hierarchical Choice 
Modeling Approach for Incorporating Customer Preferences and Market Trends in Engineering 
Design”, International Journal of Product Development, Vol. 8, No. 3, 2009. 



 
 

240 

Ramani, K. and Hoyle, C., “Processing of Thermoplastic Composites Using a Powder Slurry 
Technique. I. Impregnation and Preheating,” Materials and Manufacturing Processes, Vol. 10, 
No. 6, pp. 1169-1182, 1995. 

Ramani, K. and Hoyle, C., “Processing of Thermoplastic Composites Using a Powder Slurry 
Technique. II. Coating and Consolidation,” Materials and Manufacturing Processes, Vol. 10, 
No. 6, pp. 1183-1200, 1995. 

Ramani, K., Borgoankar, H., Hoyle, C., “Experiments on Compression Molding and Pultrusion of 
Thermoplastic Powder Impregnated Towpregs,” Composites Manufacturing, Vol. 6, No. 1, pp. 
35-43, 1995. 

Conference Publications (Peer Reviewed) 
Hoyle, C., Chen, W., Wang, N., and Koppelman, F., “Bayesian Hierarchical Choice Modeling 

Framework for Capturing Heterogeneous Preferences in Engineering System Design”, 2009 
ASME Design Engineering Technical Conference (IDETC/CIE), September 2009. 

Yannou, B., Wang, J., Rianantsoa, N., Hoyle, C., Drayer, M., Chen, W., et al., “Usage Coverage 
Model for Choice Modeling: Principles and Taxonomy”, 2009 ASME Design Engineering 
Technical Conference (IDETC/CIE), September 2009. 

Tucker, C., Hoyle, C., Kim, H., Chen, W., “A Comparative Study of Data-Intensive Demand 
Modeling Techniques in Relation to Product Portfolio Design”, 2009 ASME Design 
Engineering Technical Conference (IDETC/CIE), September 2009. 

Hoyle, C., Chen, W., and Wang, N., “Understanding Heterogeneity of Human Preferences for 
Engineering Design”, International Conference on Engineering Design (ICED), August 2009. 

Hoyle, C. Chen, W., Ankenman, B., Wang, N., “Optimal Experimental Design of Human Appraisals 
for Modeling Consumer Preferences in Engineering Design”, 2008 ASME Design Engineering 
Technical Conference, August 2008. 

Hoyle, C., Mehr, A., Tumer, I., Chen, W., “Cost-Benefit Quantification of ISHM in Aerospace 
Systems”, 2007 ASME Design Engineering Technical Conference (IDETC/CIE), Sept. 2007. 

Kumar, D., Hoyle, C., Chen, W., Wang, N., Gomez-Levi, G., “Incorporating Customer Preferences 
and Market Trends in Vehicle Package Design”, 2007 ASME Design Engineering Technical 
Conference (IDETC/CIE), September 2007. 

Hoyle, C. and Chen, W., “Next Generation QFD: Decision-Based Product Attribute Function 
Deployment”, International Conference on Engineering Design (ICED), August 2007. 

Liu, H., Hoyle, C., Yin, X., Chen, W., “Setting Performance Targets Based on Subsystem Pareto 
Frontiers in Multilevel Optimization”, ASME International Mechanical Engineering Congress, 
November, 2006. 

Hoyle, C., Kumar, D., Chen, W, “Product Attribute Function Deployment (PAFD) for Decision–
Based Conceptual Design”, 2006 ASME Design Engineering Technical Conference 
(IDETC/CIE), September 2006. 

Ramani, K., Borgaonkar, H., Hoyle, C., “Experiments on Compression Molding and Pultrusion of 
Thermoplastic Powder Impregnated Towpregs,” ASME International Mechanical Engineering 
Conference Symposium on Processing, Design and Performance of Composite Materials, Vol. 
52, pp. 183-204, Nov, 1994. 



 
 

241 

Ramani, K., Hoyle, C., and Parasnis, N., “Flexible Thermoplastic Powder Impregnated Tows for Net-
Shape Manufacturing,” ASME Winter Annual Meeting Symposium on Use of Plastic and Plastic 
Composites: Materials and Mechanics Issues, New Orleans, LA, Vol. 46, pp. 633-657, 
November, 1993. 

Ramani, K., Tryfonidis, M., Hoyle, C., and Gentry, J., “Thermoplastic Powder Composite 
Manufacturing Using a Wet Slurry Method,” ASME Winter Annual Meeting Symposium on 
Processing Fabrication and Manufacturing of Composite Materials, Anaheim, CA, Vol. 35, pp. 
115-130, November, 1992. 

Conference Publications: 
Hoyle, C. and Chen, W., “Using HyperWorks and iSIGHT for Teaching Computational Methods in 

Engineering Design”, PACE Annual Forum, Darmstadt Germany, July 2007. 

Hoyle, C., Mehr, A., Tumer, I., Chen, W., “On Quantifying the Cost-Benefit of ISHM in Aerospace 
Systems”, 2007 IEEE Aerospace Conference, Big Sky, MN 2007. 

Hoyle, C. et al., “Optimal Stamping Binder Design Methodology”, 7th World Congress on 
Computational Mechanics, Los Angeles, CA, July 2006. 

PATENTS 
• Repplinger, S., Slaby, J., Hoyle, C., Lau, B., “Low Inductance Termination for Electronic 

Components”, U.S. Patent 6,545,855, April 8, 2003. 
• Chen, C., Hoyle, C., Kosberg, R., Meny, K., Poglitsch, L., Nowicki Jr., J.  “Electrical Device 

Having Atmospheric Isolation”, U.S. Patent 6,053,049, April 25, 2000. 
• Hoyle, C. and Peek, B., “Pin and Grommet”, U.S. Patent 5,193,961, March 16, 1993. 
• Hoyle, C. and Peek, B., “Sliding Grommet”, U.S. Patent 5,129,768, July 14, 1992. 

MEMBERSHIPS 
• American Society of Mechanical Engineers (ASME) 
• American Institute of Aeronautics and Astronautics (AIAA) 
• Society of French Automotive Engineers (SIA) 


