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Abstract

Configuring Engineering Systems Considering Consumer Heterogeneity

Christopher Hoyle

This dissertation is motivated by the need to develop methods which connect the engineering
and marketing domains to enable identification of the preferred engineering system
configuration, considering the real complexities in engineering system design and the
heterogeneity of consumer preferences for such systems. The research includes a design process
tool, an experimental design approach for human appraisal experiments, a multivariate statistical
analysis methodology for human appraisal data, and finally an integrated Bayesian hierarchical
choice modeling method which rigorously considers consumer heterogeneity and the nature of
complex system design. This research primarily uses an automotive vehicle occupant package
design as a motivating example, to both illustrate the issues in system design and demonstrate the
features of the proposed design approach. The research can be divided into four primary
contributions.

A new process tool called Product Attribute Function Deployment (PAFD) is introduced as a
decision-theoretic, enterprise-level process tool to guide engineering design. The PAFD method
is a model-based approach built upon established methods in engineering, marketing, and
decision analysis to eliminate the need for user ratings and rankings of performance, priority, and

attribute-coupling used in current process tools.



To collect data necessary to support preference modeling, an algorithmic design of human
appraisal experiments method is developed to identify the optimal human appraisal experiment
for a given set of requirements. The advantages of this approach over competing approaches for
minimizing the number of appraisal experiments and model-building efficiency are clearly
demonstrated.

An issue with human appraisal experiments is that the heterogeneity of the experimental
respondents contributes to the response, and this heterogeneity must be understood to separate
the influence of design factors from that of human factors. Multivariate statistical techniques are
utilized to create a human appraisal analysis methodology to understand heterogeneity and
preprocess the human appraisal data to enable preference modeling.

The Integrated Bayesian Hierarchical Choice Model (IBHCM) framework provides a unified
choice modeling approach for complex system design. It utilizes multiple model levels to create
a link between qualitative attributes considered by consumers when selecting a product and

quantitative attributes used for engineering design.
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Glossary

Decision-Based Design (DBD): An approach to engineering design that recognizes the
substantial role that decisions play in design, largely characterized by ambiguity, uncertainty,
risk, and multiple trade-offs.

Discrete Choice Analysis (DCA): A statistical modeling technique that describes choices
made by people among a set of mutually exclusive and collectively exhaustive alternatives.
Aggregation of individual choice probabilities allows for demand estimation for a given
alternative.

Ordered Logit (OL): A regression modeling technique specifically for modeling ordinal
dependent variables, such as ratings.

Hierarchical Choice Model (HCM): A multilevel model used to describe choices made by
people for a set of alternatives characterized as complex systems. The model is characterized
by a DCA model at the top level, and a system of DCA or OL models at other levels to link
consumer choices to engineering design attributes.

Customer-Desired Attributes (A): Attributes of a product or system which influence a
consumer’s choice or evaluation of the product or system, such as comfort, roominess, or
exterior styling of an automobile.

Engineering Attributes (E): Attributes of a product or system used in engineering analysis
and decision-making, such as horsepower, occupant package headroom, or fuel economy of an
automobile.

Design Attributes (X): Specific attributes of a product or system which can be directly
controlled by a designer to define an engineering attribute, such as a material type, dimension,
or shape of an automotive component.

Demographic (or Human) Attributes (S): Attributes of the consumer including socio-
economic (e.g. income), anthropomorphic (e.g. height), purchase history (e.g. Ford Focus) and
product of system intended usage (e.g. commuting to work).

Model Attributes (Z): The set of all customer-desired A or engineering attributes E, and
demographic attributes S included in the choice or rating model, including interactions among
the model terms and high order terms.

Ratings (R): A method for a consumer to express his/her opinion of a product or system using
an ordinal scale. Popular ordinal scales are 1-5, 1-7, or 1-10.

Programmable Vehicle Model (PVM): A computer-controlled, parametric vehicle hardware
model capable of simulating a wide range of vehicles in a short amount of time for human
appraisal experiments.
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All in One

Alternative Specific Constants
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Decision-Based Design
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Nomenclature

Pair-wise correlation coefficient for multinomial covariance matrix

Discrete Choice or Ordered Logit model coefficient for customer-desired attributes in
a customer’s utility function

Number of configurations given to a single respondent
Rating Bias

Total Product Cost

Choice share (aggregate product choice probability)
Market Size (aggregate product type demand)
Derivative of m,=(7p,..., 7sp)

Degrees of Freedom

Index of dissimilarity

Expected value of enterprise utility
Random disturbance of customer choice utility of alternative i by customer n

PDF of the logistic distribution
CDF of the logistic distribution
Design features

Extended Design Point, including intercept/cut points, interaction, and higher ordered
terms than x

Extended Design Matrix, composed of f(x)
Candidate set of design points

Dataset specific error, separate from ¢ .

A configuration or alternative

Set of competitive alternatives in the choice set
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k,k,  Ordered Logit cut points

L (LL) Likelihood (Log-Likelihood)

L’ Likelihood Ratio Chi-Squared test statistic

M Number of Configurations in a complete experimental design

M Fisher Information Matrix of an experimental design

1 Scale parameter that characterizes a Gumbel distribution. Directly related to the
u variance of the Gumbel distributed random variable

Mf Manufacturing process attributes

n A block or respondent

I1 Profit

Product price

p Ordered ratings categories

P Working Correlation Matrix

iy Probability of Rating p for respondent » and configuration i
0 Product demand

P Pair-wise ratings correlation coefficient

o7 Model fit statistic for ordered logit/probit model

s A single case or observation

su Rating scale usage

Ou Variance at the respondent level

O Variance at the observation level

t Time interval for which demand/choice share is to be predicted
T Number of tries conducted in the algorithm

Tn A training dataset
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Enterprise utility, in units of utils

True customer choice utility of alternative i by customer n

Selection criterion used by the enterprise (e.g. profit, choice share, revenues, etc.)
Asymptotic variance-covariance matrix

Observed part of the customer choice utility of alternative i by customer n
Design Point product and human factors. A sub-set of f(x)

Exogenous variables (represent sources of uncertainty in market)

11
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Chapter 1
PROBLEM DESCRIPTION AND RESEARCH OBIJECTIVES

The research in this dissertation is motivated by the need to develop methods which connect the
engineering and marketing domains to enable identification of the preferred configuration of an
engineering system, considering the real complexities in engineering system design and the
heterogeneity of consumer preferences for such systems. Configuring an engineering system
requires multiple decisions to be made, specifically selection of a preferred system concept,
deciding the features to offer in the system, and finally setting performance targets for the
system. To make rigorous decisions for an engineering system, it will be shown in this research
that it is necessary to consider factors outside the traditional engineering domain.

Traditional engineering design is conducted primarily with an engineering-centric viewpoint,
in which the objective is to achieve the best performance given the budget available (monetary,
human resources, etc.). In general, it has been noted in a variety of contexts (Clausing and
Hauser, 1988; Krishnan and Ulrich, 2001; Ullman, 2002) that each of the major functional
domains within a firm, or enterprise, such as engineering, marketing, production, and
management, generally seeks to optimize a domain-specific objective, with limited input from
the other functional domains. An example of the traditional product development decision
making process in the marketing and engineering domains is shown in Figure 1.1. Such a
disconnected decision process cannot be assured to make optimal decisions for an engineering
system, most importantly because the engineering-centric approach does not consider consumer

demand for the designs considered, whereas the marketing-centric approach does not consider



22

the intricacies of engineering attribute coupling, and the resulting influence upon cost, for a

product or system design.

Marketing Domain: Maximize Product
Acceptance, with a price constraint

/ Consumer Centric
Customer Customer Customer View
Attribute 1 Attribute 2 ===| Attribute m

I 1 Z Sa
Limited Communication ﬁ:—:—‘—‘: ,

= s Vot
\V’ - d

Engineering Domain: Maximize Product
Performance, with a cost constraint

Engineering Engineering Engineering .
Attribute 1 Attribute 2 | 7| Attribute n Producer Centric
I/ ><| View
Design Design Design
Variable 1 Variable 2 | ***| Variable j

Figure 1.1: Disconnected Decision Processes

The need to consider potential consumer demand, together with cost and performance, when
designing an engineering system is necessary to estimate the potential profit for the designed
system, to determine the benefit of a given design to an enterprise. As will be shown in this
research, an estimation of demand as a function of product attributes must explicitly consider
the heterogeneity of the consumers and the market in which the product will compete, as

illustrated in Figure 1.2, as well as sources of uncertainty to make product decisions.
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Figure 1.2: Heterogeneity of the Consumers and the Market
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1.1 RESEARCH MOTIVATION AND CHALLENGES

Creating a connected decision process, primarily between marketing and engineering, has been a
topic of research over the last few decades (Krishnan and Ulrich, 2001). Clausing and Hauser
(1988) introduced the largely qualitative House of Quality (HoQ) methodology, based upon the
Quality Function Deployment (QFD) methodology developed in Japan in the late 1960’s. QFD
is based upon the assumption that customer preferences can be aggregated and represented by
group importance rankings and ratings, which is a potentially faulty assumption as will be
demonstrated in this research. Recent efforts have used quantitative demand modeling
approaches to estimate consumer demand for engineering system designs. Cook (1997)
introduced a linear demand model derived from Taylor series expansion using product value and
price to estimate demand, assuming aggregate consumer preferences. Li and Azarm (2000)
utilized paired-comparison conjoint analysis (Green and Srinivasan, 1978) and estimated a
deterministic linear part-worth utility model to estimate demand among the survey respondents
for a given product. Alternatively, probabilistic choice modeling approaches using Discrete
Choice Analysis (DCA) (Ben-Akiva and Lerman, 1985) to estimate demand have been utilized.
DCA is a flexible approach which can model choice using a utility function composed of
observed product and consumer level attributes, and can be estimated using survey or actual
choice data, or a combination of both. Further, a “mixed” formulation of the model can be used
to capture the distribution of unobserved, or random, preference heterogeneity. Using DCA to
estimate demand entails estimating choice probability for a given design alternative over a
sample population, and aggregating choice probability for a given design alternative to estimate
its choice share, and ultimately its demand. Wassenaar et al. (2003; 2005; 2006) utilized DCA to

model demand for an engineering system, demonstrating the method using a selection of
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quantitative product and consumer attributes for a consumer product and an automotive system.

The approach was extended to include consumer perceptual preferences through the introduction

of latent variable modeling (Wassenaar et al., 2004). Michalek et al. (2005) have considered

random consumer heterogeneity only (i.e. the distribution of attribute preferences in a given data

set) to enable the use of a DCA choice model.

While the previous work has laid the foundation for incorporating demand modeling in

engineering design, there are several issues which must be resolved to enable the estimation of

demand models for a general engineering system. The issues are summarized as follows:

A systematic approach does not exist to model the effect of consumer heterogeneity upon
demand. Previous approaches have accounted for heterogeneity of consumer preference in
different manners: some have assumed that an “average” preference exists for the whole
market, while others have assumed that the market could be segmented into groups in which
preference is assumed to be homogeneous (i.e. latent class models (Train, 2003)). In the DCA
methodology, both systematic and random heterogeneity have been modeled, but primarily
as dictated by the form of model chosen and not based upon the nature of the problem.
Except for the qualitative and potentially faulty QFD process, a design process tool for
implementing the demand modeling approaches described above in a real design
environment does not exist.

Previous approaches have not adequately addressed the issue that customer-desired attributes
used by a consumer may be qualitative in nature, and may be best expressed by an ordinal
rating or ranking for the attribute, as opposed to a quantitative measure in a choice model.

A comprehensive method for designing, conducting, and analyzing human appraisal

experiments for use in guiding the engineering design process does not exist.
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e The approaches do not adequately consider the nature of a complex system, in which a
hierarchy of sub-systems exists between the top-level consumer choice attributes and the
design-level engineering attributes.

e The approaches presented have used a single data source collected at a single time, with no
framework to combine data from different sources and different times throughout the
design process.

e Major sources of uncertainty in the demand model have not been adequately quantified and
included in the subsequent decision process.

Given the issues in engineering design, the objective of this dissertation is to develop a
general design methodology for complex engineering systems which considers the effect of
consumer heterogeneity. Specifically, the research tasks are: 1) to create a general design process
tool, similar in format to QFD, but rooted in more rigorous design decision-making principles to
quantitatively bridge the gap between engineering and marketing; 2) to formulate a design of
experiments method specifically for human appraisals; 3) to develop a multivariate statistical
analysis methodology to understand human appraisal experiments; and 4) to create a general
hierarchical choice modeling framework to support target-setting for complex system design,
which accounts for the hierarchical nature of complex system design, incorporates heterogeneity

at all model levels, and quantifies model uncertainty.

1.2 ENTERPRISE-DRIVEN DESIGN APPROACH TO CONFIGURING ENGINEERING SYSTEMS

The enterprise-driven approach to system configuration proposed in this dissertation and
illustrated in Figure 1.3 is a comprehensive process to address the issues enumerated in Section
1.1. Specifically, methods are provided for selecting a preferred design concept, assessing

consumer preferences for various system, sub-system, and component attributes, utilizing data
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collected in human appraisal experiments, and setting target levels of performance for a
preferred system concept. The methods proposed in this research are based upon the principles of
enterprise-driven Decision-based Design (DBD) to make engineering system configuration
decisions. This proposed design methodology begins at the conceptual design phase in which a
number of design concepts are brainstormed by a design team and a preferred design concept is
selected for further development. Following selection of a preferred concept, performance targets
must be set to define the preferred configuration for the selected system concept. The process of
configuring the system starts with an understanding of heterogeneous consumer preferences for
system, sub-system, and component level design features. These preferences are elicited using
designed human appraisal experiments. These data are analyzed and processed to understand
consumer heterogeneity and to structure the data in a format which supports efficient modeling
of consumer preferences. With structured data, preference models are created which link
consumer preferences to engineering attributes using the Bayesian Hierarchical Choice Model,
which together with cost models and enterprise-level objectives, enable identification of target
engineering performance levels to be selected which meet the needs of both the consumer and
producer.

To realize the enterprise-driven approach to system configuration, research is required in four
core areas: the Product Attribute Function Deployment Method, the Human Appraisal
Experimental Design Method, Multivariate Statistical Data Analysis and Processing Techniques
for Human Appraisals, and the Integrated Bayesian Hierarchical Choice Model. Research in
these four core elements forms the focus of this dissertation; each research task is described in

more detail in the following paragraphs.
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Figure 1.3: Enterprise-Driven Approach to System Configuration

Research Task 1—Product Attribute Function Deployment: As noted, design decisions for an
engineering system require consideration of engineering performance and cost, as well as market
acceptance to ensure the resulting design will be profitable and benefit the enterprise. The current
methods outlined previously for bridging this gap are either the qualitative, and potentially
flawed QFD method, or the quantitative optimization frameworks, using analytical engineering
and market demand models, but lacking a methodology for implementation in a product
development setting. In engineering product development, design process tools are needed to

guide the development process in a systematic way, with a clear flow of activities. The PAFD
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method is provided as a design process tool, rooted in rigorous decision-making principles, to
bridge the gap between engineering and marketing to guide product development activities,

select preferred design concepts, and set target engineering performance levels.

Research Task 2—Design of Subsystem Human Appraisal Experiments: Surveys are
required to elicit consumer preferences for system and sub-system design features and to provide
the data needed to estimate preference models. An optimal design of human appraisal
experiments methodology is developed, which considers that the experiments are completed by
heterogeneous human respondents, and supports modeling of human preferences explicitly
including the impact of heterogeneity. Features of the human appraisal experimental design
method are that the experiment is optimized to estimate a response surface ordered logit model, a
large number of product and demographic factors can be accommodated, fatigue of human
respondents is mitigated, the unique rating style of individual respondents is accounted for, and

specific factor combinations can be included or excluded from the design..

Research Task 3—Analysis of Human Appraisals for Modeling Consumer Heterogeneity:
While the ultimate goal of this research is the use of the hierarchical choice model to set
engineering attribute targets, the data used in the modeling process must be analyzed to
determine the best modeling method, maximize the goodness-of-fit of the resulting models, and
gain insights into the heterogeneity of human preferences that may not be obvious from a
preference model alone. Specific methods are developed to analyze human appraisal
experiments, which present a unique set of challenges compared to industrial or scientific

experiments due to the effects of respondent heterogeneity and human behavior. Multivariate
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statistical methods are utilized for this task to understand respondent heterogeneity and to

support consumer preference modeling.

Research Task 4—Integrated Bayesian Hierarchical Choice Modeling: A link between
customer-desired attributes in the choice model and engineering design attributes used for
product development is required for the design of complex systems. The complex system
problem is characterized by a hierarchy of attributes in choice model estimation, a hierarchy of
consumer demographic descriptors, and data from multiple sources of varying degrees of
richness. Additionally, it cannot be assumed that the data needed to estimate a choice model for a
complex system resides in a single survey, but rather is contained in several sub-system surveys.
The Integrated Bayesian Hierarchical Choice Modeling approach is formulated to
mathematically map qualitative choice criteria to quantitative engineering attributes. The
approach considers the hierarchy of components and subsystems in a complex system, utilizes
multiple sources of data, and affords a mechanism to quantify uncertainty and minimize model
errors for a hierarchical system of preference models. The mixed logit (MXL) choice model is
used to capture systematic and random heterogeneity, and Bayesian methodology is used for

integrated estimation of the system of models in the hierarchy.

Development of techniques for the four listed research tasks enables implementation of the
Enterprise-Driven Decision-Based Design (DBD) framework, which provides the basis for a
rigorous decision making methodology for engineering design. The Decision-Based Design
framework will be described in Chapter 2. The research developments will be illustrated using
the vehicle occupant packaging design problem, which provides the necessary complexity and

attribute trade-offs to demonstrate the proposed techniques.
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1.3 VEHICLE OCCUPANT PACKAGING DESIGN

Vehicle occupant package design is a multidisciplinary design activity that requires setting
package design targets in terms of standard Society of Automotive Engineers (SAE) dimensions,
in the presence of overall vehicle design considerations, such as structural, safety, and styling
dimensions, illustrated in Figure 1.4. The design problem is characterized by often conflicting
objectives among the design of the exterior styling, the vehicle structure, and the occupant
package layout. In actual design practice, the conflicts are often resolved using extensive
benchmarking of competitive vehicles and heuristic approaches. Several methodical approaches
to capture the interaction of occupant packaging with other vehicle sub-systems have been
investigated in the literature (Parkinson and Reed, 2006; Noui-Mehidi, 1997; Hamza et al., 2004;
de Weck and Suh, 2006). While these approaches consider specific interactions between
occupant packaging attributes and select vehicle attributes, they do not consider the trade-offs
among multiple vehicle attributes, while simultaneously considering customer preferences.
Further, models have been used for posture prediction (Reed et al., 2000; Reed et al., 2002) but
have not addressed the relationship between anthropomorphic attributes and customer

preferences for packaging.

Exterior Styling Occupant Package
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Figure 1.4: Vehicle Occupant Packaging Design Trade-offs (Society of Automotive Engineers,
2002)
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The vehicle package must be designed to best meet the needs of a demographically diverse
target population, characterized by diversity in socio-economic attributes (e.g. age, income),
anthropomorphic attributes (e.g. height, weight), expectations based on previous purchase history
(e.g. vehicle brand, size), and intended usages (e.g. commuting, moving), as illustrated in Figure
1.2. The market is also heterogeneous, composed of many market segments in which similar
vehicles compete (e.g., small SUV, compact sedan). Unlike other vehicle specifications, setting
package targets has been heavily influenced by qualitative considerations, such as overall
roominess of the occupant package. In addition, customer-perceptions of the vehicle occupant
package can be influenced by external factors, such as the market/product segment (SUV vs.
midsize car) and the perceived status (luxury vs. economy) of the vehicle. Due to such
complexity, targets for packaging attributes have traditionally been determined primarily through
benchmarking of competitive vehicles and experience, limiting the potential for optimization of a

vehicle design for a given market segment.

1.4 ORGANIZATION OF THE DISSERTATION

The organization of the dissertation is illustrated in Figure 1.5. Chapter 2 presents both the
technical background and the previous work underlying the four research tasks described in
Section 1.2. Chapter 3 presents the Product Attribute Function Deployment (PAFD) method for
design selection to address Research Task 1. While the method is general and can be used for
both selecting a preferred design concept early in the process and setting target performances
later in the design process, the method is demonstrated for design concept selection early in the
design process. The design example used is an automotive pressure sensor rather than the vehicle
packaging problem introduced in Section 1.3 because the choice model structure is

straightforward and allows for a clear demonstration of the PAFD method and principles. The



32

PAFD method provides a process tool for design selection; however, the method does not address
acquiring the data needed to build a choice model or how to create choice models for complex
systems. Chapter 4 presents the optimal design of experiments for Human Appraisal method to
address Research Task 2. This method provides the means to collect human preference data
which is optimal for building preference models and understanding consumer heterogeneity.
Chapter 5 provides a methodology to statistically analyze preference data to understand
consumer heterogeneity as well as to preprocess the data to create efficient preference models.
The methods presented address Research Task 3. Chapter 6 presents the Integrated Bayesian
Hierarchical Choice Model (IBHCM) approach which provides a comprehensive choice
modeling approach for complex systems in which both qualitative and quantitative choice
attributes are considered (Research Task 4). The model is estimated using both data collected
from experiments conducted using design of experiments for human appraisal method of Chapter
4 and processed using the methods of Chapter 5, as well as market survey data. Chapter 7 details

the contribution of this research as well as areas for future research.

Integratecl Bayesian Hierarchical Choice Model

Framework for linking customer preferences fo
engineering aftributes for complex system design

Chapters 2 &6

* -
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Chapter 5

- 1
Chapter 3 Chapter 4

Figure 1.5: Organization of Research Presented in the Dissertation
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Chapter 2
TECHNICAL BACKGROUND

The work in this dissertation is rooted in the discrete choice method for modeling product
demand, as part of a larger effort to enable enterprise-driven Decision-Based Design (DBD).
Demand modeling is necessary to estimate the potential profit of an engineering system or
product, which is used as the selection criterion in the DBD framework. In this chapter, the
Decision-based Design (DBD) framework is introduced, a brief tutorial on discrete choice
analysis for demand modeling is provided, the hierarchical choice modeling approach is
introduced, multilevel formulations of the DBD framework are described, design of experiments
for human appraisals are introduced, and methods for statistical analysis and preprocessing of

data are provided.

2.1 DECISION-BASED DESIGN (DBD) FRAMEWORK

2.1.1 DBD Motivation and Overview

Within the engineering research community, there is a growing recognition that decisions are the
fundamental construct in engineering design (Lewis et al., 2006; Marston et al., 2000; Shah and
Wright, 2000; Dong and Wood, 2004; Herrmann and Schmidt, 2002; Gu et al., 2002; Wassenaar
and Chen, 2003). Based upon this premise, the Decision-Based Design framework has been
developed, which merges the separate marketing and engineering domains into a single
enterprise-level decision-making framework. The framework utilizes a decision-theoretic

methodology to select the preferred product design alternative for the enterprise undertaking the
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design activity, as well as set target levels of performance for the product. This is accomplished
as shown in Figure 2.1 through a hierarchical model linkage in which design concepts and
variables (X) are linked to demand, Q, through engineering analysis and attribute mapping
between engineering attributes E (e.g. fuel economy, horsepower) and customer-desired
attributes A (e.g. comfort, performance). Also key is the inclusion of demographic attributes S
(e.g. age, income, height), in addition to customer-desired attributes A, in the estimation of

demand, to capture the heterogeneity of consumer preference.
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Figure 2.1: The Decision Based Design Framework for Conceptual Design

In the DBD implementation (Wassenaar and Chen, 2003), a single criterion, V, which represents
economic benefit to the enterprise, typically profit, is employed as the selection criterion. This
single-objective approach avoids the difficulties associated with weighting factors and multi-
objective optimization which can be shown to violate Arrow’s Impossibility Theorem (Hazelrigg,

1996). A utility function, U, which expresses the value of a designed artifact to the enterprise,
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considering the decision maker’s risk attitude, is created as a function of the selection criterion,
V. A preferred concept and attribute targets are selected through the maximization of enterprise

utility.
2.1.2 Enterprise-Driven DBD Formulation

In the DBD formulation, utilizing profit, I1, as the selection criterion (V) captures the needs of
both the consumer and the producer stakeholders, resulting in maximum benefit to the enterprise
when utility is maximized. The profit function is intended to represent the profit contribution
attributed to design attributes and not enterprise-level profitability for a product as a whole,
similar to the traditional use of cost functions in engineering optimization (Siddall, 1982) used to
represent design cost and not total enterprise costs. Profit is expressed as a function of product
demand Q, price P, and total cost C, where demand Q, is expressed as a function of customer-
desired attributes A, customers’ demographic attributes S, price P, and time ¢:
V=T1=0(A,S,P,t)P-C . 2.1)
Similar to “customer attributes” in QFD, A are product characteristics that a customer typically
considers when purchasing the product. To enable engineering decision-making, qualitative
customer-desired attributes A must be expressed as a function of quantitative engineering
attributes E in the demand modeling phase. This functional relationship can consist of a
hierarchy of models mapping A to E to establish the relationships necessary for decision-
making. Cost, C, is a function of the design attributes, E, exogenous variables Y (the sources of
uncertainty in the market), demand, O, and time ¢. Price, P, is an attribute whose value is

determined explicitly in the utility optimization process, or obtained from a separate price
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optimization process. Based upon these functional relationships, the selection criterion can be
expressed as:

V=T1=0(A(E),S,P,t)- P- C(E,Y,0.t). (2.2)
It should be noted that uncertainty is considered explicitly and the objective is expressed as the

maximization of the expected enterprise utility £(U), considering the enterprise risk attitude:

max: E(U)=[U(V)pdf (V)aV (2.3)

where V' is the single selection criterion in Eq. (2.2).
As seen in Figure 2.1, decision-making regarding a preferred design concept, as well as
optimal levels (targets) of engineering design attributes E is performed using optimization to

maximize the expected enterprise utility E(U), subject to appropriate constraints.

2.2 DISCRETE CHOICE ANALYSIS (DCA) FOR DEMAND MODELING

Discrete Choice Analysis (DCA) (Ben-Akiva and Lerman, 1985; Koppelman et al., 2005) is used
to model product demand by capturing individual customers’ choice behavior, in which
performance of a given product is considered versus that of competitive products. It should be
noted that in this formulation, the customers could be either individual consumers or industrial
customers. DCA is based upon the assumption that individuals seek to maximize their personal
customer choice utility, u, (not to be confused with enterprise utility, U) when selecting a

product from a choice set.

2.2.1 Formulation of the Discrete Choice Analysis Model
The concept of choice utility is derived by assuming that the individual’s (n) true choice utility,
u, for a design alternative, i, consists of an observed part W, and an unobserved random

disturbance ¢ (unobserved utility):
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u, =W, +¢, . (2.4)

While there are a number of DCA techniques popular in literature (e.g., Multinomial Logit,

Nested Logit, Mixed Logit), they are distinguished from each other by the degree of

sophistication with which they model the unobserved customer choice utility error ¢ and

heterogeneity in customer preferences. In the Multinomial Logit (MNL) model, the coefficients

(B) of the observed customer choice utility function (W) for the product attributes are identical

across all customers. However, heterogeneity is modeled by considering demographic attributes

S (e.g., customer’s age, income, etc.) in the customer choice utility function. Assuming this
utility function can be expressed as a linear combination of attributes, W follows the form:

W, =B-Z=p,+B,S, +B,A, +B(S, -A,). (2.5)
where f; is an Alternative Specific Constant (ASC), B; is an Alternative Specific Variable
(ASV), and Z is the set containing A and S. The MNL model exhibits the Independence of
Irrelevant Alternatives (I.I.A.) property, which leads to proportional substitutions patterns among
the alternatives considered. In cases in which this property is undesirable, the nested or mixed
logit formulations can be used to relax this assumption.

The mixed logit model (MXL) is distinguished from the MNL model in that it allows for
random taste variation, i.e. the parameters £ vary over respondents. Therefore, the mixed logit
probabilities are integrals of the multinomial logit probabilities over a density of parameters, as

expressed in the form:

V- [ exp07,(8)
Po)=]) S enpr oy |74 P (2.6)
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where pdf (/) is the probability density function of model parameter £'s. The mixed logit model
has been demonstrated to be capable of approximating any random utility discrete choice model
(Train, 2003). One of the most important advantages of the mixed logit model is that
heterogeneity in customer preferences is decomposed into a systematic part, expressed by S, and
a random part expressed by random coefficients £ in MNL, only the systematic part is
estimated, with the random heterogeneity lumped into the error term &,. No closed form
solution exists for Eq. (2.7). Therefore in practical applications, the mixed logit choice

probability is approximated (i.e. by lsrn (7)) using numerical simulation by taking a finite number

of draws » =1,2,3,..., R from the distribution:

o E exp(i7,,(8,)) 27
Prn(l)—RrZ:l:Prn,r(l) zzexp(Wm(ﬂ )) @7)

where R is the number of random draws, Pr, (i) is the probability of respondent n choosing

product i in the " draw, and p. is the corresponding simulated random coefficients.

2.2.2 Estimation of the Discrete Choice Analysis Model

The choice model is estimated using Maximum Likelihood Estimation (MLE) or Hierarchical
Bayes Estimation (HBE). In the MLE method, model parameters (i.e. f) are found through

maximization of the likelihood function L for the MNL or MXL model:

Ly, | B)=T1IT(r, )" (2.8)

n=1 i=1
where y, is the response, i.e. the individual choices in the MXL model. To aid the solution
process, the log-likelihood function (LL) is typically maximized because the LL function is

additive as opposed to multiplicative.
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In order to reduce the computational burden associated with multivariable sampling for MLE

of the mixed logit model, Hierarchical Bayes Estimation methods were developed utilizing
Markov Chain Monte Carlo methods with a Gibbs sampler to estimate the mixed logit model
(Rossi et al., 2005). In the Hierarchical Bayes choice modeling paradigm (Gelman et al., 2004),
the choice probability is modeled using a method in which the posterior distribution of the £,
parameters, characterized by a mean b and covariance matrix %, is found as a function of the
prior distribution of 5” and X°, and an information source of observations, Y. In the hierarchical
prior distribution, the distribution of £, is conditional upon the distribution of the population-
level hyper-parameters b and X. The population-level hyperparameters characterize the
distribution of £, in the population as a whole. Thus, model parameters £, b, and X are given by

the parameter posterior distribution, pdy :

pdf " (B,6,2| V) [ [ Ly, | B,)pdf (B, |°,2° )pdf (°,%°), 2.9)

n=l1
where pdf is the prior distribution (the denominator is excluded for simplicity), L is the
likelihood function of the MXL model, and b is the mean vector and X is the full variance-
covariance matrix of £.

The expression in Eq. (2.9) demonstrates a fundamental difference between the HBE and
MLE approaches: the Bayesian method estimates the mean of a distribution, whereas the MLE
solution estimates the maximum, or mode, of a distribution. The HBE method has several
advantages over MLE for model estimation. If the prior distribution of £, are assumed to be
multivariate-normally distributed, i.e. B ~ MVN(b, X), estimation of random parameters is more

computationally efficient than classical MLE methods. The Bayesian method allows for
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estimation of the true posterior distribution and recovery of the individual level f,, unlike the
MLE method which only provides point estimates of the mean b and variance X of the assumed
distribution of f,. Through the specification of hierarchical prior distributions, this solution
technique estimates the posterior distribution of B, and provides a mechanism for model updating

through the definition of the prior distribution as information evolves.

2.2.3 Demand Forecasting using Discrete Choice Analysis

Estimation of the customer choice utility function (/) allows the choice share, C.S., for a choice
alternative i to be determined by summing over the market population, A, all probabilities, Pr,(7),

of a sampled individual, n, choosing alternative i from a set of J competitive choice alternatives:

W,

CS.(i)= ﬁ:Prn(i) = ﬁ: Je

n eWIm

(2.10)

k=1
The set of choice alternatives J may include both the new designed product and the existing
competitive alternatives available. The choice alternative set is composed of either actual
consumer purchase choices from a set of product alternatives, i.e. Revealed Preference or
simulated product choices, such as those resulting from a market survey, i.e. Stated Preference.
Demand for a given alternative, i, at time ¢, O(i),, is the product of choice share, C.S.(i), by the
total market size (or aggregate market segment demand), D(¢), for a given market segment (e.g.

automobile mid-size sedan):

0(i), = C.5.(i)-D(z). (2.11)

2.3 HIERARCHICAL CHOICE MODELING

A large-scale design problem is characterized by attribute-hierarchies in demand model

estimation, a hierarchy of consumer demographic descriptors (S), and data from multiple sources
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with varying degrees of richness (e.g., in-house marketing surveys, purchase data, exit
interviews). Existing demand modeling approaches in the design literature require that product
attributes considered in the choice model be quantitative. However, many criteria used by
customers to choose between complex engineering systems tend to be qualitative, especially
those at the system level. Also, as noted in Section 1.1, existing demand modeling approaches
used in engineering design do not adequately account for consumer heterogeneity, nor do they

consider multiple data sources.

2.3.1 Challenges in Choice Modeling for Complex System

A challenge in choice modeling of complex engineering systems is modeling the heterogeneity
of customer preferences. For the design of a complex design artifact like an automobile, it is
important to model the diversity in customer-preferences in a more complete way. In general,
capturing customer heterogeneity is a necessary component in understanding the perception of a
design for a given population segment. Most existing approaches in the design literature do not
consider heterogeneity of preference in modeling (i.e. systematic and random heterogeneity do
not appear in the demand model). As discussed earlier, Li and Azarm (2000), and Michalek et al.
(2005) used conjoint analysis, in which individual choice preferences were aggregated. Michalek
et al. (2005) have considered random heterogeneity only in using a mixed logit choice model.
Cook (1997) used a linear model derived from Taylor Series expansion which used product value
and price to estimate demand. Wassenaar et al. (2003; 2005) considered the systematic
heterogeneity only by including a limited number of demographic attributes (e.g., age, gender) in
a DCA model. Wassenaar et al. (2004) also considered the use of an integrated latent variable

modeling approach; however, the implementation of the approach was not completely successful
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due to the high computational expense, and the large number of explanatory variables involved
in a complex system.

While the current demand modeling approaches described previously consider customer
preferences when choice (purchase) decisions are involved, they do not fully consider the impact
of customer preferences for individual product features. In the automobile market, for instance,
customers have distinct preferences for individual product features like engine characteristics
(e.g., acceleration, noise, fuel economy), interior characteristics (e.g., roominess, instrument
panel, material, seating), etc. as well as component-level attributes like suspension, tires,
steering, etc. Attributes considered by customers in a choice situation may be qualitative, and
require mapping to physical, measureable design attributes at the subsystem and component
levels. While it may be possible to include all mapped quantitative component-level attributes in
the product-level choice model, it is not realistic due to the sheer volume of such attributes and
more importantly, such an approach does not consider that decisions on design-level attributes
may only be required for a subset of all possible design attributes. Integrating preference models
at different levels allows us to examine the effect of design changes at the component level on
customer ratings for different product features as well as on customer choice.

Design of large artifacts is usually distributed over several teams, often spread across
different geographical locations requiring design teams to work autonomously. In such a
scenario, designers usually conduct surveys and human appraisals specific to subsystems and
components (e.g., evaluation of an engine upgrade, vehicle-interior surveys and exterior/styling
surveys) independently to preserve autonomy as well as to make the survey size manageable. In
order to examine how customers trade-off between the different subsystem attributes when they

make the purchase decision, it is necessary to combine data sources to simultaneously consider
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multiple feature-specific surveys. Estimating such pooled models is known as model fusion
(Allenby et al., 2005) or data enrichment (Louviere et al., 2000) in the transportation literature.
Existing approaches in the design literature have only used data from a single source—either
stated preference (SP) data (Michalek et al., 2005) or revealed preference (RP) data (Wassenaar
and Chen, 2003). RP data refers to actual choice (i.e., purchase) behavior that is observed in real
choice situations. SP surveys are used to learn about how people are likely to respond to new
products or new product features through a market survey. Preliminary work on combining RP
and SP sources of data specifically for product design has been examined in (Kumar et al., 2007;

Kumar et al., 2009), but more comprehensive methods are required.

2.3.2 Previous Work in Hierarchical Choice Modeling

To deal with the challenges presented in Section 2.3.1, a Hierarchical Choice Modeling
strategy has been proposed (Kumar et al., 2009) as shown in Figure 2.2, in which the top system
level choice model only contains a reasonable set of system-level customer-desired attributes A
(including price P), while the lower level models establish the relationships between qualitative
customer perceptual attributes A as functions of quantitative engineering design attributes E and
demographic attributes S, i.e., A=f(E, S). This ensures a more manageable model at each level,
and mitigates the model estimation issues that accompany an all-in-one approach. The proposed
approach uses customer ratings for qualitative attributes in the choice model, which are
expressed in terms of quantitative engineering attributes through a hierarchy of /inking models.
For example, qualitative attributes in the top-level DCA analysis model, labeled M; in Figure
2.2, may be linked to engineering attributes through a series of ordered logit ratings prediction

models for the subsystems, labeled M, and M3 in the figure.
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Figure 2.2: Hierarchical Choice Model Approach

A key issue is determining the set of S to include at each model level. In order to ensure
comprehensive modeling of systematic heterogeneity and thus minimize unexplained
heterogeneity, a taxonomy of S has been developed for model estimation (Kumar et al., 2009).
The proposed taxonomy of Figure 2.3 is expressed as the following:

o Si:Socio-Economic attributes (e.g., age, income)
o S,: Anthropometric variables (e.g., stature, weight)
e Ss: Purchase History (e.g., vehicle type last purchased)

o Sy Usage Context attributes (e.g., construction, moving)

1— Consumer Heterogeneity _l

Demographic Usage S,
@

S, age, income, etc. Utility

S: height, weight, etc. .
S, purchase history g?:

Figure 2.3: Taxonomy of S
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2.3.3 Ordered Logit for Modeling Rating Responses

As discussed in the previous subsection, methods are required to model consumer preferences
expressed as ratings as a function of quantitative engineering attributes to enable the hierarchical
choice model. To fit a predictive model to survey ratings, or ordinal data (e.g., 1=poor, 2=fair,
3=good; rating from 1 to 10), alternative methods to standard linear regression are required. A
key assumption of linear regression is violated when used to fit ordinal data because the expected
model error cannot be assumed to be of zero mean with constant variance: the true value of the
dependent variable is not a linear function of the explanatory variables Z, as shown Figure 2.4
(McKelvey and Zavoina, 1975). Further, an ordinal dependent variable is not unbounded as
required by linear regression (Lu, 1999), but rather takes on a fixed number, p, of discrete values

as defined by the survey design (e.g., rating scales of 1-10, 1-7).

Ordered Logit
Regression

Rating (1,2,3,4,5)
w

V4
Figure 2.4: lllustration of the Variation of Ratings vs. Explanatory Variables Z (McKelvey and
Zavoina, 1975)

For this reason, the ordered logit model is used in this work to estimate models for ordinal
customer ratings. McKelvey and Zavoina (1975) introduced ordered probit regression for ordinal
data, in which the ordinal ratings were assumed to be discrete representations of a continuous
underlying, normally distributed opinion or utility. McCullagh (1980) introduced ordered logit in

which the underlying distribution is logistically distributed, leading to the proportional odds



46

model. In this model, the cumulative odds ratios are identical across ratings categories. Hedeker
and Gibbons (1994) developed a random effects ordered probit formulation, which considered
the S to be random and potentially functions of respondent level attributes (e.g., age, income), or
covariates. Tamhane et al. (2002) modeled the underlying utility response using the beta
distribution to allow greater flexibility (i.e. not symmetric) and to enable a bounded response.
Ordered logit assumes that the p ordered ratings, R, are discrete representations of a
continuous, underlying utility, u;,, associated with each alternative, i, which is rated by each
survey respondent, n. In the ordered logit formulation, the underlying utility measure, u;,, is
based upon the same concept as the discrete choice model utility in that it is assumed to be the
sum of a parameterized observable component, W;, = B:Z, and an unobserved error component
&n, as given previously by Egs. (2.4) and (2.5). Also in the OL approach, it is assumed that the
error variance is smallest at maximum or minimum values of Z and largest for moderate values
of Z (i.e. responses at the ratings extremes are more certain than those in the middle regions).
This appears to be a more realistic assumption compared to that used in linear regression. OL
seeks to model the underlying utility, u;,, while the predicted discrete ratings, R, are estimated
through the use of (p-1) cut points, k, imposed on the distribution of the u;,, estimated to match
the proportions of R present in the actual survey data. The ordered logit model is derived under
the assumption that the probability, Pr, for any rating R, is a function of observed utility and cut

points, and that the unobserved errors ¢&;, are distributed logistically:

Pr[R=R |=Prlk, , <u, <k, ] (p=12...P)
k,~B'Z ky—B'Z ) (2.12)
B 1je"p“"Z B 1;’»1—” (ko = 0.k, =+0)



47

The model parameters, 3, and cut points, k, are determined using Maximum Likelihood
Estimation (MLE) or Bayesian estimation. A random-effects version of the model is used in this
work in which a random intercept term is used to capture random heterogeneity (Hedeker and
Gibbons, 1994). When used for prediction purposes, the utility for an alternative, i, for a
particular person, n, is first calculated, and then transformed to a rating using the (p-1) series of
estimated utility cut points. As an alternative to the latent variable approach, ratings are used in
this research to capture qualitative customer preferences. Ratings represent relative, or ordinal,
preferences for an attribute, as opposed to absolute, or cardinal, preferences and thus require

special consideration in modeling.

2.4 MULTILEVEL OPTIMIZATION FORMULATION TO DBD

The DBD formulation described in Section 2.1 was described as ultimately a process of
maximizing the expected utility, E(U), of a designed artifact to the enterprise. For complex
systems, an All-in-One (AIO) method of solution to the maximum expected utility problem may
not be feasible or desirable, and a multilevel method of solution may be implemented. Figure 2.5
illustrates the difference between the AIO approach and a multilevel optimization formulation to
DBD. The AIO approach in Figure 2.5 (a) treats the problem of maximizing the expected value
of enterprise-level utility £(U) as a single optimization problem, where the decisions on product
planning and product development are made simultaneously. Figure 2.5 (b) illustrates a
decomposed multilevel framework (Kumar et al., 2006), reflecting a decoupling between the
enterprise-level product planning and engineering product development. Following the “target
cascading” paradigm (Kim, 2001; Kim et al., 2002; Kim, Michelena et al., 2003; Kim, Rideout et

al., 2003; Michalek et al., 2005; Michelena et al., 1999) for multi-level decision making in
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industrial settings, engineering product development is viewed as a process for meeting the

targets set from the enterprise level.

I Enterprise-level Product Planning !

| Maximize |
i Expected Utility E(U) |
(Utility as a function of profit, revenues, etc.) .

| with respect to |
: enterprise variables Xent :
| engineering design attributes E |
I

I

I

I

i subject to
. overall enterprise level design constraints
....................... | 9(Xent)< 0
rMaximize | 1 product development capability
| Expected Utility E(U) (introducrleg oré%/l le;ft:g solving the engineering problem)

i
i ( e.g. function of profit, revenues etc.) |
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|
|
|

| 3?)%5‘2%””9 design constraints l Engineering-level Product Development |
| enterprise level constraints I L |
. 9(Xent)< 0 I Minimize v !
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g(Xa)= 0 |

| E=r(Xq) -

e l

(a) All-In-One approach (b) Hierarchical approach

Figure 2.5: Comparison Between All-In-One and Hierarchical Multi-level Approach to DBD

Using a multilevel optimization formulation, at the upper level, the enterprise-level product
planning problem maximizes the expected utility E(U) with respect to the engineering design
attributes E and enterprise-level variables, X.,. Decisions made on the optimal levels of
engineering design attributes E, represented as E', are then used as targets or TY, passed to the
lower level engineering product development process. The objective of the lower-level
engineering product development is to minimize the deviation between the performance target
TY and the achievable product performance response E while satisfying the engineering

feasibility constraints g, for the design artifact. The achievable product performance E” is then
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transferred to the enterprise level problem, and the optimizer creates new targets based upon the
achievable performance.

The optimization problem at the engineering development level can be further decomposed
and solved using multilevel optimization. Based on the nature of decomposition, either non-
hierarchical or hierarchical, different multilevel optimization (MDO) formulations can be used.
The motivation for decomposing the problem is the desire to leverage discipline specific
knowledge in the formulation of the optimization problem for each sub-system, or to incorporate
an existing sub-system optimization formulation in the overall system optimization problem. The
Analytical Target Cascading (ATC) approach decomposes the original engineering problem
hierarchically at multiple levels, and operates by formulating and solving a minimum deviation
optimization problem (to meet targets) for each element in the hierarchy. Collaborative
Optimization (CO) (Braun, 1996) can be utilized to decompose the problem non-hierarchically,
reflecting a collaborative design environment. Under a multilevel design framework, the ideal
product development scenario occurs when the utopia targets corresponding to the maximum
enterprise utility are achievable by the engineering design. In most engineering design cases,
however, it is uncommon to achieve the utopia target due to the trade-off nature of multiple
attribute target values and physical feasibility (i.e., no feasible design is available to meet the
targets perfectly). If the engineering feasible domain is disconnected in the space of performance
attributes (i.e., multiple, discrete feasible designs are available), the task becomes more
challenging.

In this work, the DBD problem will be solved using the AIO approach to demonstrate the
features of the proposed method; however, the problems can be formulated to use a multilevel

approach, such as ATC or CO, if desired.
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2.5 DESIGN OF EXPERIMENTS FOR HUMAN APPRAISALS

Human appraisal experiments can be differentiated from other types of experiments in the
literature. Industrial and scientific design of experiments have been well documented (Box et al.,
2005; Montgomery, 2005; Myers and Montgomery, 2002) and utilized in practice. The response
in such experiments is the output of a physical process, such as from industrial machinery or a
new product test bed, and therefore fatigue is not generally an issue. This class of experiments is
characterized by random error, &ang, in the response due to uncontrolled nuisance factors. While
advanced methods for reducing the random error of designed experiments, such as blocked and
split-plot designs, are used in this class of experiments, the reasons are typically due to nuisances
or compromises in the experimental design which introduce additional error or prevent full
randomization, as opposed to being an integral feature of the design. Computer experiments have
been studied extensively (Simpson et al., 2001; Jin et al., 2001) for the purpose of metamodeling,
and are characterized by a lack of random error, and thus methods of blocked or split-plot
designs are not used: the goal of computer experiments is a uniform coverage of the design space
to minimize bias error. Conjoint experiments have been used for product or service evaluations
in the marketing field (Green and Srinivasan, 1978; Green and Srinivasan, 1990; Louviere et al.,
2000), and are characterized by random error, &ang, in the response and blocks corresponding to
each respondent; however, they have not considered human attributes S in the design of the
experiments but rather have treated the S as covariates (i.e. quantities recorded during the
experiment but not used in the design of the experiment). A comparison of optimal distribution of
design points to minimize bias error in computer experiments, versus that of a conjoint
experiment to minimize random error is shown in Figure 2.6. Garneau and Parkinson (2007)

have demonstrated that both systematic and random anthropomorphic heterogeneity are
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significant predictors of preferences for product designs in which the design interacts with the
human (e.g., an exercise bicycle seat); however, a general approach for designing experiments
for such human appraisals and methods to separate respondent level variation from random

variation was not presented.
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Figure 2.6: Error Comparison of Computer vs. Physical/Appraisal Experiments

The human appraisal experiment is presented as a separate class of experiment in this work,
specific to product evaluations in which the human attributes of the respondent have an
observable, systematic influence upon the response, in addition to the random effect captured by
the random block effect as in a general conjoint analysis. Standard experimental designs and
other experimental design approaches for human appraisals are generally not suitable for these
experiments, which are conducted with the goal of creating a response surface model to
understand respondent preferences as a function of product and human attributes. Standard split-
plot designs based upon standard full factorial or fractional factor designs for response surface
creation, considering significant respondent blocking, do not exist (Box et al., 2005; Myers and
Montgomery, 2002). Orthogonal array designs (Phadke, 1995), such as the L;g design, are small

enough such that each person can complete the entire experiment and blocking is not required;
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however, while such designs allow estimation of linear and quadratic terms, interactions can not
generally be estimated. Experiments specifically for human appraisals, with the goal of
minimizing the number of configurations for each respondent to evaluate, have been developed
for certain situations. Adaptive Conjoint Analysis (Green et al., 1991) uses a prescreening of
preferences for factor levels to optimize the configurations presented; however, this approach
requires gaining access to resources for the prescreening tests and ignores the importance of
factor interactions. One-factor-at-a-time experiments (Frey et al., 2003) have been developed to
reduce the number of configurations needed when the goal of the experiment is to identify an
optimal configuration. While this approach is effective for optimization, the goal of the human
appraisal experiment in this work is to create a response surface model over a design space to
understand response behavior. Based on the limitations of existing approaches, an approach
using the D-optimality criterion is implemented as the method for selecting a human appraisal
experiment.

To select experimental designs for human appraisals, given a constraint on the number of
configurations rated by a single respondent (due to fatigue) and multiple product and human
attributes, optimal design of experiment methods are adapted to the specific needs of this class of
experiments. Optimal design of experiments (DOE) have been studied for a variety of
applications, such as industrial, agricultural, or scientific experiments, e.g. Atkinson and Donev
(1992), and conjoint experiments, e.g. Kuhfeld et al. (1994) and Kessels et al. (2008). The
methodology has been extensively developed for Ordinary Least Squares (OLS) modeling
(Atkinson and Donev, 1992) and has been extended recently to Generalized Least Squares (GLS)
to account for the error variance structure in blocked or split-plot experiments (Goos, 2002).

Optimal DOE methodology has also been applied to multinomial logit (MNL) discrete choice
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analysis models (Kuhfeld et al., 1994; Sandor and Wedel, 2001; Kessels et al., 2006), as well as
general logistic regression, including ordered logit and ordered probit (Zocchi and Atkinson,
1999; Chipman and Welch, 1996; Heise and Myers, 1996; Perevozskaya et al., 2003); however, a
general approach to account for the combined split-plot and block structure of the human

appraisal experiments has not been presented and is therefore a focus of this work.

2.6 STATISTICAL DATA ANALYSIS AND PROCESSING OF HUMAN APPRAISAL EXPERIMENTS

Results from human appraisal experiments require analysis prior to creating ordered logit models
due to the multiple responses provided by respondents, the correlation of ratings elicited by a
single respondent, and the many potential product and demographic factor forms that can be
utilized in the modeling process. Multivariate statistical analysis methods have been developed
for the purpose of data exploration, reduction, classification, and relationship identification
(Johnson and Wichern, 2002). For the purpose of data reduction, Factor Analysis or Latent Class
Analysis (McCutcheon, 1987) is used. The purpose of these methods is to describe the
covariance relationship among many observed random quantities in terms of a few underlying,
unobserved factors, or latent variables. Factor Analysis is used for continuous observed
variables, whereas Latent Class Analysis is used for discrete (categorical or ordinal) observed
variables. In the area of data exploration, cluster analysis is commonly employed, particularly in
the area of market segmentation analysis (Green and Krieger, 1995). The goal of cluster analysis
is to find natural groupings of items or variables based upon similarity of the items, or variables.
For data classification, methods broadly classified as data mining techniques (Witten and Frank,
2005) are used to classify a set of objects or observations into groups, with different methods
providing different insights into the classification process. For data relationship identification,

regression methods broadly classified as generalized linear models, such as ordered logit
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modeling, are used to predict the value of a response variable based on a set of predictor
variables. To understand the relationship before the modeling process, analysis of variation
(ANOVA) methods (Box et al.,, 2005) are utilized to understand the portion of variation
explained by each factor.

While the standard statistical techniques exist, the use of the techniques to support preference
modeling in general, and application to the hierarchical choice modeling approach, must be

examined.
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Chapter 3
PRODUCT ATTRIBUTE FUNCTION DEPLOYMENT FOR
DESIGN SELECTION

As noted in Chapter 1, product planning requires a design process tool to establish
engineering priorities, select the preferred design concept, and set target levels of engineering
performance while considering the needs of both the consumer and producer. In this chapter, a
new design tool called Product Attribute Function Deployment (PAFD), based on the principles
of Decision-Based Design (DBD), is introduced as a decision-theoretic, enterprise-level process
tool to guide the conceptual design phase. Other process tools, such as Quality Function
Deployment (QFD), have been developed as design process tools to translate customer needs
into engineering characteristics; however, significant limitations have been identified with such
process tools. While existing tools such as QFD provide a useful visual format and encourage an
interdisciplinary design process, they rely upon subjective performance assessments and
potentially faulty rating and ranking methods. The PAFD method extends the qualitative matrix
principles of QFD while utilizing the quantitative decision-making processes of DBD. The PAFD
method is built upon established methods in engineering, marketing, and decision analysis to
eliminate the need for the user ratings and rankings of performance, priority, and attribute-
coupling in the QFD method. The differences between the QFD and the PAFD processes are
compared and contrasted, and the conceptual design of an automotive Manifold Absolute

Pressure sensor is used as a case study to demonstrate the features and benefits of the PAFD



56

method. The general framework presented in this chapter can be utilized with the Bayesian
Hierarchical Choice Model developed in Chapter 6 to make design decisions for a complex
system.

The chapter is organized as follows: Section 3.1 introduces the challenges in design selection,
Section 3.2 describes the limitations of current methods used for design selection, Section 3.3
describes the use of DBD for design selection, Section 3.4 develops the new PAFD method, and

Section 3.5 provides a demonstration of the method for automotive sensor design selection.

3.1 INTRODUCTION

In the early stages of product design there is a need to set engineering priorities, primarily
through the selection of a preferred design concept, identification of key product attributes, and
establishment of performance targets for the artifact or product under design. Because product
decisions made in the early, or conceptual, design phase can account for up to 75% of the
committed manufacturing cost (Ullman, 2002), it is essential that these decisions be rigorous and
consistent with the objectives of the firm or enterprise. A design process tool utilized to guide
these critical product planning activities must consider the needs of both the consumer and the
producer in order to select concepts and set targets which will maximize the benefit to the
enterprise as a whole. While design freedom is at a maximum in this phase, design knowledge is
at a minimum, requiring that decisions made in this phase also explicitly consider uncertainty.

Within the engineering research community, there is a growing recognition that decisions are
the fundamental construct in engineering design (Marston et al., 2000; Shah and Wright, 2000;
Dong and Wood, 2004; Herrmann and Schmidt, 2002; Gu et al., 2002). Traditionally, discipline
specific decision-making methodologies, utilizing mathematical behavioral models such as those

used in marketing (e.g., conjoint analysis) and engineering (e.g., differential equations), have
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been adopted based upon the specific needs of the individual discipline. These methods have
used domain specific objectives as the decision criteria, biased towards either consumer product
acceptance or producer performance metrics. These methods in isolation cannot achieve the
necessary enterprise-level decision process required during the product planning phase, a fact
which has been acknowledged by the development of various process tools which bridge
different enterprise domains to support product design activities (Krishnan and Ulrich, 2001).
Quality Function Deployment (QFD) was developed to bridge the marketing and engineering
domains using a much simplified, consensus-driven qualitative analyses. This process was
developed as a means to link product planning directly to the “Voice of the Customer”. It remains
the leading tool for setting engineering priorities, determining target levels of product
performance through benchmarking and, when supplemented with Pugh’s Method, selecting a
design concept. As shown in Figure 3.1, the primary feature of the QFD process is the House of
Quality (HoQ) (Clausing and Hauser, 1988), which provides an inter-functional product planning
map to link engineering attributes to customer desires that are ranked in importance. The HoQ
utilizes a weighted-sum multi-objective decision criterion, entailing technical test measures
(benchmarking) analysis, technical importance rankings, and estimates of technical difficulty to
enable a decision maker to set performance targets for a designed artifact. The QFD process has
been supplemented by some practitioners with the Pugh Matrix for design concept selection
(Terninko, 1997). The Pugh Matrix provides a method to compare alternative design concepts
against customer requirements, with evaluations made relative to a base or favored concept, in a

process independent from the HoQ analysis.
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Figure 3.1: House of Quality, 1st House (Olewnik and Lewis, 2005)
3.2 ANALYSIS OF LIMITATIONS IN CURRENT DESIGN PROCESS TOOLS

3.2.1 Issues with QFD Analysis

Much literature has demonstrated both the successes and issues with the QFD methodology
(Chan and Wu, 2002). Based on a survey of the literature and analysis conducted for this work,
the QFD method suffers from several limitations which can lead to sub-optimal or irrational
early product decisions. Firstly, according to Aungst et al. (2003), using only customer and
competitor information to set targets without consideration of the physics of engineering attribute
interactions or other product objectives, such as choice share and potential profit, can result in
targets that can never be achieved in practice. Several proposed improvements to the QFD have
been presented in the literature. Aungst et al. (2003) have presented the Virtual Integrated Design

Method. Their method uses a quantitative, rather than qualitative, link between the conventional
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four HoQ matrices, and adds a new 5th house to account for customer perceptual attributes
determined using factor analysis. Brackin and Colton (1999) have proposed a method in which
analytical relations between the engineering attributes and customer attributes are created, and
real values of engineering attributes are searched from an appropriate database to ensure targets
are achievable. Locascio and Thurston (1998) have combined the QFD ratings and rankings into
a design utility function to determine performance targets using multi-objective optimization.
Although these methods improve upon the target setting methodology of QFD, they utilize
customer group importance rankings and engineering rankings which have been shown to be
potentially problematic (Hazelrigg, 1996).

In the QFD approach, the importance ranking assumes that all customers’ preferences are the
same and can be represented by a group utility; however, based on Arrow’s Impossibility
Theorem (AIT), Hazelrigg (1996) has shown that utility exists only at the individual, or
disaggregate level. Each customer has a specific preference, and the demand for a product can
only be determined by aggregating individual product choices. More recently, van de Poel (2007)
has illustrated the methodological problems in the QFD process caused by the implications of
AIT. Although the Analytical Hierarchy Process (AHP) was introduced (Armacost et al., 1994)
to aid in the determination of importance rankings, Hazelrigg (1996; 2003) has shown through
the use of AIT that the importance weightings for ranking the importance of engineering
attributes can be irrational when more than two attributes are ordered. Further, Olewnik and
Lewis (2005) have demonstrated through the use of designed experiments that the HoQ rating
scale used in the relationship matrix yields results comparable to inserting random variables, or

completely different scales in its place.
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Additionally, due to its philosophy, the QFD method is overly biased towards meeting
customers’ requirements. Prasad (2000) presented an expanded QFD methodology called
Concurrent Function Deployment (CFD) that expands upon the customer attributes to consider
other corporate objectives, such as cost and manufacturing. Similarly, Gershenson and Stauffer
(1999) developed a taxonomy for design requirements for corporate stakeholders, in the form of
a hierarchically organized requirements database. They consider not only end-user requirements
as in conventional QFD analysis, but also corporate, regulatory and technical requirements.
These methods still employ conventional weighting and ratings techniques.

Although the consideration of uncertainty is imperative in engineering design, particularly in
the conceptual design phase, conventional QFD analysis offers only a deterministic approach to
ranking importance and setting target performance. It lacks a mathematical framework to
incorporate uncertainty into decision-making. Recent work in the QFD methodology has focused
on the use of fuzzy set theory to account for uncertainty in consumer importance assessments
(Chan et al., 1999; Kim et al., 2000; Kahraman et al., 2006). While these approaches address the
uncertainty in the human element of importance assessment, they do not address uncertainty in
other elements of the decision process, such as in the technical requirements, or address the
limitations of preference aggregation in the QFD method. Other significant limitations of QFD
are the over-simplification of attribute-coupling in the “roof” of the HoQ, an inadequate
reflection of the real design trade-offs due to the subjective nature of attribute ranking, and a lack
of methodology for considering manufacturing/production constraints. Regarding the Pugh
Matrix for concept selection, its major limitation is that it is not a comprehensive enterprise-level

decision tool, but rather was formulated to make decisions in the engineering domain while
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considering product requirements, without consideration of uncertainty, customer demand, or

enterprise profitability.

3.2.2 Issues with Other Common Design Process Tools

A comprehensive review of other target setting and design selection methods, such as Taguchi's
Loss Function, Design for Six Sigma, and Suhs Axiomatic Design, has been conducted by
Hazelrigg (2003). To summarize, none of these processes attempt to set targets or select a design
concept utilizing an enterprise-level decision criterion. They each assume that product design
decisions made using a domain-specific selection criterion, such as minimizing product defects
or producing “uncoupled” designs, will result in a preferred design. Another relevant product
planning tool is the Requirements Traceability Matrix (RTM), which is used to organize and
track product requirements to ensure all requirements are met by the design artifact. The Design
Structure Matrix (DSM) 1is utilized in systems engineering to decompose a system into
components and determine the relationships among components which must be considered in the
design process. Neither RTM nor DSM is intended to be used as an enterprise-level product

planning tool, but rather each is used to help designers organize product or system requirements.

3.3 USE OF THE DECISION-BASED DESIGN FRAMEWORK TO ADDRESS QFD LIMITATIONS

The limitations in the previous section point to the need for a design planning tool which is
supported by a rigorous decision-making framework to ensure that consumer preferences are
accurately represented and targets set by the tool are achievable in engineering design. The
Decision-Based Design (DBD) method, an emerging design paradigm (Lewis et al., 2006),
provides such a rigorous framework by modeling design as a decision-making process that seeks

to maximize the value of a designed artifact through the use of utility maximization. Recent
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efforts in DBD research resolve trade-offs among technical objectives by utilizing models of the
producer’s financial objective, such as net revenue or profit (Hazelrigg, 1998; Li and Azarm,
2000; Wassenaar and Chen, 2003; Michalek et al., 2005). At the core of the enterprise-driven
DBD approach is the use of Discrete Choice Analysis (DCA) (Ben-Akiva and Lerman, 1985) for
demand modeling to estimate the effect of design changes on a product’s choice share, and
consequently on the firm’s revenues. In Chapter 2, the probabilistic choice modeling approach
(DCA) was shown to have the ability to capture the effect of heterogeneous consumer choice
behavior upon product design. The disaggregate DCA method takes account of every observed
choice situation and the correlation between individual behavior and individual-level conditions
and attributes to model choice behavior. A disaggregate DCA approach is more in line with
microeconomic theory than an aggregate demand modeling approach and is necessary to
understand the heterogeneity of consumer choice behavior (Small, 2006). Although the DBD
approach provides a rigorous mathematical framework for decision-making, most formulations
of DBD exist as optimization frameworks, not intended to be used as comprehensive process
tools to guide real product development activities. The approach has not been applied widely due
to the complexity of integrating product planning and engineering product development into an
optimization formulation that incorporates various categories of product design attributes at
different levels of abstraction. To manage the complexity of implementing the DBD approach,
there is a need to develop a design process tool which effectively guides the execution of the
method at an operational level. Such a tool can be tailored for use in the conceptual design phase
to fulfill the identified need for a comprehensive product planning tool.

While the flaws associated with the QFD approach limit its use as a quantitative tool for

decision-making, the HoQ analysis used in QFD does provide an effective visual tool and
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promote a rigorous thought process for qualitatively linking product attributes to ensure that
product planning activities are conducted while considering the Voice of the Customer. Also, it
facilitates a multidisciplinary design process among marketing, engineering, and production.
Combining the strengths of DBD and QFD, the Product Attribute Function Deployment (PAFD)
method is developed in this work as a comprehensive product planning process tool for the
conceptual design phase. It extends the QFD mapping matrix concept to qualitatively identify
relationships and interactions while employing the principles of Decision-Based Design (DBD)
to provide quantitative assessments for concept selection, attribute target setting, and establishing
engineering priority for the detailed product design phase. Our research development leads to a
product design tool that overcomes the limitations of the QFD method and facilitates the

implementation of the DBD approach for a real design problem.

3.4 THE PRODUCT ATTRIBUTE FUNCTION DEPLOYMENT (PAFD) METHOD

Combining the strengths of the QFD and DBD methods, the PAFD method is developed in
this work as a multi—stage process that utilizes two “houses” to establish the qualitative attribute
mapping to set engineering priorities, select the preferred design concept, and determine target
values, E', for the engineering attributes. Because PAFD is intended as a replacement for QFD, a
comparison of analogous QFD and PAFD process steps, categorized into three primary stages, is
shown in Figure 3.2. In the first stage of both methods, customer preferences are quantified.
PAFD uses a DCA model to express consumer demand for an entire product relative to the
existing competing products, whereas QFD uses a ranking of consumer preferences for specific
product attributes to assess consumer acceptance of a product as a whole. In the second stage, the
engineering design is characterized. PAFD utilizes preliminary analysis models to capture the

costs and technical trade-offs among E (details provided later), versus the technical difficulty



64
rating and correlation matrix mapping used in QFD. PAFD explicitly considers engineering
attributes resulting from customer, corporate, and regulatory sources, whereas QFD is primarily

focused upon those engineering attributes resulting from customer-desired attributes, A.

OFD PAFD

Stage 1: Analyzing Customer Preferences & Inter-Relationships
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Figure 3.2: Comparison of QFD to PAFD Processes

In the third stage, PAFD provides design decisions in a single-step maximization of
enterprise utility formulation, whereas QFD sets priorities using several ratings and rankings
which must be synthesized by a human decision maker(s). The following subsections describe
the three stages of PAFD in detail, with comparison to equivalent QFD processes.

Stage 1: Analyzing Customer Preferences and Attribute Interrelationships
A “house” structure is used to accomplish the Stage 1 processes of the PAFD method. Similar

to conventional QFD analysis is the deployment of mapping between E and A, as well as the
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collection of engineering attribute levels from competitors’ products (competitive analysis). The
engineering attributes determined in this matrix are the E related to customer-desired attributes
A, identified as Ea. Also unique to PAFD, customer demographic attributes S and the A-S
interactions (later transformed to EA'S for demand modeling) are identified to account for the
heterogeneity of individual customers. This part of the expansion facilitates the construction of
the DCA demand model to capture the impact of engineering design (engineering attributes) on
customers’ purchase behavior through estimation of product demand. As shown in Figure 3.3,
House 1 contains two relationship matrices:

e Matrix 1: Mapping customer-desired attributes, A, to engineering design attributes, Ea.

e Matrix 2: Identifying interactions between demographic attributes, S, and A.
Additionally, a table is provided for tabulating competitive alternatives in the choice set:

e Table A: Table of competitive alternatives J with corresponding levels of E5 and price, P.

Customer/Engineering Attributes Relationship Demographic
Engineering Design Customer
Attributes (E,) Demographic
Ea Attributes (S)
g
A &
Translation from ‘ ‘ ‘
Customer Desired | | | Customer (A) to | AxS ]
Attributes (A) | Engineering (E ) | Interactions ||
— Attribute ‘

Competitive Competitive Values
Alternatives (J) of Ey

Targets E'

Figure 3.3: House 1 of the PAFD Method
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The house can also be extended for use with the Latent Variable modeling approach as shown in
Hoyle et al. (2006) by introducing an additional mapping between perceptual customer-desired
attributes, A, to indicators, I, which is not shown in Figure 3.3 for simplicity.

The relationship matrices in PAFD show only the qualitative linking between attributes.
Unlike QFD, a rating scale (i.e. 1, 3, 9) is not utilized to characterize the strength of the
relationship; however, an “X” is used to indicate the presence of a relationship. The purpose of
completing these relationship matrices is to ensure that each of the A has a corresponding Ex
(vector) and that inter-relationships among A, Ea, S, are clearly identified to enable choice
modeling. The “roof”, which identifies the coupling of engineering attributes in QFD, has been
eliminated in PAFD because engineering attribute interactions will be modeled explicitly using
preliminary engineering analyses in Stage 2, to better associate the coupling with a specific
design concept. As noted in Section 3.2.1 and illustrated in the case study in Section 3.5, the
coupling of multiple engineering attributes, EA, can largely depend on the chosen design
concept, with E coupling in different ways for different design concepts.

The DCA choice model is estimated using the Es, P, and S identified in House 1 as
explanatory variables, with J comprising the set of choice alternatives based on competitors’
products. Unlike the competitive analysis in QFD (customer ratings), the competitive alternative
set used in PAFD is for the purpose of estimating the DCA model as described in Section 2.2.
The values of E and P for each alternative together with the consumer product choice form the
basis for model estimation. The choice set is composed of either actual consumer purchase
choices or simulated product choices, such as those resulting from a market survey, as described

in Section 2.2. For a market survey, the list of A and E4 can help guide survey construction by
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providing an indication of the attributes that should be varied among the products presented in
the survey (Louviere et al., 2000).
The form of the parameters in the choice model requires insight into customer choice

behavior, with potentially several model iterations needed to maximize the model goodness of

fit. Linear (e.g. Ej) and transformed (e.g. Eiz) forms of the variables are explored during the
modeling process based upon expected choice behavior. The relationship matrices are used to
guide the modeling of 4; x S; interactions in terms of the E4 and S necessary to make decisions at
the engineering design level. Alternative Specific Constants (ASC) are utilized to represent
preferences that are inherent and independent of specific attribute values. Conversely, A/ternative
Specific Variables (ASV) are utilized to capture the heterogeneity of consumer preference for
each alternative due to the differing demographic attributes, S, of each consumer (Ben-Akiva and
Lerman, 1985).
Stage 2: Design Characterization

This stage of PAFD results in preliminary engineering and cost analysis models which are
intended to capture the high-level relationship between design concepts and both engineering
performance and cost, as opposed to use in creating detailed product designs. The PAFD analyses
explicitly consider specific design concepts, whereas the QFD analyses require the design
characterization to be carried out at the engineering attribute level, with rankings of technical
difficulty and attribute interactions used in place of established engineering and cost analysis
methods.

To begin Stage 2, the E4 established in House 1 become one set of engineering attributes
tabulated in House 2 (price, P, is not included in Stage 2 because its value will be determined

directly in Stage 3) as shown in Figure 3.4. Unlike QFD analysis which is primarily focused
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upon the Voice of the Customer, the Ex form just one subset of the entire set of engineering
attributes E in PAFD. In addition, those attributes which a customer does not consider explicitly
in product selection but are essential to producer’s interests (Gershenson and Stauffer, 1999),
specifically those resulting from corporate Ec, regulatory Eg, and physical requirements Ep are
also identified. This expanded set is essential to ensure all requirements of the design are

considered in the decision-making phase to make certain achievable targets are set.
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Figure 3.4: House 2 of the PAFD Method

With a comprehensive set of E determined and tabulated, designs can now be generated to
fulfill these requirements. A design concept is defined as a high—level system configuration,
composed of multiple subsystems and corresponding key design features, Fe. To facilitate

preliminary cost and engineering analysis, each design feature, Fe;, is represented by integer,
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discrete, or continuous design variables, X, such as material types, dimensions, etc. For each
design concept, the attribute mapping in House 2 provides the qualitative relationship between
the E and X through a mapping of E to Fe as shown in Figure 3.4. From the qualitative
relationship, the quantitative functional relationship, £,=f(X);, is established using preliminary
engineering analysis. In cases where design options are highly conceptual, and an analytical
relationship cannot be established, the range of achievable levels of E can be estimated. The
design variables (X) selected are the minimum, high—level set necessary to estimate the cost, C;,
of each feature and to represent the coupling of the design features in the decision-making
process (Stage 3). The specific form and complete set of the X; will be established in the detailed
design process.

After establishing the set of design concepts and specific high-level design features,
preliminary manufacturing process attributes, Mf, are identified for each concept, and mapped to
Fe (Figure 3.4). The Mf are used to estimate processing costs and to identify constraints on X
resulting from manufacturing process limitations to be considered in the decision-making stage
of PAFD, as well as to ensure appropriate manufacturing processes are identified for each design
feature. Using the identified X and Mf, estimation of the total cost, Ck, for each design concept,

k, is calculated using:

CH (X", Y,0,0)= Y Ch(X5,Y,0,1)+ CE () + CE(¢) 3.1)

where C}, (X" Y, Q,t) is the material and processing cost for each design feature, R is the number
of design features, C/(¢) is the cost of capital, and Cj (t) is fixed corporate overhead cost for

each design concept. The reason for establishing both preliminary engineering and cost analysis
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in PAFD is to capture the real trade-off behavior of engineering attributes, to ensure design
selections resulting from the tool are optimal, and target performances are actually achievable.

The number of design concepts considered in PAFD is not fixed, with the house structure
repeated for each additional concept to be evaluated. The design concepts and key design
features can be generated using several methods available in the literature. Brainstorming and
functional decomposition techniques (McAdams et al., 1999; Stone and Wood, 2000) can be
utilized to generate the design concepts and corresponding design features, while TRIZ (Theory
of Inventive Problem Solving) principles (Altshuller and Williams, 1984) can be employed to aid
in the creative process. Optionally, Suh’s axiomatic design method (Suh, 1990) can also be
employed with PAFD, enforcing an un-coupled or de-coupled relationship between the E and X
and the Mf and X. While the features of the design concepts can vary significantly, it is assumed
that the concepts share a common set of engineering performance (attributes) E, that matter to
customers.

Stage 3: DBD: Design Concept Selection & Target Setting (Decision-Making)

As shown schematically in Figure 3.2, PAFD evaluates designs through the maximization of
expected enterprise utility E(U), using the single selection criterion, V, constructed from the
DCA demand (stage 1), engineering, and cost models (stage 2). In addition to selecting a
preferred design concept and setting performance targets, PAFD, like QFD, can also aid in
setting engineering priority through evaluation of parameter (/) importance in the DCA model
and sensitivity analysis of the £(U) function to determine which product attributes should receive
the greatest resource allocation during the detailed design phase. In contrast, the evaluation
process used by QFD is a (human) group consensus decision, in which the multi-attribute

decision criterion requires synthesis of technical importance, technical test measures, technical
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difficulty, and attribute correlations by the decision maker(s). Engineering targets are set
individually for each engineering attribute, based upon the best measured performances from the
competing products. This methodology has been shown to be potentially faulty in Section 3.2.1.
Because the preliminary engineering and cost models are used for the purpose of capturing
attribute trade-off behavior and are typically analytical expressions, the computational expense
of evaluating such models, and hence the expense of the PAFD design selection method, is
minimal. Additionally, the X can often be represented by discrete values in the conceptual design
phase, for example representing catalog component options (Bradley and Agogino, 1994). The
maximization of utility can be evaluated using a genetic algorithm which is commonly used in
conceptual design selection when a combination of discrete and continuous design variables are
present (Goldberg, 2002). Constraints are of the form g(X, E) < 0, and are estimated for each
design concept based upon corporate, regulatory, physical, and manufacturing constraints upon

the X and E(X) identified in House 2.

3.5 AUTOMOTIVE SENSOR CASE STUDY

The conceptual design of an automotive pressure sensor is used as a case study to
demonstrate the PAFD methodology. The specific example considered is to design a standard
next-generation Manifold Absolute Pressure (MAP) sensor for the automotive industry. The
MAP sensor measures the air pressure in the intake manifold for fuel and timing calculations
performed by the engine computer. The customers are industrial customers, composed of both
automobile manufacturers and engine system sub—suppliers. The targeted market is the mid-size

sedan segment. A high level function diagram of a MAP sensor is shown in Figure 3.5.
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Figure 3.5: MAP Sensor Functions

Multiple sensing technologies exist for pressure measurement, and each technology drives
specific corresponding high-level design features, resulting in differing levels of performance
and cost structure for each design concept. Therefore, before detailed design of the sensor begins,
the preferred design concept must be selected and target levels of product performance must be
established. A risk-averse attitude is assumed for the enterprise, and the market size is assumed
to grow by 10%/yr. over the time interval, ¢, of 4 years considered in the forecast. Both a QFD
and PAFD analysis are conducted to better illustrate the parallels between the two

methodologies, with the differences in the resulting design decisions demonstrated.

3.5.1 QFD Analysis of MAP Sensor
To begin the QFD analysis, the A (e.g. High Accuracy and Withstand Temperature Extremes)
and the key E,, such as Housing Footprint (mm®) and Temperature Range (°C), are placed in the

appropriate rows and columns of the HoQ as shown in Figure 3.6.
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Figure 3.6: Comparison QFD Analysis of MAP Sensor

The engineering team must rank-order the importance of each A, fundamentally establishing
a “group utility” for each attribute as described previously, and determine a “direction for
improvement” for each of the E, based on engineering judgment, as shown by the “+” and “-”
signs preceding each Ex. The relationship matrix is then completed, with the engineering team
determining the strength of relationship between the E4 and A, using a largely subjective
evaluation based on the experience level of the team members. With the relationship matrix
complete, the Technical Importance is calculated for each E, to determine engineering priority
for each attribute, with a higher importance rating indicating higher engineering priority. The

“roof” Correlation Matrix is completed, with v* indicating positive correlation and X negative
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correlation between attributes (e.g. negative correlation indicates a performance improvement to
one attribute degrades the performance of another attribute), and the Technical Difficulty rating is
estimated (higher number indicates greater difficulty). These analyses can be viewed as highly
simplified, empirical forms of the engineering and cost analyses explicitly formulated in the
PAFD method.

To complete the Customer Ratings, a market study (Stated Preference) is conducted in which
several customers are surveyed to determine consumer perceptions of current competitive MAP
sensors on the market. The respondents are asked to rank-order the performance of three
competitive sensors (labeled A, B, C), plus the current generation sensor (Our), with respect to
each A they have identified, with the ranking results shown in Figure 3.6. For example, the
customer group evaluation for High Accuracy indicates that Sensor B is perceived as having the
highest accuracy and Sensor A the lowest accuracy. Note that with QFD, the customer ranking
must be aggregated in order to achieve a single rank-order for each A, a process shown to be
potentially problematic (Hazelrigg, 1996). To complete the QFD analysis, the actual measured
performance level of each engineering attribute is determined for each of the four sensors and
documented in the Technical Test Measures portion of the HoQ.

With the HoQ completed, performance targets for the sensor are determined through a multi-
attribute consideration of the Technical Test Measures, Customer Ratings, Technical Difficulty,
and Correlation Matrix. The performance target decision is made relative to the current levels of
performance of Our sensor, with the values identified in the Technical Test Measures
representing the best known levels of performance for each E which should be targeted by the
new sensor. The Technical Difficulty and Correlation Matrix provide subjective constraints upon

performance. Using the QFD methodology, the targets are shown at the bottom of the HoQ in
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Figure 3.6. It was decided that the new sensor should have improved target performances for
Accuracy, Pressure Span, and Temperature Range, since these have high technical importance,
and Our current sensor is not perceived as the market leader in these areas. Also, it was decided
to improve the target for Connector Mating Force since it has a very low technical difficulty. It
was decided not to improve the target for Housing Footprint, since Our sensor is the market
leader, or Natural Frequency due to high technical difficulty and low technical importance. With
targets set, product design concepts may be further brainstormed by an engineering team, and the

preferred concept selected with a tool external to the HoQ, such as Pugh’s Method.

3.5.2 PAFD Analysis of MAP Sensor

Stage 1: Understanding MAP Sensor Requirements and Interrelationships

As the first step in PAFD, key customer-desired attributes A and engineering attributes E,
are placed in the appropriate rows and columns in the same manner as the QFD analysis (Figure
3.7). In contrast to QFD analysis, demographic attributes S (e.g. Vehicle Market Segment) are
also identified and tabulated. Note that the S for the industrial customers are company-specific
attributes, such as the corporate location or the specific market niche in which the company
competes. As described in Section 2.2, the S account for the heterogeneity of customer choice,
i.e. they explain why different customers choose different MAP sensors for similar applications.
With A, E,, and S identified, hypothesized relationships are marked by an “X” in matrix 1
identifying the linking of the E4 to A, and in matrix 2 identifying the potential interactions
among the S and A which influence choice behavior, such as the interaction of High Accuracy

and Vehicle Market Segment.
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Figure 3.7: PAFD House 1 for MAP Sensor

To acquire the choice data necessary to estimate the DCA model, simulated sensor purchase
data (Revealed Preference) was utilized, unlike the QFD analysis in which respondents were
asked to rank-order the performance of each sensor for each A. The purchase data for Our sensor
represents the current generation sensor on the market; alternatively, a Stated Preference survey
(Louviere et al., 2000) could be conducted using prototypes of the new sensor design, if desired.
The demographic data S for each customer in the data set is recorded in the PAFD method. A
sample of the purchase and recorded demographic data S is shown in Table A.1, Appendix A. A
MNL DCA model is formulated as a function of the values of Ea, P, and S using the choice data

collected for the four sensors. The model parameters (f) estimated to create a choice model with
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good fit statistics are composed of linear (e.g. Accuracy, Temperature Range), interaction (e.g.
Accuracy x Vehicle Market Segment) and alternative specific variables (e.g. Alternative; x
Vehicle Market Segment), with alternative specific constants included to capture inherent
preferences for each alternative. The results are shown in House 1 (Figure 3.7), which has been
extended from the template shown in Figure 3.3 to include a summary of the ff parameters in the
grey region (note that not all £4 enter W as indicated by a *, as some parameters are not
statistically significant or are highly correlated with other E,). Referring to Eq.(2.5), the S
parameters establish the customer choice utility function, W, of each alternative. In particular,
each alternative shares a common set of product selection attribute parameters, which form the
common customer choice utility function:

W,

ommon = — 2.8(4C, )+ 0.02(TR,) - 0.4(FT,) - 0.001(NF, ) — 6.9(PRICE, )+ 0.3(PS, x MS). (3.2)
The specific customer choice utility functions for each of the competitive alternatives is then

determined for use in Stage 3, using the common utility formulation with the addition of the

appropriate alternative specific constants (ASC) and variables (ASV):

WAn = (Wcammon ) |i=1
Wy, =—64+W, )., +7.4(4R)+7.0(ER)+7.3(MS) . (3.3)

common

W, =—67+0W,, )| +8.0(4R)+9.5(ER)+12.8(MS)
A customer choice utility function is also developed for Our sensor design:

Woury == 3.6 +(W.,, ).y +7.1(4R)+7.9(ER)—2.4(MS). (3.4)

Examination of the utility function provides insight into customer choice behavior. The sign

of the parameter indicates the effect of an attribute upon W, for example increasing the Price (S

= -6.9) of a sensor decreases W, and hence the probability of choice of that sensor, ceteris

paribus. Additionally, the effect of S upon utility can also be examined. For example, /' and
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hence the probability of choice of Sensors B, C and Our increases relative to the reference
(Sensor A) if the customer is located in Asia (4R) or Europe (ER); the greatest increase in W is
for Sensor C as indicated by the magnitude of the f parameters for AR (f= 8.0) and ER (£ =9.5)
in the W¢, expression. To understand the engineering priority of each E5, and ExxS in terms of
their impact on demand, the £ coefficients can be normalized as shown in Figure 3.7 to allow the
importance of each attribute to be estimated based upon its magnitude. For example, Price is the
most important attribute (Bvory = -85.6) while Temperature Range is the least important (Bvory
=2.9).

With a customer choice utility function available for each alternative, Eq. (2.5) can be
utilized to determine the demand for the new design concepts based upon the values of E5 and P
substituted into Eq. (3.4) during the decision-making phase in Stage 3.

Stage 2: MAP Sensor Design Concepts Identification and Characterization

Stage 2 begins by transferring the E, identified in House 1 to the E Column in House 2,
Figure 3.8, and establishing the additional engineering design attributes derived from corporate,
regulatory, and physical requirements, such as Common Platform as Ec, UL Flammability
Resistance as Er, and Housing Stress as Ep, to form the complete set of E. With E identified,
design concepts and their corresponding design features Fe can be formulated. For this problem,
two design concepts were identified: Concept I utilizes a piezoresistive (PRT) sensing element
with a micro-machined sensing diaphragm, which senses pressure due to bending of the
diaphragm, and Concept 2 utilizes a two—plate capacitive sense element, which senses pressure

due to a change in the capacitor plate separation distance.



:4

| DESIGN CONCEPT1 | | DESIGN CONCEPT 2 |
g g
2 [ Sl | T cEls|z g
; ; 3 5 | g g S| ¢ o g g
Design Variables £l a|gg| £ 8 s|lalg| 2] g8
X) cElelsslglgllslels|gle]g
£ | 3 |Zo| 2 2 o | 5 o o | @
k=) o || X X < ) S < £ 5
el 8|85 2|2l |5|5|8|2|5|¢
I o =1 E < 14 E = E
Component Design Features (Fe) §
3
= c | w -
g | Q| §| 5§ o 3
E| o| | E €| o £
o c x 0] [0} c @
w = < 1] © €| c o i)
o | S| O| o8| & o | © 5 ©
= . [0) o = “— )]
@ = 1] c 1) L = c . %)
c el =) = ho] = o
[} c = [0 ) (0] c [)) Q - o)
| 8| 2 x| 5 2|1 8| | x| 8|5
o | 2| £ o | @ o | — ® o | ¢ @
= © 8| £ 2 (%} © 3 £ c @
3| 5| 2| 8| 8 e 5| | 8|8 &
= | 2| = =S > | 2 2| O o
[%2] (o) = — (o]
A o = | ! o x .
= — © I ro) ) — I < o
System S|l &8 |l 5| 5| 2 s | S| E| 3 o | =2
Engi ing Attributes (E) 5 | 2 Qo 5 T © ©° 2 (%) 5
ngineering Attributes ( a a = &4 & Sl Aa & & 3 @
Sense Element Accuracy (%) X | X x| X
Pressure Span (kPa) X | X X x| X X
i Temperature Range (°C) X X X X
Housing Footprint (sz)
Natural frequency housing (kHz) X X
Connector Mating Force (N) X
i Common Platform X X
UL Flammability Resistance X X
1|Housing Stress (kPa) X X
g AEBRIE ARERE
Estimated Manufacturing Cost | & | * <ls | s s | * slsl sl s
& & & & & & & & &
o 2 > I 2
| |s|[8] |s 2| s
Manufacturing Attributes S 3 s ¥ S S| 2
IS > | O > S > > | o
(Mf) © S < 3 T S < < oy
£ 2 § = R £ = ) = E Q
S| 8l & @ S|l 8| =| & e| B
s © @ & < S| ® o g ) <
Ll|o|a|l 8|S L|l|O0 | L8] 2|8
S * S (%) ~ S * S (%) S ~

Figure 3.8: PAFD Engineering Design House 2 for the MAP Sensor
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Both design concepts are shown in Figure 3.9. Due to differences in the designs of the sensing

elements, the piezoresistive concept is inherently less expensive and results in a smaller package,

whereas the capacitive concept is more robust to temperature and pressure extremes.
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Figure 3.9: Comparisons of Concepts 1 and 2

The key design features for each concept are established and the corresponding high-level
design variables, X, to model the technical trade-offs and cost for the decision-making problem
are determined and tabulated (Figure 3.8). For example, piezoresistive sense element thickness is
a continuous variable to be determined based upon the trade-off among element length,
manufacturing limitations, and cost; integrated circuit A/D discretization resolution is a discrete
variable to be determined based upon the trade-off between sensor accuracy and cost. Key
conceptual manufacturing processes, Mf, (e.g., micro-machining, injection molding, etc.) are
identified for each design concept, and placed in the columns corresponding to the associated
design feature, Fe, shown in Figure 3.8. Manufacturing process costs are also estimated for each
design feature for use in the cost model (Eq. (3.1)).

As demonstrated by this case study, the technology selection drives specific design features
and the corresponding set of design variables for a given design concept. For example, the
packaging of each sensor is fundamentally different as shown in Figure 3.9: Concept 1 uses an
injection—molded housing with integral pressure port and connector, whereas Concept 2 requires
a separate port and connector component because of the large size and electrical interconnect of

the capacitive element.
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Also noted, each set of high-level design variables X for a given concept has a different
functional relationship with E (E=f(X)). Concept 1 utilizes the piezoresistive sensing element
with a resistance output given by the relation (Hauptmann, 1993):

Pressure Span =k(AL, /L) (3.5)
where the engineering attribute is Pressure Span, the design variable is diaphragm length Lz, and
the piezoresistive k-factor, £, is a constant. Concept 2 utilizes a capacitive output given by:

Pressure Span = g,¢, (4, /AD, ) (3.6)
where the engineering attribute is Pressure Span, the design variables are the plate area, Ax, and
the plate separation distance, Dg, with absolute and relative dielectric constants, &, and &. A list
of all engineering relations used in this analysis is provided in Appendix A, Table A.2. These
analyses are intended to be preliminary analyses to capture the fundamental trade-offs among the
critical design variables, and will be refined during the detailed design phase to enable final
design of the sensor.

Each concept requires a specific manufacturing process, and the different sets of Mf result in
a differing cost structure and place different constraints upon the X. For example, the micro-
machining process used to manufacture the diaphragm of the piezoresistive sense element results
in a minimum diaphragm thickness limitation, and hence, places a constraint on the minimum
size of the sense element, independent of engineering analysis. Also confirmed by this study is
that engineering design attributes, E, resulting purely from customer-desired attributes, A, are
not sufficient to create an engineering specification (target setting). For example, consideration

of the stresses induced by the manufacturing process on the sensor housing leads to a key
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constraint upon the sensor housing design which would not have resulted from customer-desired
attributes.
Stage 3: Design Concept Selection and Target Setting

Stage 3 of PAFD is conducted by formulating the decision-making problem as shown in

Table 3.1.

Table 3.1: Pressure Sensor Decision-Making Formulation

Given
Mid-Size Sedan Market Size: 1,000,000 [sensors/year] for 4 years
Demographic data of targeted industrial customers S
Engineering Attributes E, (PAFD: House 1)
Ea determined as a function of the high-level design options X (E(X))
Design Concept (PAFD: House 2)
Two (2) Design Concepts considered (piezoresistive & capacitive sensing)

Sources of Uncertainty Y

DCA Model Parameters S.E.of g
Cost Estimates C'=£10%, C*=£30%
Normal Distribution of Tg and Dg o=(0.1) u

Cost Model (PAFD: House 2)
Cost of each alternative given by Eq.(3.1).
Demand Model Q (PAFD: House 1)
Obtained from the MNL model of the competitive alternative attribute data.
Single criterion V = QP-C (Eq.(2.2))
FIND:
Design Variables X, Target Engineering Levels E' (PAFD: House 1) and Price P

MAXIMIZE:
E(U), assuming an enterprise risk-averse attitude (Eq. (2.3))
SUBJECT TO (PAFD: House 2):
gX,E)<0 Te—14.0<0; Dg—-12.0<0: Constraints from Mf
gX,E)<0 PS —80.0 < 0; NF-1400.0 =£0: Constraints from E¢ and Ep

Three types of uncertainty are considered in the selection process:

e Demand Model Uncertainty: Uncertainty in all DCA model parameters (i.e. fs), as
quantified by the standard error (S.E.) estimates, is considered.

o Cost Estimation Uncertainty: Because the costs are estimated, uncertainty in the

estimates must be considered. It is assumed that the cost estimates for Concept 1 have +10%
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error, while estimates for Concept 2 have +30% error, since it is assumed that the designers are
more familiar with the design and costs of Concept 1.

e Design Variable Uncertainty: The Piezoresistive Sense Element Thickness, 7%, and
Capacitive Sense Element Plate Separation Distance, Dg, are normally distributed random
variables due to known variation in the element manufacturing processes.

These uncertainties create risk in the decision process. The preferred concept, considering
uncertainty, depends upon the decision-maker’s (i.e. the enterprise) risk attitude. The risk attitude
assumed by the enterprise in this case study is moderately risk-averse. However, the decision-

making process will be demonstrated for risk-averse, risk-neutral, and risk-seeking attitudes.

3.5.3 Comparison of PAFD and QFD Results

The results of the PAFD decision process are shown graphically in Figure 3.10 a) in which
the full distributions of profit for both concepts are shown. Figure 3.10 b) illustrates the expected
utility of each concept considering a variety of enterprise risk attitudes. The risk attitude is
modeled using an exponential utility function in which higher relative risk tolerance indicates

increasing risk-seeking.

-6 6
3¥10 : : : : : 5x10
——Concept 1 s
25 ===-Concept 2 || 4.5 1
4l <« —i—> |
Risk Averse Risk Seeking
2,
3.5r 1
2
1.5¢ = 3 |
-]
2.5¢ 1
1 L
2r g ]
0.5F //-:”/
15) cmmm===""" ——Concept 1
- --=-Concept 2
0 - P d | s, | | | | |
0 0.5 1 1.5 2 2.5 3 3.5 1-4 -2 0 2 4 6 8 10
Profit (USD) x 10° Relative Risk Tolerance

Figure 3.10 a) and b): Comparison of Profit and Utility for Concepts 1 and 2
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As demonstrated, Concept 1 is preferred for risk-averse, risk-neutral, and moderate risk-seeking
attitudes. However, Concept 2 is preferred for a high risk-seeking attitude, since the greater
uncertainty in Concept 2 results in a higher upside potential than Concept 1.

The results of both the PAFD and QFD analyses corresponding to a moderate risk-averse
attitude are shown in Table 3.2. The PAFD decision results in performance targets E', and values
of demand, price, and cost for both Concepts 1 and 2. The preferred design concept for this
problem is Concept 1, which results in the highest utility for the enterprise considering
uncertainty (E(U) = 1,683,000 utils). The QFD analysis results in performance targets only,
which are not associated with a design concept, and additionally QFD has no mechanism for
determining price P. For the purpose of comparison, the unit price of the QFD design is set at the
same price ($10.40) as Concept 1 (the preferred design from the PAFD method) and profit and

utility estimated using this price.

Table 3.2: Comparison of Decision Results—Preferred Concept (shaded)

PAFD (E") OFD
Engineering Attribute E Concept 1 Concept 2 (E")
Sense Element Accuracy (%) 1.23 1.19 1.0
Full Scale Span (kPa) 176.0 185.0 250.0
Temperature Range (°C) 150.0 150.0 180.0
Housing Footprint (cm?) 16.9 17.2 14.6
Natural frequency (Hz) 1400.0 1425.0 1600.0
Connector Mating Force (N) 40.0 40.0 35.0
Q: Demand)/year (# sensors) 416,000 433,000 541,000
P: Unit Price (USD) $10.40 $10.58 $10.40
C: Unit Cost (USD) $9.25 $9.66 $10.32
Expected Profit (USD) $1,905,000 $1,706,000 $173,000
Expected (U) (utils) 1,683,000 1,393,000 170,000

Compared to the PAFD results, the QFD identifies targets based upon the best values of Ex
identified in the competitive analysis, which subsequently leads to a lower value of E(U) of

170,000 utils. The reason the QFD resulted in such low enterprise utility is that although the
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estimated demand, Q, for a sensor meeting the targets set by QFD is higher than those identified
by PAFD, the cost to make such a sensor is significantly higher ($10.32). As described in Section
3.2.1, QFD is biased toward meeting customer product desires and does not explicitly consider
cost, leading to a sensor design with good customer acceptance potential but low expected
enterprise utility. Additionally, because parameter relationships identified through engineering
analysis and constraints determined in the PAFD Stage 2 process are not utilized, it is not known
with confidence if these QFD targets can actually be achieved in the subsequent sensor design.
For the PAFD analysis, the target levels identified for the preferred concept reflect the actual
achievable levels of E5 which maximize enterprise utility for this design concept, based upon the
constraints imposed in the decision-making problem. This is further illustrated by noting that
Concept 2 has different values of E' corresponding to the maximum enterprise utility for that
particular concept.

To set engineering priority using the PAFD analysis, a global sensitivity analysis (Chen et al.,
2005) is conducted as recommended previously to study the total effect of individual engineering
attributes on the E(U). The results of this analysis indicate that the greatest resource allocation
should be made to achieving the targets for Housing Footprint and Pressure Span, due to the
sensitivity of enterprise utility to these parameters. For QFD, the Technical Importance measure
is used to establish engineering priority, resulting in selection of High Accuracy and Pressure
Span as the highest priority. The difference in priority results from the different focuses of the
two tools, with PAFD focused upon maximizing enterprise utility and QFD focused primarily
upon customer product acceptance. In summary, the PAFD method has provided a clear

conceptual direction and engineering targets necessary to begin the detailed design of the MAP
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sensor; detailed engineering analysis can be utilized to create the specific feature designs which

meet these targets.

3.5.4 Validation and Discussion of the PAFD Method

A primary feature of the PAFD is the use of a DCA model to predict customer demand for a
design option. The choice model was validated using a cross-validation method, in which the
data is partitioned into training and test sets (Tamhane and Dunlop, 2000). The results show
approximately a 5-10% error in predicting the choice share on the test sets; however, such errors
equally effect predictions for both Concepts 1 and 2 and do not change design selection result. To
explore the effect of demand model specification on the selection process, a model was used in
the process which did not include country (i.e. Asia, Europe) attributes. For such a model, cross-
validation indicated greater errors on the test sets (10-18% errors) and did result in higher
predicted choice share and approximately 8% higher profit for Concept 1 and 10% higher profit
for Concept 2; however, the selection process was not effected as Concept 1 is still preferred for
risk-averse, risk-neutral, and moderate risk-seeking attitudes using this model.

The case study presented demonstrates the advantages of the proposed PAFD method. It has
been shown to preserve the primary strengths of QFD by offering a visual tool, maintaining ease
of use, and promoting team work. The DCA model presented is becoming commonplace in the
marketing discipline (Rossi et al., 2005) with commercial software solutions available (Sawtooth
Software, 1999), while the engineering and cost modeling are standard practice among design
and manufacturing engineers. The method can be expanded beyond the three stages shown in

Figure 3.2, for example to include a specific stage for the design of choice experiments. The
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method can also find application in the service industry, to design the service to best meet the
needs of both the customers and the enterprise providing the service.

The PAFD method can identify a preferred solution in situations in which cost and
performance models can be formulated, and the risk attitude of the enterprise can be formalized.
A potential limitation of the PAFD method is that it is based on the assumption that a DCA
choice model can be estimated to represent consumer preferences. This assumption would not be
valid in cases where the customer is a single or small group of customers (such as for a
component sub-supplier of a major system), for highly specified designs, or in industries which

do not have the infrastructure for consumer preference data collection.

3.6 DISCUSSION AND SUMMARY

In this work, the Product Attribute Function Deployment (PAFD) method is developed to
offer a mathematically rigorous, decision-theoretic process tool for use during the product
planning phase of a product development program. The need for developing such a method
results from a close examination of the needs during the conceptual design phase, and the
limitations of current methods, such as QFD, currently used for this purpose. The PAFD method
extends the QFD mapping matrix concept to qualitatively identify relationships and interactions
among product design attributes while employing the DBD principles to provide rigorous
quantitative assessments for design decisions. In conceptual design, the PAFD method is used to
select the preferred design concept, set target levels of engineering performance, and set
engineering priorities. The PAFD method can be implemented, with minor modification, to work
with alternative enterprise-driven design approaches to provide the necessary quantitative

assessments.
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In addition to presenting the PAFD method, a comprehensive comparison of QFD and PAFD
was conducted in this work, demonstrating the parallels between the two methods and the
improvements achieved by utilizing DBD principles in the new tool. The use of single-objective
utility maximization provides a rigorous mathematical framework for decision-making under
uncertainty, alleviating the difficulties associated with weighting factors and multi-objective
decision-making in QFD. The use of profit as a single criterion better captures the real design
trade-offs, incorporating the needs from both the producer and consumer to set engineering
targets consistent with enterprise objectives. The heterogeneity of consumers is captured through
the inclusion of demographic attributes, S, in the DCA model, addressing the aggregation issues
present in QFD. The subjective ratings and rankings present in QFD are replaced with
established methodologies in engineering, cost, and decision analysis to set targets for
performance which can be achieved in practice. Uncertainty is explicitly addressed through the
use of expected enterprise utility as the decision criterion.

A case study involving the conceptual design of a Manifold Absolute Pressure (MAP) sensor
is used to illustrate the benefits of the PAFD method. Complex trade-offs among engineering,
manufacturing, and customer considerations which would result in a difficult synthesis and
subsequent decision-making process using QFD are resolved effectively using the PAFD
approach. While the PAFD method has been demonstrated as a method for design concept
selection, it provides a general design process tool that can be utilized throughout the design
process, such as the vehicle target setting case study of Chapter 6. The simple choice model
presented here, in which it was assumed that the mapping from qualitative customer-desired
attributes to engineering attributes is straightforward, can be replaced with the Bayesian

Hierarchical Choice Model of Chapter 6 for a complex system. Also, it is assumed in this study
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that a single data set is available for choice model estimation, an assumption that is not realistic
for a complex system such as a vehicle. Methods for acquiring data are presented in Chapter 4,
methods for preparing the data for model estimation are presented in Chapter 5, and methods for

model estimation with multiple data sets are presented in Chapter 6.
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Chapter 4
OPTIMAL DESIGN OF EXPERIMENTS FOR HUMAN
APPRAISALS

In Chapter 3, the PAFD method for making engineering design decisions was presented. A key
issue not addressed in that chapter was the acquisition of the data needed to estimate the choice
model. For the Bayesian Hierarchical Choice Model introduced in Chapter 1, preference data is
required to estimate the hierarchy of discrete choice and ordered logit models. This highlights a
general need for the development of a standardized approach for designing experiments to access
consumer preferences, using Human Appraisal experiments. Human appraisals are used to
assess consumers’ opinions of a given product design, and are unique in that the experiment
response is a function of both the product attributes E and the respondents’ human attributes S.
In this work, the design of a human appraisal is characterized as a split-plot design, in which the
respondents’ human attributes form the whole-plot factors while the product attributes form the
split-plot factors. The experiments are also characterized by random block effects, in which the
design configurations evaluated by a single respondent form a block. An experimental design
algorithm is needed for human appraisal experiments because standard experimental designs
often do not meet the needs of these experiments. In this chapter, an algorithmic approach to
identify the optimal design for a human appraisal experiment is developed, which considers the
effects of respondent fatigue and the block and split-plot structure of such a design. The

developed algorithm seeks to identify the experimental design which maximizes the determinant
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of the Fisher Information Matrix, labeled the D-criterion of a given design. The algorithm is
derived assuming an ordered logit model will be used to model the rating responses. The
advantages of this approach over competing approaches for minimizing the number of appraisal
experiments and model-building efficiency are demonstrated using an automotive occupant
package human appraisal as an example.

The chapter is organized as follows: Section 4.1 provides the definition and challenges in
human appraisal experiments, Section 4.2 provides background for the DOE and modeling
methodology, Section 4.3 presents the experimental design methodology for human appraisals,

Section 4.4 discusses implementation of the methodology, and Section 4.5 provides a case study.

4.1 INTRODUCTION

Human appraisal experiments are used in a variety of contexts in product design to elicit
consumer feedback on current or future product designs. The link between consumer preferences
and engineering design has received much attention in the literature recently (Li and Azarm,
2000; Besharati et al., 2002; Wassenaar and Chen, 2003; Petiot and Yannou, 2004; Michalek et
al., 2005; Wassenaar et al., 2005; MacDonald, 2007). Such design approaches have created the
need for methods to assess human preferences for hypothetical or actual product designs to
enable the desired linkage between consumer preferences and engineering design. In Chapter 2, a
hierarchical choice modeling approach was introduced in which a hierarchy of customer
preference models is used to estimate consumer preferences for a given system design. Such an
approach requires the collection of customer opinion for given system and sub-system designs.
These product designs are generally represented by prototype hardware for human appraisals,
more recently by highly flexible, programmable hardware-in-the loop (Wang et al., 2006),

which can assume a wide array of unique configurations for human evaluation. Complementary
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developments in experimental design are needed to fully exploit such prototype hardware to
estimate useful predictive models of customer preferences. The previous approaches to human
appraisals in the design literature have generally assumed the customer preference data is readily
available, generally from a marketing source (Kumar et al., 2007), or that a standard experiment
design (e.g. full factorial or fractional factorial) is given to each respondent for the purpose of
collecting the desired preference data (MacDonald, 2007; Michalek et al., 2005). As will be
presented in this work, the large number of factors and the experimental structure of a human
appraisal for a complex system, such as an automobile, generally preclude the use of standard
designs in such experiments. It will be shown that in such cases, it is more efficient, as well as

necessary, to provide each survey respondent with a different set of configurations.

4.1.1 Definition of a Human Appraisal Experiment

A human appraisal is characterized by an interaction between the human respondent and the
product design; therefore, the set of factors which influence the response from a given
respondent for a given product configuration are both product attributes, denoted by A, and

respondent human attributes, denoted by S, as illustrated in Figure 4.1.

Customer Response = (A, S)
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Figure 4.1: Response as a Function of Product and Human Attributes
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Human attributes are defined as characteristics, primarily anthropomorphic characteristics such
as stature or body mass index (BMI), of a respondent which influence how the respondent
experiences the system. In human appraisal experiments, the response for a given experiment
could be the identification of a preferred configuration, or choice, from the configuration set, a
rank-ordering of the configurations evaluated, or a rating for each configuration (Louviere et al.,
2000). In this work, the response considered is in the form of a discrete rating, on a scale
selected by the survey administrator. The number of rating categories should be limited to
between 4 and 11 categories (Cox III, 1980; Green and Rao, 1970) (scales of 0-10, 1-5, and 1-7
are popular in application) to balance the competing desires of maximizing information recovery
(i.e. maximize number of categories) versus minimizing scale usage heterogeneity (i.e. minimize
number of categories). Rating responses represent an ordinal scale, in which higher ratings
represent stronger positive preference for a given product configuration. The most popular
models for estimating ratings as a function of independent variables are the ordered probit
(McKelvey and Zavoina, 1975) and ordered logit (McCullagh, 1980) models. These models
assume a respondent rating is a discrete realization of a continuous underlying opinion, or utility,
for a given product configuration. In this work, the ordered logit model described in Section
2.3.3 is used; however, the approach presented can easily be adapted to the ordered probit model

(or other related models).

4.1.2 Issues in Human Appraisal Experiments

The primary issues with human appraisal experiments are as follows:
e Unique rating style of each respondent.

e Potentially a large number of product and demographic factors to investigate.
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e Desire to create a response surface (i.e. quadratic terms) due to non-linearity of the

response and the effect of interactions.

e Fatigue of human respondents.

e Desire to specifically include or exclude specific factor combinations.

These issues are described as follows in this subsection.

In human appraisal experiments, a single respondent often evaluates several product
configurations in sequence due to time and cost constraints. This implies that human appraisal
experiments will naturally have a random block effect, as each person’s ratings will have some
level of correlation depending on the rating style of the respondent. A block is a set of
experiments conducted under homogeneous but uncontrolled external conditions. Blocking is
necessary since the overall experiment can be quite large, since the number of engineering
attributes which potentially characterize a customer-desired attribute, as identified using a
process such as the PAFD method of Chapter 3, can be extensive. Also, human appraisals are
naturally split-plot designs (Box et al., 2005), because it is unrealistic to completely randomize
human attributes since a single respondent represents a set of fixed human attributes, and it is the
most efficient to have a single respondent evaluate an entire block of experiments, or
configurations, at a single time. Split-plot experiments are characterized by one or more factors
remaining unchanged for a given set of experiments.

In general, the goal of a human appraisal experiment is to create a response surface model,
thus requiring a minimum of three levels of each product attribute (three levels cannot always be
achieved for human attributes which are categorical, such as gender). The desire to create a
response surface is based upon findings in psychometrics, in which it has been found that the

human sensation magnitude to a given stimuli intensity follows a power law relationship
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(Stevens, 1986). A three level experiment enables approximation of the power law relationship
using linear and quadratic terms in the prediction model (e.g., the ordered logit model).

A key issue to consider in human appraisal experiments is user fatigue (Kuhfeld et al., 1994).
Unlike computer or industrial experiments, fatigue will create additional error in the response in
a human appraisal experiment. The number of trials or configurations, B, given to each
respondent must be managed to ensure the effects of fatigue are limited. Another important issue
in human appraisal experiments is the inclusion or exclusion of certain (experimental) design
points of interest. The reason for specific inclusion or exclusion of design points is due to the
interaction effects of certain factors, which may be theorized to be highly significant and
important. If the interaction effect is achievable in the product, it would be of particular interest
to study the impact of the interaction, whereas if the interaction is unachievable in the real
product, it may be of interest to exclude such a combination. The design of experiments with
excluded combinations has been studied previously, e.g. Steckel et al. (1991), but the general
case of inclusion or exclusion of certain design points has not been examined.

An example of a human appraisal used throughout this work is the design of an automotive
occupant package. A respondent’s rating of a particular package configuration is dependent not
only upon the product attributes (A), such as the amount of headroom, knee room, etc. in the
package, but also the human attributes of the respondent (S), such as his/her stature, weight,
gender, etc. Also, these experiments are characterized by a block effect because, after controlling
for the respondents’ human attributes, each respondent will retain a certain correlation among
their ratings which must be accounted for in the resulting model.

To summarize, the focus of this chapter is the development of a design of experiments

methodology for human appraisal experiments, considering the split-plot and block structure of
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these experiments, and the use of ordered logit (or probit) to estimate the subsequent response
model. The developed methodology enables the number of configurations, B, provided to each
respondent to be controlled and minimized, and will also allow certain factor combinations to be

included or excluded.

4.2 BLOCKED AND SPLIT-PLOT DESIGN OF EXPERIMENTS

Blocked and Split-Plot designs have been used extensively in physical experimentation. The
difference between block and split-plot designs is illustrated in Figure 4.2. The larger
experimental unit (composed of many individual experimental design points or configurations)
in a blocked experiment is called a block, whereas the larger experimental unit in a split-plot
experiment is called a whole plot. Each block or whole plot consists of a number of experimental
design factors, Xx=(£;, E,...E)), the values of which are determined by a design criterion, such as
the D-optimality to be discussed in the next section. The primary difference between a blocked
versus split-plot design is that in a split-plot design, whole-plot factors, such as a human factor
S1, remain unchanged for a given experimental run. In blocked experiments, there are no
corresponding larger experimental-unit, or block-level, factors such as the whole-plot factors.
Therefore, the goal of a split-plot design is the selection of the design points under each whole

plot factor, whereas in a blocked design the goal is the allocation of design points to each block.
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Figure 4.2: The Structure of a Blocked and Split-Plot Experiments (Goos, 2002)
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A demonstration experiment with two E and one S, which is presumably used to estimate a
linear regression model, quadratic in E and linear in S, is used to demonstrate the terminology
used in optimal DOE. In the proposed experimental design approach, both E and S comprise the
experimental factor set, x:

x=[E, E, 8] (4.1)
The complete set of terms, E and S, which appear in the resulting prediction model (e.g., the
ordered logit model), such as an intercept and linear, quadratic, and interaction terms, form the
extended design point, denoted by f(x):
f(x)=[I E E S E E EE SE SE (4.2)
The matrix of all extended design points in the complete experiment form the extended design
matrix, denoted as F:
1 -1 -1 -1 +1 +1 +1 +1 +1
F:1+10_1+100_10. 3)
1 0 +1 -1 0 +1 0 O -1

The motivation for split-plot design methodology is the inclusion of “hard-to-change”
factors, e.g. a respondent’s human attributes, in the experimental design. These hard-to-change
factors are the whole-plot factors, which are not completely randomized as with the other design
factors, and remain at a fixed level during the completion of a given whole plot experiment.
Alternatively, blocked experiments are motivated by the need to minimize the effects of known

or theorized uncontrollable factors, such as the rating style of each respondent, not included as a

design factor (i.e. E or S), but believed to have an influence on the experiment response.
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Therefore, the goal in blocked experiments is to distribute the experimental design points among

homogeneous blocks, or respondents, to minimize the effects of uncontrollable factors.

4.3 OPTIMAL EXPERIMENTAL DESIGN METHOD FOR HUMAN APPRAISALS USING RATING

RESPONSES

In our proposed experimental design method, the human appraisal experiment is considered as
both a split-plot and a blocked experiment. The human attributes S form the whole-plot factors
because they represent hard-to-change factors. As discussed in the introduction, a single
respondent, characterized by a fixed human profile S, rates several configurations in succession
due to the expense and inconvenience of requiring people to evaluate configurations randomly
over time. Also, each whole-plot experiment may be too large for a single respondent to
complete due to the fatigue issues discussed in Section 4.1. Each whole-plot may therefore be
distributed among multiple survey respondents, each with the same S, in the form of blocks. The
blocked split-plot design is illustrated in Figure 4.3. In this diagram, the respondent human

factors, S, are the whole-plot factors, and the product factors, E, are the split-plot factors.

S
S
Q
3
S
N

i E ? £, E,; :
i Blocks E,|° Ex E, 1 i
i S S, S

Figure 4.3: The Structure of the Human Appraisal Blocked Split-Plot Experiment (Goos, 2002)
In this work, Optimal Design of Experiments (DOE) methodology will be used to select the

preferred human appraisal experiment. In optimal DOE, a candidate set of design points G,

typically the design points of a full factorial experiment in the desired number of factors, is
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provided to an algorithm which uses a defined criterion to select the optimal design points from
the set to achieve a design of any arbitrary size, M. A key concept in Optimal DOE is that the
form of the model to be estimated, i.e. the form of the extended design point f(x), must be

specified a priori to determine the optimal design which supports the specified model.

4.3.1 Optimal Experimental Design Selection Criterion

Various criteria for selecting the optimal experimental design are available, the most widely
used being D-Optimality. In general, several criteria exist for selecting a preferred experimental
design. Popular criteria in the literature are D, A, G, and V (also known as /, O, or IV) optimality,
which are all functions of the Fisher Information matrix, M, of the extended design matrix, F.
The D and A criteria are related to making precise estimates of the model parameters (B),
whereas the G and V criteria are concerned with minimizing the overall prediction variance of
the resulting model. While any optimality criterion can be used with the approach presented in
this work, the approach is presented using the D-optimality criterion for several reasons. Firstly,
D-optimality is widely used as an optimality criterion and is computationally inexpensive for
experiment selection compared to some of the other criteria, such as V-optimality. Additionally,
D-optimal designs have been shown to be highly efficient (i.e. provide efficient model building)
with respect to the other optimality criteria (i.e. G, 4, and V), whereas G, A, and V-optimal
designs generally are not efficient with respect to D-optimality (Goos, 2002). Also, because the
models estimated must be validated in some manner, D-optimal designs provide precise
estimates of the resulting model parameters () which can be interpreted for expected sign and

magnitude as part of the model validation process. D-optimality is achieved algorithmically
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through maximization of the determinant of the Fisher Information matrix, M, or the D-criterion,
of a given experiment design:

max  det(M). (4.4)

The Fisher Information matrix for the Ordinary Least Squares (OLS) fixed-effect model
parameters, 3, can be expressed as (Atkinson and Donev, 1992):

M=0,"F'F. (4.5)

As seen in Eq.(4.5), M for an OLS model is a function of the extended design matrix, F, and the

random error variance, o, (which, without loss of generality, can be assumed to be 1 for

experiment optimization purposes) both of which are independent of the model parameters 3. In

the case of Generalized Least Squares (GLS), Goos (2002) has derived the information matrix

for the random block effects model, in which each experiment respondent forms a block. The

variance-covariance matrix of the rating observations, R, for a single respondent n, cov(R,), is of

the form:
2 2 2 2
(0'8 +0, ) o, o,
2 2 2 2
O (O' + O ) e O
V, = N L R (4.6)
o> o> - (07+02)

where o, is the variance at the respondent level, and o is the variance at the observation level.

The information matrix for all observations can then be written as:

N 2
M=FV'F=c2lFF-Y—2  _(F1, )(F'1, )", where p=—2" . (47
. { ,,Z_;‘l+p(Bn—l)( g ), B,,)} P o +o?) (4.7)

B, is the number of configurations in block n (of N blocks), and 1, is a square matrix of ones of

size B,. In this case, an estimate of p, which is a measure of the ratio of across-respondent to
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within-respondent variance, is needed to select the optimal design. For this reason, such
experimental designs are referred to as semi-Bayesian designs, since they require a prior
estimation of p. The expression for M given in Eq (4.7) is only valid if the model to be estimated
is a (least squares) linear regression model. It is therefore not valid for the human appraisal

experiments in this work which are to be modeled using ordered logit.

4.3.2 Derivation of Human Appraisal Experiment Selection Criterion

A complementary derivation is proposed in this work to support estimation of the ordered
logit model. The ordered logit model can be written as:
Pe(R, =R, )=, B)=Flk,-x,B)-Flk, -x,p). (48)
where R,; is the discrete rating for respondent, or block, n (of N blocks) and configuration i (of B
configurations), k is an ordered logit cutpoint, p is a rating category (of P categories, such as 1-
10), and F' is the Cumulative Distribution Function (CDF) of the logistic distribution (this CDF
can be replaced with the standard normal CDF, @, if the ordered probit model is to be used).
To enable selection of a D-optimal design to support the ordered logit model, an expression
for the information matrix (needed to calculate the D-criterion) that can be estimated without
prior knowledge of the resulting model parameters, i.e. B, is needed. In general, the information

matrix for the ordered logit model can be expressed as (Liang and Zeger, 1986):
N
M=>D/V,'D, (4.9)
n=1

where V), is the asymptotic variance-covariance matrix for block »n. D, is the derivative of 7, with

respect to B:
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D, =D, (B)=dnr,(B)/dB, (4.10)

where the (P—1) vector of ratings probabilities for a single individual »n for configuration i is

!

given as nm.:(ﬂml,ﬁm,...ﬂnw_l) and nn:(nnl,nnz,...nw). The asymptotic variance-

covariance matrix, V,, for the ordinal model, such as ordered logit, can be written in block-

matrix form as (Williamson et al., 1995):

V11 V12 VIT
A ACERCIR 4.11)
VTl VT2 VTT

!

where the on-diagonal matrices are multinomial covariance matrices, V, = diag(nm. )— n,.m ., and
the off-diagonal matrices, V, (¢ # ), are the within-block covariance matrices between any two
responses in a block. These matrices are generally calculated as part of the model estimation
process using collected data; therefore, a method for estimating them for experimental design
purposes must be devised.

The on-diagonal multinomial covariance matrices (V) can be calculated from knowledge of

the ratings probabilities; however, the within-block covariance matrix (V) requires additional

derivation. In general, the V,, matrix follows the form (Liang and Zeger, 1986):

v, =(B")p, (B"), (4.12)
where P is the “working” correlation matrix, and B is a matrix determined by the correlation
structure. The selection of B and P depends upon the form of the model to be estimated with the
experimental response data (Hines, 1997; Hines, 1998; Zorn, 2001). The proper specification for

P,, for the random-effects ordered logit model has been found to be the “exchangeable”
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structure. In the “exchangeable” structure, P, is a diagonal matrix with all diagonal elements of
P,, = «, implying equal correlation among all observations in a given block. In this formulation,
a 1s the pair-wise correlation coefficient between elements in the V, matrices, similar to the
correlation coefficient p applicable for the scalar variance-covariance matrix of Eq (4.6). The
recommended specification for B for the random effects model is V,, (Hines, 1997; Hines, 1998).

Therefore V,, can be written as:

v, =(v"?) diag(a)(V}?) 1#5. (4.13)

ts 73 23

In viewing Eqgs.(4.10), (4.11), and (4.13), it can be seen that in order to calculate M,

estimates for @, and « are required. The pair-wise correlation coefficient « is not reported in the

random-effects ordered logit modeling process, which provides a challenge to determining a
reasonable estimate for « from previous experiments or the literature. However, the coefticient p
is reported in the modeling process, and it has been found that « can be estimated using p by the

relation a ~ ,0/ P to enable calculation of V. This estimate is based upon the assumption that p

should “distributed” over the P ratings categories in the working correlation matrix, such that the
influence of « and p are equivalent in the respective information matrix calculations of Eqs. (4.7)
and (4.9). Because a ratings prediction model is not available before the experiment is
conducted, the rating category (e.g., 1-10) probabilities, 7w, , must be estimated directly. They can
be estimated from prior knowledge from a previous experiment, or if no prior knowledge is
available, an equal probability of each rating category can be assumed. Because estimates of the
entire response probability vectors, #,;, are needed to calculate V, and D, to compute M, such

experimental designs are referred to as Bayesian designs (Atkinson and Donev, 1992).
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4.3.3 Verification of the Experimental Design Selection Criterion
To verify the formulation of M for the ordered logit model and the estimates for m, and «,

two test data sets with equal probability of each rating (i.e. ratings 1-10) are created. In one data
set, the average correlation p of ratings from a single respondent is set to 0, (data set 1) and in the
second data set, the ratings were distributed such that the average ratings correlation, p, is 0.40
(data set 2). The purpose of this verification is to ensure that the proposed calculation of the
information matrix (Eq.(4.9)), in which the ratings probabilities are estimated a priori and the
correlation of responses is estimated using ¢, is consistent with the information matrix calculated
from actual data. Ordered Logit models are estimated using both data sets in the statistical
modeling software Stata™ (Stata Corporation, 1996-2008). The information matrices calculated
by Stata (labeled staf) are compared to the information matrices calculated using the proposed

derivation using estimates for mr, and « (labeled der). For data set 1, the information matrices

calculated by Stata and Eq. (4.9) are identical, and the determinants of M identical (dety,, =
detger Zl.l6x1020). For data set 2, the difference in the determinants is 7.62% (detsmm=5.15x10l7,
dety=5.54x10""), most likely because only the average correlation could be controlled in the
created data set and « is approximated as described previously. A study of the sensitivity of the
algorithm to misspecification of p has been investigated for the GLS algorithm by Goos (2002).
He has found that a misspecification of +50% results in only a 4-8% error in the information
matrix. In a further study (Kessels et al., 2008), it was found that the actual experiment design
selection was robust to larger misspecifications of p (range of 0.1 to 0.9), indicating that an exact

estimate of p is not needed for design selection purposes.
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The challenges of optimal experimental design for a random-effects ordered logit model can
be understood through a comparison to the generalized least squares approach presented at the
beginning of this section. In the least squares approach, the on-diagonal terms of the V,, matrix in
Eq. (4.6) are scalars of estimated with-in block and across-block variances, whereas in the
ordered logit approach, the on-diagonal terms of the V, matrix of Eq. (4.11) are matrices which
are a function of estimated response probabilities. Comparing the off-diagonal terms of Eq. (4.6)
and Eq. (4.11) indicates that the least squares method requires only a scalar estimate of across-
block variance whereas the ordered logit requires estimation of a matrix (i.e. V). This
comparison indicates the difficulties in design optimization for ordinal data models in that the
computation is more expensive due to the replacement of scalar quantities with matrices, and that

estimates of bothz, and o are required.

4.4 OPTIMAL HUMAN APPRAISAL ALGORITHMIC IMPLEMENTATION

The algorithmic implementation for selecting the optimal blocked split-plot design follows
the approach provided in (Goos and Vandebroek, 2004), with the least squares information
matrix of Eq. (4.7) used in their approach replaced with that of Eq. (4.9) for the new approach. In

general, the experimental design is built sequentially, with points from the candidate set (G)
having the highest prediction variance V&I‘{]%(X)} added to the experiment to maximize the D-

criterion. The prediction variance for any value of f(x) must be calculated to determine the point

from G to add to the experiment. For the GLS model, f(x) is a vector and the prediction variance
can be calculated as Var{lé(x)}: o f '(X)M"lf (X); however in the case of the ordinal model, each

f(x) results in a matrix of terms for each of the (P—1) rating categories. The prediction variance
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for any point to be added to the design can be estimated using the delta method for asymptotic
variance (Tamhane and Dunlop, 2000):
5 dz,(B)) o[ 47,(B)
variR(x)(, = varir,, ~| —2=L | M| 22 (4.14)
As seen in Eq. (4.14), the prediction variance is calculated for each of P ratings categories,
leading to a vector of prediction variances for each design point f(x). Therefore, the design point

with the highest summed fotal prediction variance is added to the experiment:
n P
varlR(x)}= 3. varlr, (B), 415)
p=l

To implement the algorithm, a simplified method of expressing M a given in Appendix B. An

overview of the algorithm is shown in Figure 4.4 and described as follows:

1. Generate a set of Candidate points, G, for the product attributes, A, from which to select
the optimal set. G is typically the points of a full factorial experiment in the number of
factors desired. Specific factor combinations to be specifically excluded from the candidate
set, or specifically included in the final experiment design are also specified.

2. Create an experimental design for the desired human whole-plot factors, S. This design
can be a full or fractional factorial in human attributes, depending upon the size of S and the
number of respondents. Randomly assign the whole plot factors to each block, 7.

3. Create a starting design. To begin building the experimental design, a starting design is
composed of a randomly selected small number of points from the candidate set and
randomly assigned to the blocks. Compute the initial information matrix, M, and the

determinant, det(M).
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4. Determine the point in the candidate set G with the largest prediction variance,
Var{lé(x)}. Randomly assign this point to a block, and update M and det(M). Repeat this

process until each block receives B configurations, forming an experiment design of size M.
5. Evaluate exchanges. Since the design was started with a random selection of points, there
may be points in the candidate set G which will increase the D-criterion. Each point in the
current design is evaluated to determine if its replacement by a point in the candidate set will
increase the D-criterion. This is continued until no further increases can be established.
6. Record the D-Criterion and repeat steps 3-5. Steps 3-5 constitute a single try, each with a
local maximum for D-Optimality based on the starting design of Step 3. T tries (e.g. 100

tries) can be conducted to search for the global maximum.

Generate Candidate Set (G) for A

v

Create Experiment Design for S

v

Create Starting Design

v

Add Point from G
w/ largest prediction variance

Does Size of
Design = M?

YES

v

Evaluate Exchanges |«

Can det(M) be
increased?

—[ Record max det(M) & X, repeat T times

Figure 4.4: Algorithmic Implementation of the Optimal Experimental Design Method
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4.5 AUTOMOTIVE OCCUPANT PACKAGING CASE STUDY

A case study using an automotive occupant packaging human appraisal is used to demonstrate
the methodology, as well as the advantages of using the blocked split-plot experimental design
methodology for human appraisal. The occupant packaging appraisal is performed on a
Programmable Vehicle Model (PVM) as shown in Figure 4.5, which is capable of creating a wide
range of parametric representations of an occupant package through a computer controlled

interface.

2y : 5 "-!"ﬂ
Figure 4.5: Programmable Vehicle Model (PVM) (Wang et al., 2006)
4.5.1 Design of PVM Experiments

A human appraisal experiment has been previously conducted by Ford Motor Co. using the PVM
to evaluate occupant package design specifically for headroom. In the experiment conducted,
headroom design is characterized by three dimensions as defined by the Society of Automotive
Engineers (SAE) J1100 (Society of Automotive Engineers, 2002): L38 (frontal), W35 (lateral),
and H61 (vertical). These three product factors (x =[E,, Es, E3]) were used to create a full 34"
factorial experiment (i.e. 36 trials) which was given to each of 100 human appraisal respondents,
for a total of 3600 ratings responses. The responses were given on a (discrete) scale of 2-10, with

10 representing highest satisfaction with the headroom, and 2 representing the least satisfaction,
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leading to P=9. Human profile (S) factors were not used in the design of the experiment;
however, the S were treated as covariates in that the human profile of each person was recorded,
but no attempts were made to control the profiles of the respondents in the experimental design
process. The data set with ratings responses were used to create a full quadratic response surface
model, used to predict a customer headroom rating for a given occupant package design and a
given target market human. This data set is referred to as data set Full in the case study.
Conducting an experiment of this size was very time consuming and costly for Ford, and
methods to conduct more efficient experiments are needed. Using this example in which data has
already been collected, we will demonstrate that the experimental design methodology presented
in this chapter allows selection of an experimental design which can be used to estimate a
comparable model with significantly fewer experimental design points than used in the Full data
set. In the new methodology, the 324! factorial experiment forms the candidate set for the
optimization algorithm. Additionally, a set of potentially significant human attributes, S, is
included in the design of the experiment as whole-plot factors. The human profile attributes
included are respondent gender (Gen) and stature (Stat). An issue to address in the experimental
design of S is that exact levels cannot be practically achieved for all S (e.g. stature) in a real
human appraisal design. In this case, human attribute ranges are assigned to a level in the design
of an experiment, for example statures between 54”-57” are coded as the -1 level and those
between 737-76” are coded as the +1 level. These human attribute “bins” are needed to ensure
that the proper respondents are selected for the experiment; however, the actual human
measurements (e.g., stature, weight, age) are used in the model estimation process. A criterion
for selecting the bins is to ensure that 5 and 95 percentile human-measurement respondents of

the target population are included in the bins. If more levels (i.e. bins) can be afforded,
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respondents closer to the human mean (e.g. 50 percentile) should be included; however, it is
most important from a D-optimality perspective to include 5 and 95 percentile respondents. At
the time of the experiment, additional human and socio-economic attributes of a respondent can
be recorded and treated as covariates in the modeling process.

To demonstrate the ability of the new method to manage the size of an experiment, the
number of configurations given to each respondent is reduced from 36 to a block size of 18. The
whole-plot experiment design is composed of two levels of gender (i.e. male, female) and four
levels of stature (using stature ranges), leading to a 2'4' whole plot experiment design. Two
respondents (i.e. blocks) will be assigned to each whole plot for a total of 16 respondents (or
blocks, n), leading to a total of M=288 total trials, vs. 3600 in the Full experiment described

above. A summary of the experimental design is shown in Figure 4.6.

D:moszraphic Gen:1 Gen:1 Gen:1 Gen:1 Gen:2 Gen:2 Gen:2 Gen:2
ttributes
(Whole-plots) Stat:1 Stat:2 Stat:3 Stat:4 Stat:1 Stat:2 Stat:3 Stat:4

tnt P n3 3" nS5 " n7 | [" n9 | ['n11 }| ['n13 || ['n15 |

Product L N N N N N N N l

Att’ibutes I_____': I_____': I_____': I_____': I_____': I_____': I_____': I_____':
(Split-plots) |} n2 I n4 I no6 I n8 | 1 n10 | n12 n14 n16

Figure 4.6: Occupant Package Blocked Split-Plot Human Appraisal Experiment

The exact form of the model to be estimated is known for this case study from previous work,
enabling specification of model form f(x) as defined in Eq. (2). The model form contains full
quadratic terms for E (linear, squared, interaction) and linear terms for S (no S'E interactions).
With f(x) specified, the algorithm can be used to select the best 18 configurations to give to each
of the 16 respondents. As discussed in Section 4.3 a prior ratings probability estimate is needed

to calculate M. For this study, it is assumed that the probability, 7, , of each rating R, for each

nip >

respondent n and each configuration i is equally probable, ie. 7, = 1/9=0.11. Also, it is
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known from a previous experiment that the correlation among ratings of a single respondent is
0=0.3. The use of equal ratings probabilities assumes there is no prior information about the
ratings responses. If prior information is available, (e.g., middle ratings are more likely than
extreme ratings) such information can be incorporated to improve the experiment design. In this
experiment, the best experiment as selected by the algorithm presents each respondent with a
different set of configurations, demonstrating that the use of the same 18 point fractional factorial
experiment (of the original 3°4'=36 experiment) for each respondent is not optimal for a human
appraisal experiment. The data set with observations based upon this design is labeled D-Opt,
with an example of the configurations assigned to the first three respondents shown in Appendix
C. For comparison, an additional set of experimental designs is created. In these designs, 16
respondents are randomly selected from the original 100 respondents and 18 observations are
randomly selected from the 36 total observations for each respondent. A total of 100 such
random experiments are created, such that experimental design comparisons are made to the
mean random experimental design, to ensure that any comparisons are made based upon a

typical random experiment and not an outlying design. This set of experimental designs is

labeled Rand.

4.5.2 Results of Random-Effects Ordered Logit Model Estimation

With the three experimental designs established, a random-effects ordered logit model is
estimated using each of the three data sets. A summary of the experimental efficiency as
measured by D-efficiency, model fit as measured by p,° (Train, 2003), and average rating
prediction error (Johnson and Albert, 1999) are shown in Table 4.1. In the case of the Rand

experiment designs, the model fit is evaluated using experimental data with a mean D-efficiency.
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Table 4.1: Summary of Experiment and Model Statistics

Model Fit icti

e Nun_1ber D-Efficiency o 92 It | Prediction
xperiments Po Error
Full 3600 — 0.373 2.80%
D-Opt 288 79.7% 0.485 6.90%
Rand 288 35.8% + 1.6%" 0.375 14.60%

* The mean and * 1 standard deviation are shown

D-efficiency is a measure of the relative efficiency of an experiment versus a base experiment,
for example the Full experiment in this work. As seen in the table, the D-efficiency of the D-Opt
experiment is high, ensuring low variance estimates of the model parameters, whereas the mean
D-efficiency of the Rand experiment is quite low and will result in poor model parameter
estimates. The p,” statistic varies between 0 and 1 and is a function of the log-likelihood of the
estimated model, with higher p,” indicating a better “model fit”. The p,” for the D-Opt model is
significantly higher than that of the Full model. The explanation for this can be provided by
reviewing the assumptions of ordered logit modeling and the nature of ratings. Ratings tend to
have higher variance in the middle ratings versus those at the extremes (McKelvey and Zavoina,
1975). D-optimality tends to bias towards including those configurations with the most extreme
settings. Thus by selecting the D-Optimal configurations from the full PVM data set, a more
efficient estimation of the model B parameters, and hence utility, is accomplished for the
assumed model. The fit of this mean Rand model is similar to the Full model, which is
consistent with the fact the points were randomly selected, so similar model fits are expected.
The prediction error is the ratings misclassification error when using the three models to estimate
ratings in the full 3600 observation data set. The effects of the prediction error on the resulting
ratings predictions can be seen graphically in Figure 4.7. As shown, the prediction error of the

mean Rand model is significantly higher than the other two models.
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Figure 4.7: Comparison of Ratings Predictions to Actual Ratings

The estimated model parameters, 3, for the utility function are shown in Table 4.2, along with
the standard errors of the parameters (the cut points, k, are not shown since these estimates are
similar for all three models). We can compare model attributes, such as the relative magnitudes
and signs of parameters and the general interpretation of the models, in addition to the model
statistics. Considering the model estimated on the Full data set to be the baseline, it is seen that
the model estimated using the D-Opt data set is close in interpretation. The signs of the
parameters agree (except for the insignificant L38*W35 interaction). The ranking of parameter
importance as measured by the parameter magnitudes is the same in both models. Vertical
headroom clearance (H61) is found to be the most important dimension influencing a
respondent’s perception of headroom. The next most important dimension is frontal headroom
clearance (L38), followed by lateral headroom clearance (W35). The human attributes indicate
that taller respondents and female respondents (gender is a dummy variable: 0=male, 1=female)
systematically respond with lower headroom ratings (on average) than shorter and male
respondents, respectively. The ratio of parameters (e.g., W35/H61) is similar in both models,
with the exception of L38 which is more important in the D-Opt¢ model. The reason for this could

be explained by the improved model fit statistic, py°, of the D-Opt model as described previously.
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Table 4.2: Summary of Headroom Rating Model Parameters

Full Model D-Opt Model Rand Model

coef. std. err. coef. std. err. coef. std. err.
L38 2.61 0.368 450 | 0731 * 2.49 1.449
W35 2.03 0.359 2.11 0.970 2.83 1.376 *
H61 12.09 | 0.491 13.01 | 2,165 ** 10.61 1.838 *
L38? -0.74 | 0.292 -0.76 | 0.852 -0.23 1.111 **
w35’ 123 | 0291 | -1.08 | 1.562 214 | 1.104 *
H61? -2.55 0.354 240 | 1.693 -0.89 1.325 *
L38*W35 0.19 0.211 -0.16 | 0.820 0.13 0.826
L38*H61 -0.32 0.270 0.16 | 0.949 -1.15 1.093 *
W35*H61 0.49 0.261 0.20 | 0.857 0.85 1.010
gender -0.78 0.494 -0.56 | 0.726 0.14 1.115 **
stature -2.24 1.008 -1.81 1.425 -0.94 2.763
resp. o, 2.95 0.452 1.73 0.780 2.57 1.071

The model parameters in the D-Opt and Rand models are compared to those in the Full
model using a #-test, in which the null hypothesis is that the model parameters are not different.
The model parameters in which the null hypothesis can be rejected with 95% confidence are
marked with *, whereas those rejected with 90% confidence are marked with ** in Table 4.2. As
seen in the table, the Rand model contains significantly more parameters which differ from the
Full model than the D-Opt model. Such results are expected due to the lower D-efficiency of the
Rand experiment, which results in less precise estimates of the model parameters than the higher
efficiency D-Opt model.

While the D-optimization algorithm has been shown to be effective for this example, its true
utility is in experiments with large numbers of product attribute factors (e.g., 6-9) and several
human attributes. In such a case, the candidate set will be several hundred to several thousands of
potential points, and the task of choosing the appropriate set of points for each respondent is not
as straightforward as in the previous example. To demonstrate, an experiment designed for the

PVM to elicit preferences for the roominess and ingress/egress of the vehicle occupant package
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is used. In this simplified experiment, eight product factors are examined by eight respondents,
and it is desired to estimate all linear, quadratic, and all 2-factor E‘E and E-‘S interactions.
Respondents are selected based upon three human factors at two levels (a 2° full factorial human

experiment). The experiment design for the product attributes is conducted by selecting 18 points
from a 3° full factorial (i.e.C.S,) for each respondent. In this example, the D-optimal

experimental design is found with the algorithm, and 100 randomly selected experimental
designs are also generated for comparison as in the previous example. In this comparison, the D-
optimal experiment is the baseline for the efficiency comparison, since comparison to an
experiment in which each respondent receives the 3® full factorial, product factor experiment (i.e.
6561 configurations) is not a realistic baseline. In Table 4.3, the mean D-efficiency of the 8
factor random experiments in this example is compared to the mean D-efficiency of the random
3 factor experiments of the previous example. As shown, the efficiency of the random 3 factor
experiment has a mean D-efficiency of 45.0%, whereas the random 8 factor experiment has a

mean D-efficiency of 29.4%. The variance of the random 8 factor experiment is higher than the 3

factor experiment as would be expected in selecting 18 points from 6561 ( C,s,, ) versus 36 (Ci )

points for each respondent. As shown previously in Table 4.2, reduced D-efficiency results in

reduced precision in estimating model parameters.

Table 4.3: Comparison of Three Factor to Eight Factor Human Appraisal Experiment

Product Factors 3 Factors, 3 Levels 8 Factors, 3 Levels
Human Factors 2'4' 2°

mean st.dev. mean st.dev.
D-Optimal Exp. 2.24E+59 8.10E+140
Random Exp. 6.17E+52 | 5.3E+52 | 9.77E+105 | 1.1E+107
D-efficiency Random 45.0% 21% 29.4% 4.2%
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4.6 DISCUSSION AND SUMMARY

An algorithmic approach for selection of the optimal design of experiments for human appraisal
experiments has been developed, demonstrated, and validated in this chapter. An algorithmic
approach is necessary for human appraisals due to the large number of potential design and
human attributes, coupled with issues of respondent fatigue in such experiments. Human
appraisal experiments have been shown to be unique in that the experiment response is a
function of both the product attributes and the human attributes of the respondent. They are
characterized as split-plot designs, in which the respondent human attributes form the hard to
change whole-plot factors while the product attributes form the split-plot factors. The
experiments are also characterized by random block effects, in which the configurations
evaluated by a single respondent form a block. The experimental design algorithm presented
seeks to identify the experimental design which maximizes the determinant of the Fisher
Information Matrix, or D-criterion, of a given design, assuming that the model to be estimated is
an ordered logit model.

The case study and subsequent discussion demonstrate many of the key features of the
optimization algorithm. Most importantly, it was shown that the algorithm allows efficient model
estimation with a minimal number of experiment points. For the vehicle headroom appraisal,
previous methods had used 3600 experiment points, while a comparable model was estimated
using 288 experiment points selected using the proposed algorithm. Also, it was shown that
randomly selecting 288 points from the full 3600 point experiment produces an inferior model,
and the utility of the algorithm increases as the number of experiment factors increases. The
optimization algorithm distributes a different set of experiment points to each respondent,

demonstrating that using a standard fractional factorial to reduce the number of trials per person
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is not the best alterative for human appraisals. This methodology is used to design a human
appraisal experiment to understand preferences for automobile occupant package design in
Chapter 5. The data collected from this human appraisal is used to build random-effects ordered

logit models which are utilized in the Bayesian Hierarchical Choice Model of Chapter 6.
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Chapter 5
MULTIVARIATE STATISTICAL ANALYSIS METHODS FOR
HUMAN APPRAISALS

In Chapter 4, an algorithmic method to design human appraisal experiments was presented. In
this chapter, a human appraisal experiment is designed using the algorithmic method, and
subsequently conducted and analyzed to understand preferences for automobile occupant
package design. The experiment is conducted on the Ford Programmable Vehicle Model (PVM)
to understand preferences for occupant package roominess, ingress and egress. The experiment is
conducted to build predictive parametric models of consumer preferences. While the experiment
is designed specifically to support random-effects ordered logit modeling using the developed
algorithm, several issues must be addressed to obtain useful predictive models. An issue with this
class of experiment is that the heterogeneity of the experimental respondents contributes to the
response, and this heterogeneity must be understood to separate the influence of design factors
from that of human factors. Latent class analysis is used to combine multiple responses of the
human appraisal respondents to an appropriate set of measures. Cluster analysis and smoothing
spline regression are used to gain an understanding of respondent rating styles and preference
heterogeneity. These analyses allow estimation of ordered logit models for prediction of
consumer occupant package preferences. Methods from machine learning are also investigated as
an alternative to parametric modeling. The methods presented in this chapter are designed to

understand consumer heterogeneity and address issues unique to human appraisal experiments.
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The chapter is organized as follows: Section 5.1 introduces the problems in analyzing human
appraisal experiments; Section 5.2 describes the PVM experiments conducted; Sections 5.3 - 5.5
describe the latent class, clustering, and smoothing spline analyses; Section 5.6 presents the

random-effects ordered logit models; and Section 5.7 presents methods from machine learning.

5.1 INTRODUCTION

Chapter 4 outlined the process for designing human appraisal experiments, and used a three
factor headroom experiment conducted using the Ford Programmable Vehicle Model (PVM) to
demonstrate the methodology. In this chapter, a comprehensive experiment was conducted using
the Ford Programmable Vehicle Model (Wang et al., 2006) to determine preferences for
automobile occupant package design, specifically regarding the roominess, ingress and egress
quality of the package. In the experiment, each respondent is presented with several package
configurations, for which they evaluate and express their opinion in the form of a rating (e.g., 1-
5, 0-10), a standard method for quantifying preferences for subjective attributes (Keeney and
Raiffa, 1993). The intent is to use the data collected in the experiments to build ordered logit
models to predict consumer preferences (i.e. ratings) for a given set of consumers and for a given
occupant package design.

Analyzing and creating models from data collected from a human appraisal experiment
presents unique issues not encountered with data collected from the typical industrial and
scientific experiments usually considered in design of experiments methodology (Box et al.,
2005; Montgomery, 2005). The key issues in human appraisals are that the responses are more
difficult to elicit, respondents may utilize different rating styles, the shape of the response-factor
curve may not be approximately linear, and interactions may be highly significant. To address

these issues, several analysis and modeling methodologies are employed in this work to combine
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multiple consumer responses into a set of combined measures, to understand the influence of
respondent heterogeneity on rating responses, and to gain further insight into the experiment
using alternate data analysis methods. In the human appraisals, multiple responses are often
collected from the respondent for a single sub-system design. The reason multiple responses are
collected for certain sub-systems is because it can be challenging to devise a single survey
question to capture the respondents’ true opinion of the subsystem design as a whole, and
multiple questions are used to assess opinion for different aspects of the design. To determine a
measure to use in the modeling process, Latent Class Analysis (LCA) (McCutcheon, 1987) is
used to create a combined subsystem measure for each respondent to fully describe his/her
overall opinion of the subsystem design. Heterogeneity of the survey respondents has much
influence on the rating responses given. The effect of systematic heterogeneity, which is
heterogeneity that can be captured with a human variable in the model, is investigated using
Smoothing Spline Regression (SSR) (Wood, 2004); random heterogeneity, which is heterogeneity
not directly observed but rather captured in a distribution of respondent-specific intercepts, is
investigated using Cluster Analysis (CA) (Johnson and Wichern, 2002). The previous analyses
allow estimation of parametric Random-Effects Ordered Logit (RE-OL) models for the prediction
of ratings for a given population and given package design, to be used in the Bayesian
Hierarchical Choice Modeling approach of Chapter 6. In addition to utilizing the results of the
previous analyses, interaction effects are also investigated in the RE-OL modeling process. In
addition to the parametric ordered logit models, methods from machine learning are explored.
Decision trees and Bayesian networks (Witten and Frank, 2005) are used to gain insights into the
data not easily seen in the previous analyses or parametric modeling methods. The methods

developed in this work for the analysis of data collected from human appraisal experiments
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complement our work in Chapter 4 on human appraisal experimental design. The methods
presented in this chapter provide a clear understanding of the heterogeneous preferences within a
consumer population, applicable for understanding preferences for system, subsystem, or

component design.

5.2 PVM ROOMINESS/INGRESS/EGRESS EXPERIMENTS

While a human appraisal experiment was presented in Chapter 4 for vehicle occupant package
headroom, it is desired to complete a comprehensive set of human appraisal experiments to
develop models for the overall roominess, ingress, and egress preferences for the vehicle
occupant package. The full design of the Programmable Vehicle Model (PVM)
roominess/ingress/egress experiment is created using the optimal design of experiments (DOE)
methodology of Chapter 4. The combined experiment consists of eight product factors,
determined from a mapping of customer-desired attributes (A) to engineering attributes (E) , to
influence roominess, ingress, and egress. The eight factors used in the human appraisal
experiment correspond to dimensions defined for control of the Ford Motor Co. PVM (note:
SgRP is the Seating Reference Point, which is a fixed point in space within the vehicle interior to
serve as a measuring reference point, as define by SAE J1100 specification (Society of
Automotive Engineers, 2002)):

1. E;: SgRP to Hinge (HNG¥)

2. E»: SgRP to Rocker Y (ROKYy)

3. E5: SgRP to Heel Z (HELy)

4. E4: SgRP to Ground Z (GRDyz)

5. Es: Sill to Heel (StoH)
6. Es: SgRP to Roof Z (HRz)
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7. E;: SgRP to Front Header X (HRY)
8. Ejg: SgRP to Side Rail Y (HRy)

The relationship among the product attributes and roominess and ingress/egress is illustrated in

Figure 5.1.

m ROK, HR;  HRy HRy StoH HEL, PtoH GRD, Woe\VIXe)\I= A @ Nu rall-{0as=t)

Rocker Vertical  Frontal  Lateral Sillto Heel  Pedal  Ground

Height Headroom Headroom Headroom Heel Clearance Clearance Clearance

Figure 5.1: Relationship Among Product Attributes and Roominess/Ingress/Egress

All product factors, E1-Eg, assume three levels to create a response surface ordered logit model,
in accordance with the power law response assumption discussed in the previous chapter. The

three levels assumed by each product factor (E) are shown in Table 5.1.

Table 5.1: Levels of Product Factors (E) used in PVM Experiment (mm)

Level HNGy ROKYy HEL, GRD, StoH HR; HRx HRy
-1 800 380 175 450 0 777 241 122
0 725 450 288 625 70 877 366 197
+1 700 520 400 800 140 977 491 272

Three human attributes have been hypothesized to influence roominess/ingress/egress opinions:

1. §i: Gender (Gend)

2. S>: Body Mass Index (BMI)

3. S5: Stature (Stat)
In this experiment, gender assumes two levels (i.e. male, female), BMI three levels (i.e. low,
medium, high), and stature (or height) four levels (i.e. small, medium-small, medium-large,
large), and human attribute bins are used for both BMI and stature as described in the previous

chapter. The levels used for the human attributes are shown in Table 5.2.
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Table 5.2: Levels of Human Factors (S) used in PVM Experiment
Stat: M Stat: F

Gend BMI (in) (in)
-1 Male -1 <24 -1 65-68 58-62
+1 || Female 0 24-30 || -0.33 68-71 62-65
+1 >30 +0.33 71-73 65-68
+1 73-78 68-74

It is desired to estimate the following terms in the resulting roominess/ingress/egress models:

e Linear terms for all design factors (E) and all demographic factors (S) (11 terms)
e (Quadratic terms for all E (8 terms)

e All 2-factor E'E and E'S interactions (28 E-E and 24 E'S terms)

e The ordered logit cut points (all cut points count as 1 term in the X matrix)

The total number of terms, i.e. the size of the f(x) vector, is 72, which is the number of unique
configurations required in the experiment. Based upon previous studies conducted by Ford
Motor Co., it has been found that a respondent can evaluate 18 configurations before fatiguing,
leading to a block size, B, of 18 for each respondent. Based on the number of terms to be
estimated and the block size, the minimum number of unique blocks needed in the experiment is
4. Based on the size of the full factorial demographic design of 24 (2'3'4'=24) and the desire to
have two respondents per demographic class, the experiment requires a total number of
respondents (or blocks), N, of 48, each evaluating 18 configurations for a total experiment size,

M, of 3456. In this experiment, there are also several factor combinations to specifically exclude:
¢ 1o pairing of GRDz=450 and HEL ;=400
e 1o pairing of GRDz =450 and StoH=0
¢ 1o pairing of GRDz =800 and StoH=140

e no pairing of GRD; =800, HEL,=175, and ROKy>380
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With the parameters necessary to run the algorithm of Chapter 4 determined, the experiment is
designed. The complete design for all four unique blocks is shown in Appendix D, Table D.1.

An issue encountered with the full experiment is that the resources required for the full
experiment could not be secured, and therefore only one half of the experiment is conducted. The
D-optimal algorithm is used to identify a two-part experiment in which the first two blocks (i.e.
blocks 1 and 2) of 18 enable estimation of 36 selected model terms, while the second two blocks
(i.e. blocks 3 and 4) are augmented to the original two blocks to allow estimation of the
remaining 36 terms. The 36 model terms selected which can be estimated with completion of
blocks 1 and 2 are as follows:

e Linear terms for design factors (E) and all demographic factors (S) (8 product terms)
e (Quadratic terms for all E (8 terms)

e 2-factor E E interactions from £ ‘E; through E4 Es (19 terms)

e All the ordered logit cut points (1 term)

Conducting the experiment in 2 parts reduces the D-efficiency to 84.6% of the original
experiment. The experimental design for unique blocks 1 and 2 used in this study is shown in
Table 5.3. Blocks 3 and 4 are documented in Appendix D, Table D.2; human appraisals for these
two blocks were not completed in this work due to PVM resource constraints. Because only
blocks 1 and 2 will be completed in this work, a fractional factorial experiment for the human
attribute whole-plots (S) is needed. The D-optimal algorithm is used to identify the most efficient
fractional factorial design for the demographic attributes shown in Table 5.4. A total of 30 terms
can be estimated from the whole-plot demographic experiment:

¢ Individual block-effects (24 terms)



Linear terms for demographic factors (S) (3 terms)

2-factor S'S interactions (3 terms)

Table 5.3: Block 1 and 2 Experimental Design for Product Factors (E)
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E1 E2 E3 E4 E5 Ee E7 Eg
SgRPto | SgRPto | SgRPto | SgRPto | Silito | SgRP to | SgRP to SgRP to
Hinge RockerY | HeelZ | GroundZ | Heel Roof Z | Frt Hdr X | Side Rail Y
(HNGY) | (ROKy) | (HELz) (GRDz) | (StoH) | (HR7) (HRx) (HRv)
800 380 175 625 0 807 241 122
700 380 400 800 70 977 241 122
700 380 175 450 140 977 241 122
800 520 400 625 140 977 366 122
800 380 400 625 0 807 491 122
700 520 400 625 0 807 491 122
700 520 175 625 140 877 491 122
800 380 400 625 140 877 491 122
725 450 288 625 140 977 491 122
800 520 400 625 0 877 241 197
700 380 175 800 0 807 241 272
800 380 400 800 70 807 241 272
800 520 288 800 0 977 241 272
800 520 400 625 140 807 366 272
700 450 175 450 140 807 491 272
800 380 175 450 70 977 491 272
700 520 288 450 140 977 491 272
700 380 400 625 140 977 491 272
700 520 400 625 140 807 241 122
800 380 288 450 70 977 241 122
700 380 400 625 140 807 366 122
800 450 288 450 70 877 366 122
800 380 400 800 0 977 366 122
800 520 175 625 0 807 491 122
700 380 175 800 0 807 491 122
800 380 175 800 70 977 491 122
700 520 175 625 0 807 241 197
700 520 400 800 70 807 491 197
700 520 400 800 0 807 241 272
800 380 175 450 140 807 241 272
700 380 175 625 140 807 241 272
725 520 175 625 70 877 241 272
800 520 175 450 140 977 241 272
700 380 288 625 0 877 491 272
700 520 175 625 0 977 491 272
800 450 400 625 0 977 491 272




Table 5.4: Experimental Design for Demographic Attributes

S, S, S;
Gender BMI Stature
(Gend) (BMI) (Stat)
M <24 65-68
M >30 65-68
M >30 68-71
M <24 71-73
M 24-30 73-78
M >30 73-78
F <24 58-62
F >30 58-62
F <24 62-65
F 24-30 65-68
F <24 68-74
F >30 68-74

126

With a complete experimental design for E (i.e. split-plot factors) and S (i.e. whole-plot
factors) complete, the logistics of conducting the experiment are addressed. For each of the 18
configurations presented, the respondent is asked to evaluate the following subsystem designs
and to provide ratings as follows (rating scale to be used shown in parentheses):

1. Ingress: Acceptability (1-4), Effort (1-5), and Space (1-5)

2. Interior: Headroom (1-5), Leftroom (1-5), Kneeroom (1-5), and Roominess (1-5)

3. Egress: Acceptability (1-5), Effort (1-5), and Space (1-5)

An example of the questions give to each respondent is given in Figure 5.2. A complete list of the
questions asked of each respondent, a definition of the rating scale, and the experimental

protocol can be found in Appendix E.
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1. How acceptable is this vehicle configuration for ingress? This is rated on a 1 to 4 scale with
the following definition for each rating as you can see posted in front of the vehicle: 1 is
“very unacceptable”, 2 is “somewhat unacceptable”, 3 is “somewhat acceptable” and 4 is
“‘very acceptable”.

Very unacceptable Somewhat unacceptable = Somewhat acceptable Very acceptable

1 2 3 4

2. What is the overall ease of ingress, for the vehicle? This includes evaluation of stepping up
and passing through the door opening. This question is rated on a 1 to 5 scale, again as you
can see posted in front of the vehicle, with the following definition for each rating: 1 is “very
strong effort”, 2 is “strong effort”, 3 is “moderate effort”, 4 is “weak effort”, and 5 is “no effort
at all”.

Very strong effort Strong effort Moderate effort Weak effort No effort at all

1 2 3 4 5

/\/\/\

Figure 5.2: Example PVM Human Appraisal Questions

An abbreviated example of the recorded ratings for a single respondent is given in Figure 5.3. An

example of the responses for a completed trial of 18 configurations can be found in Appendix F.

Name: 534

Recorded Anthropomorphic and Demographic Information

Gender Height Seated | Weight |Shoe Size |Heel Height|  Age® Current Vehicle BMI
Height
in. in. 1h in. in. Category
F 56.5 35.8 121 10.25 2.0 3 Taurus X 19.21

Recorded Ratings

Ingress Interior Eqress
# Acceptable | Easeleffort | Space |Headroom Left Room {Knee Room (Roominess | Acceptable | Easefeffort | Space
1 1 1 1 4 4 2 1 1 1
1 6000
A 1 1 1 1 4 4 1 2 2 2
//___\\

1

Figure 5.3: Example of PVM Ratings from One Respondent

In addition to the human attributes used in the experimental design, several additional human and

socio-economic attributes (referred to as the set of respondent demographic attributes) are
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recorded at the time of the experiment, including seated height, age, and current vehicle
ownership. Additionally, as noted in the experimental protocol, the respondent is allowed to
adjust the position of the seat, and the respondents’ lateral seat positions and seat back angles are
also recorded. With completion of the experiments and a complete data set for the 24
respondents, random-effect ordered logit models can be estimated; however, data analysis
methods are required to preprocess the data to ensure the most useful models are estimated, as
well as to further understand the data collected. In this work, all factor values are normalized on

the scale [0, 1] for modeling and analysis, except where noted.

5.3 LATENT CLASS ANALYSIS FOR RESPONSE REDUCTION

It is desired to create predictive preference models for each major sub-system attribute, i.e.
ingress, egress and interior roominess, with the collected data; however, in the survey three
responses were collected each for ingress and egress (i.e., acceptability, effort, and space) and it
is not clear how a single measure of ingress or egress preference can be inferred from the
multiple responses. To understand the relationship among the ten responses collected for
roominess, ingress, and egress, a correlation matrix (Table 5.5) is estimated, which indicates

significant correlation among the responses for each response type.

Table 5.5: Correlation Matrix for Ten PVM Responses

Ingress Roominess Egress
accept effort space head left knee room accept effort space
ﬁ i_acceptable 1
5 i effort 0.828 1
£ | space 0.786  0.727 1
_§ headroom 0.568 0.474 0.664 1
£ leftroom 0.244 0.265 0.259 0.223 1
g kneeroom 0.273 0.294 0.249 0.193 0.522 1
n% roominess 0.562 0.527 0.660 0.774 0.549 0.444 1
@ e_acceptabll 0.773 0.739 0.678 0.442 0.256 0.251 0.500 1
%’_‘ e_effort 0.700 0.779 0.629 0.364 0.216 0.247 0.437 0.850 1
w e _space 0.682 0.669 0.824 0.526 0.290 0.238 0.580 0.786 0.744 1
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The following conclusions can be drawn from the correlation matrix and coefficients, 7

1. Responses for the three ingress questions are highly correlated (» > 0.7).

2. Responses for the three egress questions are highly correlated (r > 0.7).

3. Ingress responses are highly correlated to egress responses (r > 0.6).

4. Headroom and leftroom are highly correlated to roominess (» > 0.5).

5. Roominess and headroom are moderately correlated with ingress and egress (» > 0.35).
Based on these observations and the desire to achieve single ingress and egress measures, a
formal analysis of the responses is conducted using Latent Class Analysis (LCA). LCA is used
in this work to identify similarity in rating responses, as opposed to similarity in consumer
populations as in the Discrete Choice Analysis literature (Train, 2003). LCA is a general method
for data reduction for discrete categorical or ordinal data, analogous to factor analysis used for
continuous variables (McCutcheon, 1987). LCA assumes that several discrete variables, such as
the three ratings given by each person for ingress or egress, are indicators of an overall discrete
latent class (LC), such as an overall opinion of ingress or egress. LCA provides a single latent
class response for each subsystem response (e.g. ingress), based upon the value of the indicators.
This predicted LC can be used as the ingress or egress response in a parametric model, such as
the discrete choice model, analogous to the use of factor scores resulting from factor analysis for
continuous variables.

LCA analysis assumes that the several response indicators are correlated, and seeks to divide
the subsystem responses into a number of latent classes such that the indicators are conditionally
independent within each class. Conditional independence implies that the correlation between the
indicators is no higher than “chance” correlation in any class. In order to determine the division

of subsystem responses to LCs, the number of LCs must be defined a priori for model
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estimation. The division of subsystem responses is achieved using maximum likelihood
estimation to estimate the conditional probabilities of each subsystem response given the LC, and

the probability of each LC. A given model can be tested for conditional independence using the

likelihood ratio chi-squared test, L* = 22 n, ln[ J, where n; is the observed cell frequency in

i
m,

1

the cross-tabulation table, and m, is the expected cell frequency. The null hypothesis is that the

indicators are conditionally independent within each latent class. Another statistic to consider is

the index of dissimilarity, Ds, given by Ds:Zabs(ni —m,)/(2M); this measure is the

proportion of observations that would have to change cells for the model to fit perfectly, with a
generally accepted criterion of Ds < 0.05. Among different models (i.e. different assumptions on
the a priori number of latent classes) which display conditional independence, and Ds < 0.05, the
Akaike Information Criterion (AIC), which is a function of likelihood and the number of classes
(through the remaining degrees of freedom (df)), is used for model selection. It is given

by AIC = I’ — 2df ; the model with the lowest AIC is the preferred model, i.e. the model which

balances goodness of fit with the number of model parameters.

LCA is conducted for ingress, assuming the 3 ingress questions (i.e., acceptability, effort, and
space) are indicators of each persons overall opinion of the ingress quality. Different numbers of
latent classes, between 1 and 10, are assumed. The results of each of the ten models are shown in
Table 5.6. Based upon the criteria given for L* and Ds, models with 1-4 latent classes are not
acceptable models (the 5 class model is borderline w.r.t. the Ds measure, but will be considered a
viable model). The models with between 5 and10 latent classes are compared based on the log-

likelihood (LL) and the AIC criteria in Table 5.6 and shown graphically in Figure 5.4. The
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comparison indicates that increases in the number of classes beyond 7 provides no further

increase in the LL, while the AIC criterion indicates that the 7 class model is preferred

considering both the LL and the df.

Table 5.6: Model Fit Parameters for Differing Class Number Assumptions

LC LL df  L? AlIC Ds
1 -2619.39 | 88 | 0.000 | 1217.79 | 0.614
2 -2209.27 | 76 | 0.000 | 421.55 0.384
3 -2047.40 | 64 | 0.000 121.82 0.258
4 -1969.79 | 57 | 0.001 -19.40 0.164
5 -1944.48 | 50 | 0.712 -46.01 0.051
6 -1942.11 | 42 | 0.592 -44.75 0.046
7 -1936.82 | 44 | 0.964 -59.33 0.034
8 -1936.54 | 38 | 0.880 -47.91 0.034
9 -1937.36 | 26 | 0.279 -22.26 0.035
10 -1937.45 | 19 | 0.053 -8.09 0.036
Number Classes
5 6 7 10
-1932 | ‘: 0
1934 i -10
-1936 -20
T
o
2 1938 -30
= Q
X <
T -1940 -40
S
-1942 -50
1944 60
-1946 -70

Figure 5.4: Log-likelihood & AIC vs. Number of Classes

The assignment of cases to the latent classes is accomplished using a classification table, in

which a case is assigned to the latent class in which it has the highest probability of belonging, as

estimated by the conditional probability, 7;, of belonging to each class. Example assignments of

select cases of the 3 individual ingress responses to the seven latent classes are shown in Table

5.7.



Table 5.7: Assignment of Cases to Latent Classes

Resp. Ingress
Number Acceptability

Ingress
Effort

Ingress

Space

Latent
Class

101

1

1

1

103

105

108

110

115

AlWWWWIN

120
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The latent class is used as the response variable in the ordered logit model, just as ingress

acceptability, effort, or space are used. A comparison using the latent class ingress measure

versus the original 3 ingress measures is shown in Table 5.8 using ordered logit models for

comparison (numbers in the Table are ordered logit B coefficients)

Table 5.8: Ordered Logit Coefficient Comparison of Ingress Measures

HEL,
GRD,
StoH
HR;
HRyx
Stat
Age
BMI

,002

Ingress Measure
acceptability  effort space Range latent class
2.017 2.272 1.344 1.34 — 2.27 1.912
-2.026 -2.261 -1.162 | -2.26 — -1.16 -1.875
-1.124 -1.268 -0.731 -1.27 — -0.73 -0.985
2.270 1.745 2.703 1.75— 2.70 2.196
0.550 0.512 0.476 0.48 — 0.55 0.527
-2.814 -2.790 -4.954 |-495— -2.79 -3.150
3.402 2.878 2.493 249 — 340 2.956
-2.382 -1.686 -2.003 |[-2.38 — -1.69 -2.158
0.1886 0.1873 0.1873 0.139

As seen in the models, the parameters in the latent class model are within the max and min range

of the parameters in the models using the three indicators as responses, indicating the latent class

is capturing the effect of all three of the ingress indicators. LCA was also conducted for the three

egress responses, with a similar result to ingress: the preferred number of classes was found to be

7, with L* = 0.99, Ds = 0.045, and AIC = -53.65. LCA was used to create a model for all six

ingress/egress responses, assuming ingress and egress responses are indicators of an overall

opinion of the vehicle opening. This theory is supported by the fact that high correlation was
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found between ingress and egress responses; however, a model with an acceptable Ds measure is
not identified with any number of assumed latent classes. Therefore, it can be concluded that the
three ingress responses are indicators of a respondent’s opinion of ingress, whereas the three

egress responses are indicators of egress opinion.

5.4 UNDERSTANDING FACTOR IMPORTANCE AND RATING STYLE

5.4.1 Analysis of Variation of Rating Responses

In the previous section, latent class analysis was used to understand the relationship among
responses, in situations in which multiple responses are assumed to be related to a single
unobserved latent factor. In this section, methods are used to understand the relationship among
the factors (product and human attributes), respondents, and the responses. In order to understand
how the overall variance in the responses is partitioned among the explanatory variables, an
Analysis of Variation (ANOVA) is conducted. ANOVA analysis is an investigation of how the
total sum of squares, SSt, is decomposed into the sum of squares (SS) contributions from the
model, SSy;, and the error, SSg. The SSy can be further decomposed to understand the influence
of the individual product factors, SStg, and the individual human factors, SSg, including the
block effect attributable to individual respondents. The block effect is the portion of the
respondent response not explained by the human factors, with the effect of different
configurations and human attributes removed. It is realized in a model as a respondent-specific
intercept (i.e. 24 unique intercepts). The magnitude of the sum of squares is a measure of the
contribution of each factor and respondent, as well as the error, in explaining the variation in the

responses (i.e. the ratings). The main effects ANOVAs for the ingress, egress (the latent classes
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of Section 5.3 are used for the response), and the four roominess responses are shown in Table

5.9, including the Partial Sum of Squares (P SS) and F value for each factor.

Table 5.9: ANOVA for the Six PVM Responses

Ingress Headroom Leftroom Kneeroom Roominess Egress
PSS F | PSS F | PSS F PSS F | PSS F PSS F
SSw [Model | 1501.4 77.4211311.8 27.97( 605.1 | 72.88] 369.3 | 7.86 ] 700.5 174.90|1269.8 27.01
Gend | 200  71.09| 422  9.02( 201 332| 045 069] 039 084 | 0.00  0.00
Stat 2727 496 | 1044 744 (1 21.86 12.06| 9.03 4.56| 30.25 21.57| 16.40 3.64
BMI 0.01 : 0.00| 575 : 6.14 | 18.66 1544( 14.31 10.84| 441 472 | 1.25 042
Age 79.56  7.23|17.24 6.14 | 7.97 220 | 48.81 12.33| 25.48 9.09 || 95.77 [10.63
SSr |resp. |356.07 10.22] 98.63 | 11.09| 72.76 | 6.34 | 131.52 10.49|145.36  16.37| 340.74 |11.94
HNGx | 492 1.34]| 036 0.39| 247 205| 165 1.25( 0.62 @ 0.67 | 10.69 | 3.56
ROKy | 1.06 @ 029 ]| 0.35 0.37 |287.97 238.3| 66.86 50.66[ 46.36 49.59| 6.71  2.23
HEL; [210.07 57.28] 3.22 344 | 1.87 | 1.55 || 31.30 |23.71| 3.55 @ 3.80 | 275.19 (91.61
GRDz | 49.27 | 13.43] 0.36 0.38| 193  1.60| 057 @ 043] 0.74 0.80 | 75.03 24.98
StoH | 18.03  4.92| 046 K 050 283 | 234 | 215 @ 1.63| 220  2.36 | 62.79 20.90
HR; |388.72 105.9|812.97 868.1| 18.10 | 14.98|| 4.97 | 3.76(262.16 280.4| 177.86 59.21
HRx | 46.13 72.58] 1.66 1.77| 092 0.76 | 3.21 244| 3.00 327 | 17.30 576
SStrIHRy | 48.58 |73.24] 8.79 | 9.39 | 0.75 | 0.62 | 019 | 0.14| 9.34 | 999 | 18.44 | 6.14
SSg |error | 935.3 238.8 308.1 336.6 238.4 766.0
SS; |total | 2436.6 1550.6 913.2 705.9 938.8 2035.8

Values unshaded: significant at the 0.05 level

As seen in the ANOVA analysis, not every factor is statistically significant, as measured by
the F-test (assuming significance at the 0.05 level). This finding serves as a guide to determine
which factors to include in the random-effect ordered logit models estimated for each response.
The dominant product and human factors are in bold for each response. The analysis also
demonstrates the importance of the respondent block effect. The magnitudes of the SS block
effect versus the magnitude of the SS human factors are approximately equal, indicating that
there is much heterogeneity in responses not captured by the human factors. This unexplained
heterogeneity can be attributed to human or socio-economic attributes not recorded and therefore

not included in the analysis (e.g. income, usage), or individual rating styles. It has been found in



135

previous research that respondents often display distinct rating styles, such as rating
systematically high or low, or displaying different scale usage, i.e. scale usage heterogeneity.
Systematic high or low rating is related to the mean rating for a given person, 14, whereas scale
usage heterogeneity is related to the standard deviation of the ratings for a given person, o ;.
Attempts have been made to identify these behaviors and control for them in the modeling
process (Greenleaf, 1992; Rossi et al., 2001); however, in this work respondents were not given
the same set of configurations (i.e. differing E) to evaluate due to the blocking (the full
experiment contains four unique blocks) and each person is characterized by a different S,

making comparisons of z; and o;,; meaningless.

5.4.2 Analysis of Rating Style using Hierarchical Clustering

For the reasons presented in the previous subsection, a general method to control for rating style
must be developed which does not assume respondents have evaluated the same set of
configurations, and accounts for the influence of S. In the proposed method, the block effect will
be used as a means of comparison among different respondents. The block effect is the portion of
the respondent response not explained by the product or human factors, i.e., it removes the effect
of varying E and S from the analysis. It is estimated in the modeling process as an individual-
level intercept, /,, or in a random-effects model as a distribution (typically Normal) of
individual-level intercepts with mean 0, and variance 7, i.e. &, ~ N(0, 7). A challenge is using
the block effect to understand both systematic rating bias, i.e. high rating style vs. low rating
style, but also scale usage heterogeneity, i.e. selective use of the provided scale. In this work,
these two phenomena are investigated using a Hierarchical Bayesian (HB) approach to

estimating the block effect for each person, as will be described in the Methodology subsection.
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Methodology: The method for using the block-effect resulting from the HB analysis is as
follows:

1. Calculate the block-effect for each person for each response using the HB approach.

2. Use the block-effect to calculate ratings bias, bs,, and scale usage, su,, for each person
for each response.

3. Perform factor analysis on bias and scale usage to determine if they are unidimensional
and an indicator of rating style, or multidimensional, indicating a missing model
parameter (E or S) or other uncontrolled factor in the experiment.

4. Perform Cluster Analysis on unidimensional rating style terms (i.e. bias or scale usage) to
understand the respondent clusters of similar styles (e.g. wide or narrow scale usage).

The key to this approach is the estimation of a random block effect for each respondent. In
standard MLE, a fixed block effect (i.e. individual-level intercept) is estimated for each
individual, ,bﬂ »» Which contains information about bias only; however, the hierarchical Bayes
estimation method allows estimation of a random block effect for each person, /i, which
contains information about both bias and scale usage heterogeneity. In the proposed method, a

three-stage hierarchical prior is set for the random block effect as follows:

level 1 level 2 level 3
prior=plg} 1 1.7, ) p(e, )plBY 10,) (o)
where 8 ~ N(8°.7,) (level 1) . (5.1)
B ~N(0,5,) (level 2)

o, ~ inv.gamma(k30 ,0; ) (level 3)
The three levels indicated in the prior are the observation level (level 1), the person level (level
2), and the population level (level 3). This assignment of priors indicates that the block effect for

each observation for each person (level 1), ,BO,-,,, is distributed normally, with mean ﬂ‘)n and
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variance 7,; the mean block effect for each for person (level 2), /£, is normally distributed with
mean 0 and variance o;; the variance at the population level (level 3), o, follows a inverse
gamma distribution, with specified parameters k; and 6; . The hierarchical priors for levels 1 and
2 are illustrated are illustrated in Figure 5.5. The hierarchical prior relaxes the assumption of a
fixed block effect for each person, and thus allows for understanding both the mean and variance
of the block effect for each person. The mean (4,) provides information about rating bias and

the variance (7,) provides information about the scale usage.

Person Level (2) Observation Level (1)

NOo SN N(p)

0

Figure 5.5: lllustration of Bayesian Priors for Block Effects

An issue with such an approach is that the random block term, ﬁ) i, 18 redundant with the
similarly distributed Logistic error term, s, ~ F(0,0,), creating potential identification issues.

This is overcome in the Bayesian method through the use of the prior which constrains the mean
of the /£, to be zero and places a limit on the variance 7, through the Inv. Gamma prior
specification. Although this approach creates models which over-fit the data (i.e. very small error
&n), the intent of such models is to estimate random block effects rather than to predict ratings.

In order to use the information to study rating style, the sign and magnitude of the mean

block effect for each person, £, provides information on rating bias:
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bs, = 5, ~E(f))= 5. (5.2)

A positive bs, indicates a biased high rating style and negative bs, indicates a biased low rating

style compared to the population. To understand scale usage, su,, a comparison is made between

the variance of each individual’s set of utilities including the block effect and the utilities with

block effect omitted, i.e. the utility variance for the configurations rated by a respondent of a
given S:

su, = V&I‘(Wn + ) )— var(W,). (5.3)

In this formulation, a positive value for scale usage, sn,, indicates wider scale usage, while a

negative value indicates a narrower scale usage compared to the population of a given S.

Analysis of PVM Data: The hierarchical Bayes analysis is used to create models for each of the

six responses (using the latent class responses for ingress and egress), and the bias and scale
usage is recovered for each respondent for each of the six responses. The bias bs, and scale usage
su, for each person are investigated to determine if a systematic pattern exists for each person for
each of their six responses. Factor analysis is used to determine if bs, and/or su, are related to a
single latent factor, i.e. the rating style, or if they are related to multiple latent factors, which
would be indicative of a missing explanatory variable in the model. The number of latent factors
for a given set of indicator variables is determined by the magnitude of eigenvalues of the
covariance matrix: the general rule is that only factors with eigenvalues greater than 1.0 be
retained (Johnson and Wichern, 2002). In addition to the factor analysis Cronbach’s alpha is also
calculated, which is a measure of the reliability of indicators to a factor (Cortina, 1993).
Cronbach’s alpha is a confirmation that the variables are in fact indicators of a single factor, with

a value greater that 0.7 generally used as the metric for unidimensionality. The results of the
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factor analysis conducted on the bias and scale usage for each of the six responses are shown in
Table 5.10. The factor analysis conducted on the bias terms indicates that there is only one latent
factor, consistent with the rating style hypothesis, while the analysis of scale usage terms
indicates two latent factors, indicating scale usage is not related to an individual rating style. The
Cronbach’s alpha confirms that the bias indicators are related to a single factor with a high
reliability of 0.91.

Table 5.10: Factor Analysis for Block Mean and Variance

Bias bs, Scale Usage su;,
Factor1 Factor1 Factor2
Ingress 0.789 0.695
Headroom 0.793 0.420
Leftroom 0.735 0.685
Kneeroom 0.757 0.566
Roominess 0.945 0.725
Egress 0.744 0.783
Average correlation 0.629 0.234
Cronbach's alpha 0.911 N/A

In the case of bias (bsn), cluster analysis is used to identify the dominant rating styles of the
respondents, i.e. systematically high or low raters. For the bias terms, cluster analysis is
conducted using both the non-hierarchical k-means cluster analysis (assuming three clusters),
and complete linkage hierarchical clustering (an a priori assumption of number of clusters is not
required) to cluster similar rating styles. Because scale usage does not satisfy the hypothesis of
indicating consistent respondent-level rating styles, it is not further analyzed. The results of the
k-means cluster analysis, with the bias cluster assignments, are summarized Table 5.11. The
results of the complete linkage hierarchical clustering analysis (based upon a Euclidean distance

measure) are shown in Figure 5.6.



Table 5.11: k-means Cluster Analysis of Bias

Ingress Interior Room Egress
id LC headrm leftrm kneerm room LC Cluster
resp 1 6.726 6.034 | 4.812 | 7.035 | 6.849 | 10.450 2
resp 2 -1.928 | 1.073 | 0.124 1410 |-4.780 | -2.846 1
resp 3 2.082 0.917 | 1.367 1.290 | 1.984 | 1.775 2
resp 4 -2.211 | -2.401 | -2.132 | -5.075 |-2.481| -4.880 1
resp 5 2274 | -4.292 | -3.071 | -0.312 | 3.464 | 4473 2
resp 6 3.128 | 10.380 | 3.181 | 11.120 | 6.782 | 2.186 1
resp 7 0.640 2.749 | 2.033 1.415 |-0.327 | -0.444 1
resp 8 6.022 2.767 | 2.997 | 2121 3.728 | 3.080 2
resp 9 1482 | 6.126 | 1.515 | -5421 |-2.259 | -1.126 1
resp 10 | 0.523 0.605 | -1.589 | -0.844 |-1.353 | -0.047 1
resp 11 | -3.777 | -0.264 | 0.044 | 5.468 |-1.913| -6.355 1
resp 12 | 0.743 1.350 |-0.527 | -0.141 | 1.956 | 0.856 1
resp 13 | 0.347 | -2.294 | 3.661 2.345 | 1.931 | -1.827 3
resp 14 | 1.034 | -4.605 | -4.708 | -3.706 |-3.308 | 2.583 2
resp 15 | -0.453 | 1.975 |-0.992 | 2.367 | 0.838 | 2.701 3
resp 16 | 0.096 1.424 | 2.201 5.937 | 6.395 | 2.631 2
resp 17 | 1502 | -0.477 | 3.343 | -5.648 | 1412 | 1475 1
resp 18 | -0.510 | 3.491 | -0.080 | -0.828 | 1.275 | -0.796 1
resp 19 | -3.386 | -6.550 | -3.246 | -4.579 |-4.169 | -4.461 1
resp 20 | -3.585 | -4.207 | -1.401 | -4.582 |-2.762| -3.193 1
resp 21 | -0.517 | 5.074 |-2.220 | -1.534 | 0.995 | 0.673 3
resp 22 | 6.493 7.507 | 1.612 | 2152 | 3.326 | 6.292 2
resp 23 | -2.561 | -7.188 | -8.716 | -10.010 | -8.894 | -4.011 3
resp 24 | -2.940 | -8.655 | -2.681 | -1.442 |-6.107 | -3.180 1
resp 25 | 1.673 6.363 | 4.902 | 8.666 | 6.149 | 0.533 2
resp 26 | -5.829 | -3.265 | 0.290 1.714 | 1.189 | -4.731 3
resp 27 | 9.179 2.216 | 9.650 | 5663 | 4.245 | 5.409 2
resp 28 | -0.341 2.761 | -1.201 | -0.811 |-0.791 | -1.437 2
resp 29 | -1.897 | -3.244 | -4.067 | -10.520 | -5.406 | -0.666 1
resp 30 | -5.909 | -7.334 | 0.830 | 0.769 |-3.728 | -8.125 3
|
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Figure 5.6: Hierarchical Complete Linkage Cluster Analysis
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With respect to bias cluster classification, there is strong agreement between the k-means and
hierarchical clustering, with the hierarchical method confirming the assumption of three unique
clusters, and only three cluster classification discrepancies between the two methods. The three
cluster model separates the respondents into groups in which each respondent’s set of bias terms,
bsy, is close to zero (Neutral Raters), positive (High Raters), or negative (Low Raters).

With the cluster assignments identified for each respondent, a rating style variable, Sty/, can
be defined and added as a respondent level factor in the ANOVA analysis. The style variable is a
categorical variable, i.e. [0,1,2], indicating the cluster assignment for each respondent. The result
of adding the style factor is shown in Table 5.12. As seen, the random block effect is significantly
reduced, and the sum of squares contribution of the style factor is quite large, indicating that a
significant portion of the unexplained random respondent effect can be attributed to the rating

style of the respondent.

Table 5.12: Inclusion of the Rating Style Variable

Ingress Headroom Leftroom Kneeroom Roominess Egress
Model | 1501.35 1311.83 605.13 369.31 700.45 1269.80
Gend 11.01 15.41 5.82 1.83 11.84 23.07
Stat 22.50 4.52 5.52 2.22 2.68 37.62
BMI 8.25 4.82 16.99 8.75 0.74 14.35
Age 69.77 19.48 11.73 63.06 25.39 69.90
Styl 69.37 23.05 19.58 45.70 51.07 61.27
resp 143.66 56.47 61.54 95.02 61.51 106.85
HNGy 492 0.36 2.47 1.65 0.62 10.69
ROKy 1.06 0.35 287.97 66.86 46.36 6.71
HEL, 210.07 3.22 1.87 31.30 3.55 275.19
GRD; 49.27 0.36 1.93 0.57 0.74 75.03
StoH 18.03 0.46 2.83 2.15 2.20 62.79
HRz 388.72 812.97 18.10 497 262.16 177.86
HRx 46.13 1.66 0.92 3.21 3.00 17.30
HRy 48.58 8.79 0.75 0.19 9.34 18.44
error 935.25 238.81 308.09 336.58 238.39 766.00
total 2436.59 1550.64 913.22 705.89 938.84 2035.80
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5.4.3 Ordered Logit Model with Rating Style

To better illustrate the use of the style factor, random-effects ordered logit models are estimated
with and without inclusion of style variables in Table 5.13, illustrated using the LC Ingress
response in Table 5.13. For the modeling process, style is represented using two dummy
variables for high rating style, styly, and neutral rating style, styly, to represent the three clusters

of rating styles.

Table 5.13: Comparison of Ordered Logit Models for LC Ingress

Without Style With Style
coef. t-value coef. t-value
ROKy 0.324 1.91 0.320 1.89
HEL, 2.371 11.04 2.371 11.06
GRDy, -2.207 -7.40 -2.217 -7.42
StoH -0.863 -4.00 -0.866 -4.02
HR; 2.822 13.33 2.818 13.32
HRx 0.745 4.22 0.746 4.23
gend -0.380 -0.64 0.619 1.35
stat -0.313 -1.03 0.341 1.39
BMI 0.229 0.68 0.100 0.40

age -1.164 -1.44 0.408 0.64
s, R .07 | .5
ﬁ_ Loll | 2.04
(oS 1.48 0.64

o) 0.184 0.194

Random respondent variation is reduced significantly with the inclusion of explanatory variables
for ratings style: the fraction of unexplained variance at the respondent level, o,, reduces from
1.48 to 0.64 with the inclusion of style variables. In addition, the goodness-of-fit of the model,
po° (a measure between 0 and 1), improves from 0.184 to 0.194. This indicates there is less
unexplained ratings heterogeneity among respondents with inclusion of the style terms. The
benefit of including the style term in the predictive model is a reduction in the variation of the
block effect distribution, which results in smaller standard errors in the human/socio-economic

model terms and improved understanding of the heterogeneity in rating responses. Assuming the
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population sampled in the experiment is representative of the population as whole, controlling
for the rating style explicitly in the model will provide better predictions than those obtained by
integrating over the respondent variance. Also, by knowing people have certain ratings styles, a
pre-experiment calibration technique could be used to determine a respondent’s rating style
before the appraisal is conducted to ensure better consistency in rating style in future

experiments (Greenleaf, 1992).

5.5 SMOOTHING SPLINE REGRESSION TO UNDERSTAND RESPONSE BEHAVIOR

With a set of responses determined in Section 5.4 and an understanding of the factor/response
relationship determined in Section 5.5, the modeling process can be conducted. A remaining
issue is an understanding of the functional relationship between the factors and responses. As
was noted in Section 4.1, it has been generally found that a human response to stimuli follows a
power law relationship, which provides guidance for determining the form of the product factors
in the model. However, in the case of human or socio-economic attributes, such a general theory
does not exist. In addition, as noted in Section 5.2, the actual human attributes of each person
were collected during the experiment and will be used in model estimation, such that higher
ordered terms can be estimated for these terms. A general method to understand the relationship
between the response and a factor is the use of Smoothing Spline Regression. Smoothing spline
regression is similar to piecewise linear regression; however, the breakpoints are connected with
polynomials as opposed to lines. Smoothing spline regression is used to better understand the
relationship between response and factor, and decide upon the factor forms (e.g., linear,
quadratic, cubic) to include in the subsequent random-effects ordered logit models. In this work,
smoothing spline linear regression models will be fit to the PVM data and the results will be used

to provide guidance in determining factor forms for the ordered logit modeling, in which the
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utility function is linear additive. This is due to the fact that readily available smoothing spline

software is available for linear regression but not ordered logit modeling.

Plots of representative smoothing spline regression relations are shown in Figure 5.7 a), b),

and c) (dashed lines represent 95% confidence intervals). These three plots represent the three

dominant types of relationships found in the modeling process:

1.

2.

Linear Relationship: As illustrated in Figure 5.7 a), using the SgRP to Ground factor
(GRDz) as an example, many of the factors, both product and demographic, have a linear
relationship with the rating response.

Power Law Relationship: As illustrated in Figure 5.7 b), using the SgRP to Roof Z factor
(HRy) as an example, several of the product factors exhibit a power law relationship. In
such a relationship the rate of increase of the rating response decreases as the magnitude
of the stimuli increases. This is important to capture in the modeling process and for the
vehicle level optimization presented in Chapter 6 because increasing the magnitude of
these dimensions, such as HRy, results in a diminishing rate of increase in the expected
rating.

Critical Level Relationship: As illustrated in Figure 5.7 c), using Seated Height as an
example, several of the demographic attributes display a critical level relationship. In
such a relationship, the rating response is constant over certain factor levels, such as very
small or very large seated heights, but displays a linear (or higher) relationship over other
levels of the factor, such as medium statures. It is important to capture such relationships
in the modeling process, particularly if the model is to be used in optimization, since the
demographic of the target population for the product may fall in different portions of the

plot (e.g. medium seated height), which will determine if a significant relationship exists.
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Figure 5.7: Examples of Linear, Power Law, and Critical Level Attributes

With an understanding of the various relationships created using polynomial splines, a
straightforward method is required to approximate these relationships in the random-effects
ordered logit models described in Section 2.3.3. The three behaviors identified can be
approximated closely through combinations of linear, quadratic, and cubic terms. The linear
relationship only requires a linear term, the power relationship a linear and quadratic term, and
the critical level relationship a linear, quadratic, and cubic term (and thus can only be

implemented for the demographic attributes). This method is utilized and demonstrated in a
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random-effects ordered logit model for the ingress rating response (using the latent class ingress

response created in Section 5.3). The results of the model are shown in Table 5.14.

Table 5.14: Random-Effects Ordered Logit for LC Ingress Response

coef. t-value
ROKy 0.29 1.71
HEL, 6.95 2.83
HEL,? -4.75 -1.92
GRD;, -1.87 -6.03
StoH -0.79 -3.58
HR, 35.95 3.72
HR,? -33.15 -3.45
HRy 543 1.81
HR)? -4.73 -1.57
styly 3.05 4.72
styly 1.41 2.04
gender 1.25 1.61
age -5.02 -1.78
age’ 5.12 1.61
BMI 1.37 1.88
seated 832.33 1.68
seated? -1636.61 -1.66
seated’ 805.13 1.65

Using the coefficients from Table 5.14, the effect of three factors shown in Figure 5.7 (i.e. GRDy,
HRy, Seated Height) are plotted in Figure 5.8, and compared to the smoothing spline regression
plots to determine if the proposed modeling approximations are close to the smoothing spline
regression results, and if the effects of the three factors are similar in the random-effects ordered
logit model. In the plots of Figure 5.8, the actual linear, quadratic, and cubic terms of the factor
are shown in the legend. In general, the shapes of the factor responses in the random-effects
ordered logit model match the shapes of those in the smooth spline linear regression; however,
the overall scale is different, since the linear regression model is on the scale of ratings, whereas
the RE-OL model is on the scale of utility. Additional higher-ordered terms were tested in the
RE-OL model, but the relationships identified in the smoothing spline regression were found to

be applicable for the RE-OL, and thus no other higher ordered terms were found to be



147
significant. Similar findings were made with the other collected PVM responses, i.e. headroom,
leftroom, kneeroom, roominess, and egress. Based upon this study, smoothing spline regression

is an effective method for guiding the selection of terms to be included in the prediction model.
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Figure 5.8: Model Factors using Linear, Quadratic, and Cubic Terms

5.6 RANDOM-EFFECTS ORDERED LOGIT MODELS FOR ROOMINESS AND INGRESS/EGRESS

With the set of responses determined using Latent Class Analysis in Section 5.3, an
understanding of the significant responses and the effect of rating style in Section 5.4, and an
understanding of the shape of the factor-response relationship in Section 5.5, random-effects
Ordered Logit models are fit to the data. The previous methods did not study the effect of the

interactions, which will be investigated in the modeling process.
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5.6.1 Comparison of Ordered Logit to Linear Regression

Before fitting the ordered logit models, a comparison will be made to linear regression modeling
to illustrate the benefits of ordered logit modeling. As an example, the PVM based headroom
model was estimated using linear regression by maximum likelihood estimation (MLE), instead
of the more common least squares method, to allow comparison of the goodness of fit, pg°,
measures. Using this approach yields p,°=0.257 for the linear regression (LR) model, compared
to py’=0.364 for the ordered logit model (OL), indicating the ordered logit model better fits the
data from the PVM-based survey. This is illustrated in the histogram of Figure 5.9, comparing

LR and OL predictions to the actual ratings distribution in the PVM survey.
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Figure 5.9: Comparison of Ordered Logit and Linear Regression Model Fit

5.6.2 Random-Effects Ordered Logit Models and Interpretation

With confirmation that the RE-OL model is the proper model specification for the collected
rating data, models are created with the specific task to include the effects of significant
interactions. The two RE-OL models for the latent class ingress and egress responses with

significant terms, including interactions, are shown in Table 5.15 (OL cut-points omitted). RE-
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OL models for the roominess responses, i.e. headroom, leftroom, kneeroom, and roominess, are
shown in Table 5.16 (OL cut-points omitted).

Table 5.15: Ingress-Egress RE Ordered Logit Models

LC Ingress LC Egress

coef. t-value coef. t-value
Gend -33.53 -2.35 Age -6.64 -1.26
Seated -786.25 -1.43 Age2 6.57 1.23
Seated” 1399.74 1.29 ROKy 3.53 2.27
Seated® -632.79 -1.18 HEL; -11.52 -2.57
Age -51.67 | -3.33 HEL, -5.23 -1.79
Seated-Gend 35.65 2.37 GRD, -0.74 -0.34
Seated-Age 55.64 3.37 StoH -4.27 -2.54
ROKy 0.28 2.18 HR; M.41 3.64
HELZ -16.75 -3.80 HRZ2 -41.13 -3.64
HEL,? -5.43 -2.01 HRx 1.48 1.05
GRD;, -1.75 -1.33 ROKy-HEL; 3.93 1.83
StoH -4.09 -5.53 ROKy-GRDy, -7.73 -1.95
HRz 45.78 4.20 ROKYy-StoH -2.32 -1.28
HR, -47.01 -4.33 ROKy HR -3.17 -1.64
HRx 1.07 5.48 HEL; GRD;, 6.77 24
HRy 7.71 2.12 HEL, StoH 5.74 6.04
HRy? -10.49 -2.99 HEL, HR; 12.89 4.34
ROKy-HEL; 2.78 1.39 HELZz-HRy 2.95 2.55
ROKy-GRD;, -5.48 -2.52 Styly 2.70 6.12
ROKy-HRy 4.84 2.97 e, 0.214
HELz GRD;, 6.21 2.25 pog 0.274
HEL,-StoH 4.66 5.09
HELz HR; 22.94 7.69
Styly 2.16 4.72
o 0.155
0% 0.262
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Table 5.16: Roominess RE Ordered Logit Models

Roominess Headroom
coef. t-value coef. t-value
Seated -11.08 -2.82 Gend 6.65 2.81
Age -44.67 | -2.99 Seated 901.88 2.03
Age® 16.17 2.90 Seated” -1896.38 | -2.16
Seated-Age 30.42 2.10 Seated® 990.29 2.28
ROKy 15.47 1.79 Age -16.52 | -2.39
ROK,* -29.31 -3.53 Age® 18.07 2.67
HEL; -2.33 -2.54 BMI 2.13 2.06
HR; 50.53 4.49 Gend-Age -10.23 | -2.52
HR, -57.09 | -5.18 HNGy -2.76 -1.74
HRy 6.93 1.91 ROKy 1.63 2.04
HRy? -6.25 -1.72 HEL, -7.72 -2.29
ROKy'HEL, | -3.48 -2.26 HR; 83.34 6.75
ROKy-HR; 28.76 6.34 HR? 7499 | -6.15
HEL,GRD; || -5.11 -2.65 HRy 1.12 4.53
HEL,HR, 7.44 3.97 HNGx-ROKy -3.92 -1.69
Styl,, 2.51 5.07 HEL,-HR; 9.58 2.18
p 0.216 Styly 2.17 3.51
0 0.408 0 0.251
5, 0.536
Leftroom Kneeroom
coef. t-value coef. t-value

Seated 1360.97 | 1.83 Age -11.99 | -1.66

Seated? -2694.32 | -1.83 Age® 15.12 2.06

Seated® 1332.40 | 1.82 BMI -1.31 -1.27

BMI -8.49 -1.32 ROKy 2.95 4.64

BMI? 7.80 1.17 HEL; 5.37 2.09

ROKy 4.84 16.40 HEL, -3.88 -1.51

GRD; -0.45 -1.61 HR; 0.59 2.81

StoH -0.47 -2.10 HRx 1.79 1.37

HR; 1.26 6.31 ROKy-HRx 217 -1.12

D 0.263 Styl, 1.95 3.45

5’ 0.307 D 0.333

0% 0.225

As seen in comparing among the models for ingress-egress and roominess, factors thought to be
primarily associated with roominess, such as HRz, HRx, and HRy, appear in the ingress-egress
models, and factors thought to be associated with ingress-egress, such as HNGyx, appear in the

roominess models. The reason for this could be two-fold: respondents’ opinions of ingress-egress
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also influence their opinions of roominess, or the factors actually contribute to the ingress-egress
or roominess experience directly. Different demographic attributes and demographic attribute
interactions appear in the models. For example, gender, seated height, and age appear in the
ingress model, whereas only age appears in the egress model. This could be explained by the fact
that it is generally easier for respondents to exit the vehicle than enter the vehicle, and thus
factors such as seated height and anthropomorphic gender differences do not influence the rating

for egress as they do for ingress.

5.6.3 Effect of Explicitly Modeling Heterogeneity

The effect of including both systematic (S) and random heterogeneity (oy) on the rating
predictions can be seen using a simple example in which the headroom model is re-estimated
without S, without oy, and without both S and oy. The models estimated with different
representations of heterogeneity are compared in terms of their ability to match the first four

moments of the actual ratings distribution, as shown in Table 5.17.

Table 5.17: Comparison of Inclusion of Heterogeneity in Model

OL without S OL with S RE-OL without S RE-OL with S
Sample Error Sample Error Sample Error Sample Error
Mean 3.321 -0.15% 3.322 -0.14% 3.315 -0.35% 3.318 -0.25%

Variance 2.049 -26.41% | 2.315 -16.86% | 2.203 -20.85% | 2.389 -14.20%
Skewness | -0.109 -68.19% | -0.249 -27.35% | -0.168 -50.93% | -0.264 -22.94%
Kurtosis 1.178  -18.92% | 1.349 -7.11% 1.276  -12.14% | 1.360 -6.36%

0 0.380 0.483 0.518 0.536

A primary difference among the models can be seen in the goodness of fit, p,°, which increases
as either systematic, random, or both, types of heterogeneity are included in the model. The
effect of the improved model goodness of fit results in improved moment matching, as can be
seen in the decreasing error in each moment as heterogeneity is more explicitly represented. An

exception to this finding is the ability of each of the models to match the mean, since all models
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are unbiased estimates of the mean; improvements resulting from modeling heterogeneity are
only seen in matching the higher moments. The improved model fit can be seen graphically
using a comparison of histograms of the OL model without S and o versus the OL with S and o,
(i.e. RE-OL) in Figure 5.10. It can be seen that the OL model without S and o, does a poor job of
matching the actual ratings distribution, whereas the OL model with S and o is much better at

matching the actual ratings distribution.

. i 2, i
250 LOW po’: Model without S and o, o50_LHigh po”: Model with S and o,
I Predicted - Il Predicted _
[ JActual [ JActual
2001 1 200
% 1501 — & 1507 ]
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= 100} - 100+
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0 1 2 3 4 5 0 1 2 3 4 5
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Figure 5.10: Comparison of Lowest to Highest Goodness of Fit Model

5.7 ALTERNATE DATA ANALYSIS METHODS

While the focus of this work is to estimate parametric models to be used in the hierarchical
choice modeling approach, other model forms are also investigated to gain further insight into
the data, and to confirm the RE-OL modeling approach. Data mining machine learning methods
are investigated to determine if such methods can aid or replace traditional statistical modeling
methods, such as the ordered logit model. The data mining methods investigated in this work are
classification methods, i.e. methods to predict the ratings class (i.e. 1-5 rating) based upon the
attribute values. Two applicable approaches to classification data mining are investigated: a C4.5

Decision Tree and a Bayesian Network. The five classes to be estimated are the five (or 4)
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ratings: 1, 2, 3, 4, 5. An issue with these approaches is that the mainstream implementation of the
Decision Tree and Bayesian network is based upon the assumption that attribute values, Z,
including both product attributes E and human attributes S, are discrete variables. This is not a
significant issue for the PVM product factors, which only assume three levels and therefore can
be considered discrete; however, they will be treated as nominal as opposed to interval (or ratio)
level variables in these analyses. The demographic attributes are generally continuous interval
level variables (except gender), and thus will be divided into discrete categories based upon their

continuous values.

5.7.1 Decision Tree for Ratings Classification

A Decision Tree is created using the PVM dataset. A decision tree is created through a process in
which a number of observations or cases, s, within a training data set, 7n, are classified into a
number subsets with respect to a class variable (i.e. a response), R, based upon a rule concerning
a “splitting” attribute value, Z (i.e. a product or demographic attribute). The tree building process
continues to add branches until no further information can be gained. The decision tree is then
pruned using a cost criterion to maximize the classification accuracy relative to the complexity of
the tree (Witten and Frank, 2005). The goal is to create a non-parametric model capable of
predicting the class (rating) based on the value of the attributes. In this respect, a decision tree is
similar to the ordered logit model, in that the goal is to predict a rating based upon attribute
values (e.g. HRy, Stature). Therefore, a decision tree can be viewed as a non-parametric

alternative to the ordered logit model.
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The rule for selecting a splitting attribute is determined by selecting the attribute which
maximizes the information gain for a given split, gain(Z), based on a measure of information,
info:

max{gain(Z) = info(s)—info,, (s)}, (54)
The average information, info(s), is expressed in the units of bits and can be calculated from the
number of occurrences of a particular class R, in s, given as freq(R,,s):
info(s)= —i [MJ log, [MJ[M]. (5.5)
=IG s
The average information is calculated over the entire training set, s = Tn, for the first split, and
over number of cases at the root attribute for all subsequent splits. The information associated

with a split on attribute Z, infoz(s), is given by:

info,(s)= i%-info(sj) (5.6)

=8
where s; 1s a subset of cases created by performing J splits on attribute Z. The tree building
process continues to add branches until no further information can be gained. The decision tree is
then pruned using a cost criterion to maximize the classification accuracy relative to the
complexity of the tree. As an example, a simplified decision tree is built for the headroom
response as shown in Figure 5.11 (variables un-normalized for clarity), and the model goodness-
of-fit statistics are shown in Table 5.18. All units in the figure are cm except for BMI in standard
units kg/m’; the number in the box is the rating class, and the number below the rating class is the

number of predicted observations belonging to each rating class based on the classification rule.
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Figure 5.11: C4.5 Decision Tree for Headroom Rating
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Table 5.18: Summary Statistics for the C4.5 Decision Tree

1 2 3 4 5 <-- classified as
141 0 7 3 1 1
20 1 14 8 2 2
22 8 22 | 14 8 3
3 1 12 | 25 35 4
0 0 3 4 228 || 5
Correctly Classified 417 (71.65%)
Incorrectly Classified 165 (28.35%)
Root mean squared error 0.293
Kappa statistic 0.595

The decision tree can provide insights not gained readily in traditional parametric modeling

methods, such as ordered logit modeling. One such observation is that 85% of configurations

receiving a rating of 5 occur when HRy (Ej) is at its maximum value, regardless of other product

or demographic attribute values. This indicates that increasing HR7 is a straightforward method

for achieving a high headroom rating. While the HR; attribute is dominant in the ANOVA

analysis, the decision tree provides information regarding how specific attribute values influence

specific rating frequencies. Another interesting observation is that the combination of low values

of HRz coupled with respondents of large seated height and overall stature account for the

majority of the low ratings (69%). A more enlightening finding is that HR at its minimum value
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coupled with high seated height, low stature, and low BMI account for 31% ratings of 1. This
could possibly be explained by the seating position of low BMI respondents versus high BMI
respondents, because low BMI respondents may position their seat differently in terms of lateral
position and tilt angle, leading to a different experience of headroom for a given configuration
for respondents of the same stature. This can be captured in a model through the inclusion of a
BMI-seated height interaction term, which should be positive in sign. In conclusion, these
findings indicate that HRz, BMI, seated height, stature and a BMI-seated height interaction are
important variables in the parametric modeling process.

A decision tree was also conducted for Ingress Effort, as shown in Appendix G. As seen
previously in the ANOVA analysis for ingress, there is not a dominant attribute in explaining
ingress ratings, as for HRy in the headroom model. The tree indicates that ROKy, HELz, GRDg,
StoH, HRz, and HRx are important to classifying the ratings, consistent with the ordered logit
model for ingress. Seated height and gender appear to be the most important demographic
attributes, with age, stature and gender appearing to be less important. Interactions of seated
height and gender and seated height and BMI should be tested in the modeling process. In
general, large levels of HEL; (£3) and HRy (Es) lead to branches with high ratings for ingress,
which is expected because these two variables control the vertical height of the door opening.

Decision trees can be created for the other attributes as well to better understand the
relationship between factors and rating responses. The decision tree is useful for understanding
important variables to consider in the modeling process, and can also point to trends not seen
easily in a parametric modeling process. On the other hand, the decision tree does not account for
individual rating styles, or allow for standard statistical interpretation of the factors, which are

added to the model based upon the information gain criterion of Eq. (5.4). Another issue is that
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the decision tree does not provide continuous functions of the factors, but rather classifies based
on threshold values of the factors (i.e. <, >), making it an inefficient tool to study the effect of
changing attribute values upon ratings. Additionally, the hierarchical choice modeling approach
to be developed in Chapter 6 relies upon the use of parametric models in the framework. Based
upon the advantages and disadvantages of the decision tree, it is considered a preprocessing tool

for the ordered logit modeling process rather than a competing modeling methodology.

5.7.2 Bayesian Network for Ratings Classification and Associations

The use of Bayesian networks in analyzing and modeling the PVM data is investigated in this
subsection. The Bayesian network can be used in two distinct implementations, supervised and
unsupervised. In the supervised implementation, the Bayesian network is used a classifier in
which attribute values are used to predict a class, e.g. a rating. In the unsupervised
implementation, no assumption is made regarding responses (dependent variables) and factors
(independent variables), but rather the network identifies dependent and independent variables.
The two implementations of the Bayesian network will be investigated.

Supervised Bayesian Network: The supervised Bayesian network is a classifier in which a class

R;, such as a rating, is predicted based upon the conditional probability of the attribute Z values.
In the supervised network, the class to be predicted is defined a priori. Therefore, the Bayesian
network is used as a method to determine the probability of being in each class R;, (i.e. each
rating category) for each observation (i.e. each respondent), just as in the ordered logit model.
The probability of the class assuming a certain value R; (i.e. rating of 1,2,3,4 or 5), given a set of

attribute values Z, is determined using Bayes law:
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PriZ,,...,Z,|R=R |-PriR |
Pr{Zl,...,Zj} ] S

Pr[R=R |Z,,....Z,|=

The Bayes network uses the assumption of conditional independence. Conditional independence
requires that each attribute, Z;, is conditional only on the immediate, or parent, attributes and not
upon the distant relative attributes (i.e. grandparents, great-grandparents, etc.). Using this
assumption, the conditionally independent probabilities can be multiplied to find the joint

probability of Z:

J

Pr{Z,,....Z, | R=R,}=] [ Pr{z, | R, parents(Z, )} (5.8)

J=1
Using the assumption of conditional independence, Eq. (5.7) can be written (omitting the
normalizing term Pr{Zl,...,ZJ}):

J

Pr[R=R,|Z,....Z,]=Pr{R, }- [ Pr{z, | R, parents(z, )} (5.9)

=l
Eq (5.9) demonstrates that the supervised Bayesian network is a form of non-parametric
regression. The Bayesian network ratings predictions can therefore be directly compared to the
ordered logit regression predictions of Eq.(4.8):
Pr[R=R,|Z,,....2,|=Flk, -B'Z)- Flk,, ~p'Z)

where F' is the cumulative logistic distribution. An advantage of the Bayesian network is that no
assumptions are made on the error distribution (i.e. logistic or normal distribution) because it is
non-parametric. The rating predictions from both the Bayesian network and the ordered logit

model are compared in Figure 5.12.



159

B Actual Ratings
|| @ Bayes Class
0.35 ++ [0 Ordered Logit .

o
w
I

0.2 4

Frequency

Rating (1-5)

Figure 5.12: Comparison of Ratings Predictions

As seen in the histogram, the Bayesian network results in similar ratings classification to the
ordered logit model. The superior performance of the ordered logit model can be attributed to the
enforcement of the ordinal constraint (i.e. adjacent ratings are correlated), as opposed to the
nominal assumption of the Bayesian network, and the discretizing of attributes to nominal
categories in the Bayesian network. The Bayesian network also identifies the conditional
relationships as shown in Figure 5.13, with arrows going from the parent attributes to the child
attributes. In this case the effect of E¢ (i.e. HRz) is conditional on the value of seated height,
indicating that an interaction term of HRz'Seated Height should be investigated.

headroom

gender

Figure 5.13: Supervised Bayesian Network Graph for Headroom

For datasets in this work (e.g., the PVM data) which are structured for random-effects ordered

logit modeling and do not have missing values, the Bayesian network offers few advantages over
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ordered logit modeling. Because the supervised Bayesian network is non-parametric and is a
form of machine learning, like the decision tree, it can be viewed as a pre-processing tool to
better understand relationships in the data.

Unsupervised Bayesian Network: As opposed to the supervised Bayesian network which can be

viewed as an alternative to the ordered logit model, the unsupervised Bayesian network is used to
understand relationships in the data. In the unsupervised Bayesian network, no distinction is
made between responses and factors with the goal of understanding the relationships within the
data sets rather than predicting a class. For this reason, the focus is upon identifying the joint
distribution of attributes Z (in this case the rating response is considered another attribute) in

terms of the conditional distributions:

Pr[Zl,...,ZJ]z Pr{Zj |parents(Zj)} (5.10)

et

An unsupervised Bayesian network for the PVM dataset (with only the headroom response

included) is shown in Figure 5.14, with the arrows going from parent to the child attributes.

Figure 5.14: Unsupervised Bayesian Network Including Headroom
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The joint distributions of attributes Z are expressed as the product of the conditional
probabilities. The conditional probabilities identified to have parent attributes are as follows:
e [Headroom|Gender;Seated height;BMI;Age;Es]
e [Age|Gender;Stature;Seated height;BMI]
e [Stature|Seated height;BMI]
e [Seated height|/Gender;BMI]
e [BMI|Gender]
e [E|Headroom]
e [EsHeadroom]
e [E7/Headroom]
The relationships identified indicate that not all demographic attributes collected are
independent, i.e. there are correlations among the demographics. For example, age is conditional
upon the values of gender, height, seated height, and BMI, which can be confirmed using a

regression analysis as shown in Table 5.19.

Table 5.19: Regression of Age on Other Demographic Attributes

Age coef. t-value
gender -0.364 0.00
height -0.232 0.03
seated height | -0.610 0.00
BMI 0.177 0.00
constant 0.985 0.00

Such a regression is hard to interpret from the cause-effect standpoint as assumed in regression,
since the prediction of age based upon other demographic attributes does not make intuitive

sense. On the other hand, prediction of height based upon seated height and BMI is more
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plausible. In general, the Bayesian network is identifying correlations within the data, which
may or may not represent proper cause-effect regressions.

The issues created by correlation among demographic attributes in the modeling process are
redundancy and suppression. Redundancy and suppression occur when certain correlation
patterns are present among multiple independent (Z) and dependent variables (Y). An example of
redundancy can be seen in Figure 5.15 in which two Z and one Y are positively correlated. When
redundancy is present and one of the Z is removed, the magnitude of the remaining Z increases.
An example of suppression is also shown in the figure, in which two Z are positively correlated
with the 7, but the Z negatively correlated with each other. When suppression is present and one
of the Z is removed, the magnitude of the remaining Z may decrease or the sign may change. If
there are more than two Z, the patterns are very difficult to diagram, and both redundancy and

suppression may occur.

Redundancy Suppression

Figure 5.15: Correlation Patterns Creating Redundancy and Suppression

In the context of the hierarchical modeling framework, the predictive ability of a model is not
hurt by redundancy or suppression, but these phenomena make it difficult to interpret the effect
of the demographic attributes individually. Coefficient interpretation is important for model
validation, ensuring that model coefficients match or can be explained from an understanding of

the problem. Another issue is that in the hierarchical choice modeling approach developed in
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Chapter 6, multiple data sets may be merged with different combinations of redundancy and
suppression, leading to issues in model estimation with the combined data.

An approach to the problem is to assume the demographics are related to a smaller number of
uncorrelated latent factors. Therefore, a latent variable analysis is conducted using the
demographic attributes collected in the PVM appraisal. It is found that there are two significant
factors. Using the iterated principle factor (IPF) method of solution and performing an

orthogonal rotational (so that the 2 factors are uncorrelated) gives the result shown in Table 5.20.

Table 5.20: Factor Analysis for Collected Demographic Attributes

Factor 1 Factor2 Uniqueness

| gender -0.765 -0.420 0.335
height 0.861 -0.196 0.169
seated height 0.970 -0.072 0.033
BMI 0.059 0.269 0.929

| age -0.092 0.724 0.447

The interpretation is that gender, height, and seated height are related to a latent factor related to
size, primarily vertical size. Factor 2 consists primarily of age, while BMI is primarily unique.
Possible modeling solutions include either using factor scores for correlated demographic
attributes, or using either height or seated height, but not both, in a model together with BMI and
age, which are not highly correlated with height or seated height. Gender can be used in the
modeling since it is not as highly correlated as height and seated height; however, it may cause
some level of suppression or redundancy in the model and may not be easily interpreted. Factor
scores can be used in the ordered logit models as well, but in the Bayesian hierarchical modeling
framework, in which multiple data sets are to be used and models to be updated, the use of factor

scores will complicate the process and is not recommended in this application.
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5.8 DISCUSSION AND SUMMARY

Methods for the analysis of human appraisal experiments to understand and predict consumer
preferences for new or existing product designs were developed in this chapter. The methods
developed are for the purpose of preprocessing data, reduction of data, capturing respondent
heterogeneity, and creating random effects ordered logit models to understand consumer
preferences and enable prediction of preferences for new product offerings. Latent Class
Analysis is shown to be effective for combining several responses given by a consumer during an
appraisal into a smaller number of latent classes related to their overall opinion of key product
features. ANOVA analysis is used to understand the relative importance of the product and
human attributes on the different rating responses provided in the survey. In these analyses, the
respondent block effect, or unexplained respondent heterogeneity is found to be large. Cluster
analysis of the block effect is used to identify systematic ratings styles of the respondents, which
explain a significant portion of the unexplained heterogeneity. Adding new variables to control
for rating style in the modeling process significantly reduces the unexplained heterogeneity. The
use of smoothing spline regression is demonstrated to be an effective tool to understand the
shape of the response-factor curve and guide the form of factors (i.e. linear, quadratic, cubic) to
be introduced in the subsequent ordered logit modeling.

With data preprocessing, response reduction, and an understanding of respondent
heterogeneity, random effects ordered logit models are estimated for each response. The
importance of interactions and the benefits of explicitly modeling systematic heterogeneity and
random heterogeneity are demonstrated in the ability of the distribution of the predicted ratings
to match the actual distribution of ratings, an important feature of a model to be used to predict

preferences for different populations and different designs. Machine learning methods from data
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mining are also applied to the PVM data. The decision tree provides additional insights into the
relationship among the product factors, human factors, and rating responses not easily identified
in the parametric ordered logit model. The unsupervised Bayesian network provided insights into
the relationships among the human factors not easily seen in methods such as correlation
analysis. The methods developed in this section are crucial to not only understanding consumer
heterogeneity in human appraisal experiments, but also creating predictive models for use in the

Bayesian Hierarchical Choice Model introduced in Chapter 6.
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Chapter 6
BAYESIAN HIERARCHICAL CHOICE MODELING FOR
ENGINEERING DESIGN

In Chapter 3, the PAFD tool was presented for engineering design decision making, built upon
Decision-based Design principles; however, the case study design example was a component
design characterized by quantitative choice attributes. A more general choice modeling approach
is required to accommodate a complex system, with both quantitative and qualitative choice
attributes. The hierarchical choice modeling approach for complex system design presented in
Section 2.3 utilizes multiple model levels to create a link between qualitative attributes
considered by consumers when selecting a product and quantitative attributes used for
engineering design. In this chapter, the approach is expanded to the Integrated Bayesian
Hierarchical Choice Modeling (IBHCM) framework, estimated using an integrated multi-stage
solution procedure. This approach utilizes choice data as well as other preference data, such as
that collected using the Ford Programmable Vehicle Model presented in Chapters 4 and 5, to
create a comprehensive choice model to support complex system design. This new framework
addresses the shortcomings of the previous method while providing a highly flexible modeling
framework to address the needs of complex system design. In this framework, both systematic
and random consumer heterogeneity is explicitly considered, the ability to combine multiple
sources of data for model estimation and updating is significantly expanded, and the integrated

estimation method is introduced to mitigate error propagation throughout the model hierarchy. In
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addition to developing the new choice model approach, the importance of including a complete
representation of consumer heterogeneity in the model framework is provided. The new
modeling framework is validated using several metrics and techniques. The benefits of the
IBHCM method are demonstrated in the design of an automobile occupant package.

This chapter is organized as follows: Section 6.1 introduces the hierarchical choice modeling
approach, Section 6.2 presents the Integrated Bayesian Hierarchical Choice Model framework,
Section 6.3 provides a vehicle design case study, and Section 6.4 provides validation of the

IBHCM.

6.1 INTRODUCTION

A large-scale design problem is characterized by attribute hierarchies in demand model
estimation, a hierarchy of consumer demographic descriptors (S), and data from multiple sources
with varying degrees of richness (e.g., in-house marketing surveys, purchase data). Existing
demand modeling approaches in the design literature require that product attributes considered in
the choice model be quantitative. However, many criteria used by customers to choose between
complex engineering systems tend to be qualitative, especially those at the system level. Also, as
noted in Section 1.1, existing demand modeling approaches used in engineering design do not
adequately account for consumer heterogeneity, nor do they adequately consider multiple data
sources. To deal with the attribute hierarchy inherent in the design of a complex system (e.g.,
automotive design), the Hierarchical Choice Modeling framework has been developed as

described in Section 2.3 (Kumar et al., 2009) and illustrated in Figure 6.1.
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Figure 6.1: Hierarchical Choice Modeling Method

The proposed approach uses customer ratings R for qualitative customer-desired attributes
(A) in the choice model, which are expressed in terms of quantitative engineering attributes
through the hierarchy of /inking models. Qualitative attributes in the top-level discrete choice
analysis (DCA) model, labeled M;, are linked to engineering attributes through a series of
ordered logit (OL) ratings prediction models for the subsystems, labeled M, and Mj;, as
illustrated in Figure 6.1. In this framework, the top level choice model only contains a reasonable
set of system-level customer-desired attributes A (including price P) and demographic attributes,
S. For example in vehicle design, A can include interior roominess and exterior styling, and S
can include income and age. The lower level ratings models at the component and subsystem
levels establish the relationships between qualitative customer perceptual attributes A as
functions of quantitative engineering design attributes E and S, i.e., A=f(E, S). For example, the
lower level models can link E, such as occupant package and styling dimensions, and S, such as
stature and gender, to the A defined at the top level. This structure ensures a more manageable
model at each level, and mitigates the model estimation issues that accompany an all-in-one

approach. The hierarchical choice model framework is used as the basis for an enterprise-driven
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engineering design decision making process to set targets for key system attributes, as illustrated

Economfc Benef.'ts
Enterprise Engineering
Utility Targets

in Figure 6.2.

Qualitative A: i

Quantitative A:

: Performance ' ]
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Analysis Models . gjﬂ:ﬁ
Engineering Design Demographic Human
Attributes (E) Attributes (S) Appraisal

Figure 6.2: Overview of the Hierarchical Choice Modeling Method

In this framework, engineering and demographic attributes are mapped to the attributes in the
choice model (M; level), which enables estimation of product demand Q. Creating an enterprise
utility function as a function of Q, as well as Price, P, and Cost, C, allows target levels for the
engineering attributes to be determined through maximization of enterprise utility.

While Section 2.3 laid out the general hierarchical modeling framework, several issues exist.
A primary issue is the lack of a mechanism to mitigate error propagated in the hierarchy,
since each of the models, i.e., M;, M, and M, is estimated separately in the current
implementation. This limitation is a significant issue because it inhibits the quantification of
uncertainty at the top level choice model needed for decision making, and also provides no
mechanism to ensure that the model accurately captures consumer preferences. Another issue
identified in the hierarchical modeling approach is the challenge of data collection to enable

model estimation over the entire model hierarchy. As noted, in the design of a complex system, it
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is unrealistic to expect that the necessary data for the complete model estimation process is
present in a single data set. Our previous work introduced the Nested Logit (NL) method to
combine multiple subsystem surveys to estimate the M; level choice model; however, this
method does not fully address the problem because it is only valid at the choice level (i.e., M;
level) and does not address how to combine data collected at different times. Another issue is that
the current framework only captures systematic heterogeneity (illustrated in Figure 2.3), and
lumps random heterogeneity into the overall error term. In this work, systematic heterogeneity
is observed and described by an attribute of the customer, S, to explain his/her choice behavior.
Random heterogeneity is not observed and is captured assuming the model parameters are
random, as opposed to fixed, across respondents, as illustrated in Figure 6.3. Random
heterogeneity accounts for the fact that two people with the same S, facing the same product
attributes A, can make different choices. It was seen in the ANOVA analysis (Section 5.4) that

random heterogeneity can be significant.

0.20
1 1
>

Density
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1

Figure 6.3: Example of Parameter Distribution Associated with Random Heterogeneity

Modeling the heterogeneity of customer preferences in a complete way is a challenge in
choice modeling for complex engineering system design. Most existing approaches in the design
literature do not consider heterogeneity of preference in modeling (i.e. systematic and random
heterogeneity do not appear in the demand model). Li and Azarm (2000), and Michalek et al.

(2005) used conjoint analysis, in which systematic heterogeneity was not considered; Michalek
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et al. (2005) considered random heterogeneity only in using a mixed logit DCA model. Cook
(1997) used a linear model derived from Taylor Series expansion which used product value and
price to estimate demand. Wassenaar et al. (2003; 2005) considered systematic heterogeneity
only by including a limited number of demographic attributes (e.g., age, gender) in a DCA
model.

To address the issues described, a unified Integrated Bayesian Hierarchical Choice Model
(IBHCM) framework is developed to capture both systematic and random heterogeneity at all
levels of the hierarchy, as well as to provide a method to estimate the predictive models from
multiple data sources. An integrated multi-stage model solution methodology is introduced to
mitigate error propagated through the model hierarchy and quantify uncertainty. Bayesian choice
modeling has been applied primarily for estimating the mixed logit choice model to capture
random heterogeneity (Train, 2003), and has been developed for this purpose in a variety of
product marketing contexts, such as to model repeated purchase behavior (Rossi and Allenby,
2003; Rossi et al., 2005). Limited investigation of the use of Bayesian methods for combining
multiple information sources has been conducted (Neelamegham and Chintagunta, 1999; Erdem
and Keane, 1996), but not specifically in the choice modeling context. Specifically, the use of the
Bayesian estimation method to estimate a complete hierarchy of random parameter or “mixed”
models from a variety of data sources has not been presented in the literature. The automobile
vehicle occupant packaging problem of Section 1.3 is used to demonstrate the methodologies
developed in this research. The occupant packaging problem contains the proper level of

complexity to demonstrate the features of the methodology.
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6.2 INTEGRATED BAYESIAN HIERARCHICAL CHOICE MODELING APPROACH

Bayesian estimation methods offer many advantages over classical methods in estimating the
hierarchical choice model. Bayesian estimation differs from classical methods in that the
posterior distribution of the parameters is identified in the solution process, as opposed to point
estimates specified model parameters (i.e. £, X). Bayesian estimation uses Gibbs sampling to
sample from the posterior distribution. The Bayesian paradigm is also well aligned with the
challenges of creating a design decision tool. Throughout the product design cycle and the
product life, new information about demand may become available. This information may result
from additional product surveys (SP) conducted or new actual purchase data (RP) acquired. With
regard to actual purchase data, the growth of the internet, and the resulting growth in
information, points to a future in which new information will be obtained at an almost
continuous rate (Varian, 1995). Incorporating this increased knowledge must be considered in the
product planning phase and throughout the product life to ensure products will be competitive
and profitable throughout the lifecycle in which they compete. Such considerations point to the

use of a Bayesian methodology for estimating the choice model.

6.2.1 Formulation of Choice and Ratings Models Incorporating Heterogeneity

The Bayesian Hierarchical Choice Model framework proposed in this work is a system of
predictive models which captures consumer heterogeneity at all levels in the hierarchy, allows
for estimation using multiple data sources, and provides a method for mitigating error propagated
and quantifying uncertainty using integrated model estimation. The following models are used in

the hierarchy of Figure 6.1:

e M, (choice): Mixed Logit (MXL)
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e M, Mj (ratings): Random-Effects Ordered Logit (RE-OL)

The MXL and RE-OL models are random parameter models which capture the effect of system
design attributes, as well as both systematic and random heterogeneity, in modeling consumer
choices or ratings. The MXL model (Train, 2003) is used to model consumer choice as a function
of both system customer desired attributes A and consumer demographic descriptors S. The RE-
OL models (Hedeker and Gibbons, 1994) express consumer ratings as a function of engineering
attributes E, or sub-system ratings R, and S (Figure 6.1).

The MXL and RE-OL models assume the choice or rating is a discrete expression of an
unobserved, latent consumer utility for a product or system design. The concept of choice (M)
or rating utility (M,, M3) is derived assuming that the individual’s, n, true choice utility, u, for a
design alternative, i, consists of an observed part W, and an unobserved random disturbance &
(unobserved utility):

u, =W, +e¢, . (6.1)
Observed utility, W, is parameterized in terms of model coefficients, B, and A, E, and S. As
noted in the previous section, S accounts for systematic taste heterogeneity. Random taste
heterogeneity is accounted for using random model coefficients. This is achieved by allowing
each individual person, n, to have his/her own set of model coefficients, S, (Train, 2003; Train
and McFadden, 2000; Rossi et al., 2005). In the MXL model, all customer-desired model
parameters, PBa ,, are random, while the Bs are fixed to avoid the identification problems caused
by allowing a S to vary over alternatives i and people n (Train, 2003). The observed utility, W,

in the MXL is given by:
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W, (MXL)=p, , A+B;S+p’s(A-S). (6.2)

In the RE-OL model, the random intercept term, 4, captures random consumer heterogeneity.

The observed utility, W;,, in the RE-OL model is given by:
W, (RE-OL)= B, +BLE+BS+pi(E-S). (63)

To prevent identification issues created by confounding of the random intercept and the error
term, the random intercept must be estimated on multiple observations for each person n (i.c.
panel data is required).

The MXL choice probability is expressed as (Train, 2003):

A
J

ST AN e (64)
€

Pr, (i) = [

The directly analogous random-effects ordered logit model to the choice model of Eq. (6.4) is

formulated as:

ok (B) k17 (B)
Pr, (Rp>= I[ TR ) Ry s T 7y ]Pdf(ﬂo)dﬁo : (6.5)

l+e l+e

where R, is a rating and k, is an ordered logit cutpoint (Hedeker and Gibbons, 1994). Using

Bayesian model estimation (as described in Section 2.2.2), the individual-level model
coefficients (B, ,, B, ) are estimated, with uncertainty in the estimate decreasing as more choices
or ratings per respondent are observed. In this work, random taste heterogeneity is considered as

a form of uncertainty in preference behavior, since model predictions are generally not made for

the sampled population used in the training data set, but rather the target population as a whole.
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Therefore, the calculated distribution of f, is of interest in this work, as opposed to individual-

specific values of £,.

6.2.2 Importance of Modeling Heterogeneity

The importance of accounting for heterogeneity, S and Z, throughout the hierarchical choice
modeling process results from the non-linear relationship between observed customer choice
utility, W;,, and choice, Pr,(i), (or rating, Pr,(R,)) probability. Probabilistic choice modeling was
developed within mathematical psychology (Luce, 1959) to capture the probabilistic nature of
individual choice behavior, i.e. individuals do not always select the alternative with highest
expected utility. The non-linear, S-shaped (i.e. logistic) relationship between W, and Pr,(7)
implies that an equal change to W, for a given design alternative for all individuals », such as
that resulting from a design change (e.g. a change in value of A), results in a different change in
Pr,(7) for each individual. This behavior can be interpreted as individuals with strong preferences
(positive or negative) for a particular alternative are not as likely to modify their choice behavior
when design changes are made, as are individuals with weaker preferences.

The role of demographic descriptors (i.e. systematic heterogeneity), S, is to capture
individual-level attributes which influence utility, ¥, to enable a better estimate of individual-
level choice probability, Pr,(i). The effect of preference heterogeneity is demonstrated
graphically in Figure 6.4, in which a MNL model without S (black line) and a MNL with S (gray
lines) are estimated. For the training data set with a given set of demographics, both estimate a
choice share for an alternative i of 0.5. If a change is made to the design (i.e. AE=0.75), this
change results in an equal utility change for all consumers in the data set; however, the aggregate

logit method overestimates the increased choice probability, and hence choice share (i.e. 0.2
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increase), vs. the more accurate estimate from the disaggregate method (i.e. [0.1+0.05]/2 = 0.075
increase).Inclusion of S explicitly in the choice model also allows for choice predictions to be
made for a new target market with a different demographic distribution than the survey market

used for model estimation.
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Figure 6.4: Effect of S upon Choice Probability

The effect of including random heterogeneity is that it provides both a more rigorous
representation of preference heterogeneity as well as a relaxation of the Independence of
Irrelevant Alternatives (I.I.A.) property of the discrete choice model (Train, 2003). Unlike a fixed
parameter model, a random parameter model requires that the expected value of the choice
probabilities be determined; therefore, each respondent utility function is an integration over f to
find the expected value of Pr,(i). This expected value of choice probability is different than the
probability calculated using the mean value of B (i.e. the plug-in approach (Rossi et al., 2005))
due to the non-linear utility vs. probability curve described previously. The other benefit of
considering random heterogeneity is that the mixed logit (MXL) choice model relaxes the I.I.A.

property of the multinomial logit (MNL) choice model. As was shown in Brownstone and Train
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(1998), the MXL model results in much different predictions of choice shares for a given design
change than the MNL model due to the relaxation of L.I.A.: L.I.A. restricts the pair-wise choice
probability ratios for each set of alternatives in the choice set to remain unchanged for a given
design change. When using the MXL model to make choice estimates for a new market, the
random heterogeneity of the new population is assumed to exhibit the same random

heterogeneity as that in the model training data.

6.2.3 Model Fusion and Updating

In addition to capturing heterogeneity, use of the IBHCM allows the models within the hierarchy
to be estimated from several data sources. There are two methods to combine these multiple data
sources: fusion is used when no single survey contains the complete information necessary to
estimate all the desired model parameters, and updating is used when new information becomes
available to update all model parameters. As illustrated in Figure 6.5, fusion is associated with
creating a model at a single time period from multiple data sources, whereas updating is

associated with updating a model as new data becomes available.
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Figure 6.5: Data in the Hierarchical Choice Model Approach

This framework is based upon the Bayesian tradition of estimation, in which a prior distribution

is assumed and the new data form the information, allowing estimation of a posterior
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distribution. The prior may be a non-informative prior and the information may be several fused

data sets. The methodologies for model fusion and updating are described in this subsection.

Model Fusion: Whenever data from multiple surveys are fused (e.g., data sets labeled / and 2) to
create a single model with pooled utility function W,eeq, the error variances in each of the
datasets may in fact be different, thus violating the assumption of an independently and
identically distributed (I.I.D.) error term in the resulting model. Differences in error variance
affect the scale of the model parameters because only differences in utility matter in the utility
function, and thus the scale of the utility function is set based on the variance associated with a

given dataset. The scale is set by scaling the overall model error variance, var(e;,), to a given

value varg(¢,)=0, (e.g o, = 72'2/ 6), by dividing W;,, and hence model parameters S, by a
scale factor s (e.g. y, = Var(gl.n)/ (° / 6)) to achieve oy. Thus the f coefficients in a choice or

ratings model are confounded with the scale factor (i.e. 5=/ / 4, ) and cannot be separately

identified. This presents an issue when estimating a choice model with multiple data sets in that
the error variance, and thus g4, will differ for each data set. Thus a method is needed to ensure
the scale factors from all data sets are equal (i.e. 1; = 1» = 1) to ensure [ coefficients estimated
from different data sets are on the same scale in the pooled utility function, W,oeq.

The Nested Logit (NL) methodology has been adapted previously to combine multiple data
sets with different error variances as described in Kumar et al. (2009). A method to combine data
from multiple sources using the MXL or RE-OL model is formulated in this section. To enable
use of multiple data sets in the MXL methodology formulated in Eq. (6.4) or the RE-OL method

of Eq. (6.5), a random term, 7, of mean 0 and variance 7 (i.e. 7 ~ N(0, 7)) is assigned to each
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dataset-specific u;, to account for the different error variances associated with each dataset to

enable a common model error term, &;,. This is expressed as follows (Brownstone et al., 2000):

Upiw = 4

1,in

+n+e, 1€l uy, =W,, +n,+¢, i€, (6.6)

where 7, and 77, are the survey-specific error component terms which are estimated together with
the other model parameters (note: the 77, associated with the data set with the lowest variance is
set to 0 for model identification). These additional error terms, 77;...77, account for the
differences in error variances in different data sets, and ensure that the overall common model
error, &y, is LLD. (i.e. var(g; ;) = var(&,,)= var(g,)). This equivalence is achieved by allowing
the additional error term, 77, to contain the additional variance greater than the base variance,
var(g&,); for example:
Var(gz,m ) = Var(772 +¢&, ) = Var(772 ) + Var(gm ), s.t. Var(gz,m ) > Var(gm ) (6.7)
This approach therefore relies on the ability to separately estimate var(7;),..., var(7;) such that
the error variance associated with each data set is var(g;,). To estimate the 7y, it is necessary that
each survey, and thus each observed utility function W, and W, shares some common attributes,
given by A, or Scom to determine the survey-specific error component terms, base on the fact
that model parameters for shared attributes indicate differences in model scale. Estimation of
n; ... 1s enabled by the condition that the £ coefficients for shared attributes, A, or Scom, are
equivalent and that 7, ...7; are positive.
This approach is unlike the previous Nested Logit approach (Kumar et al., 2009) in which the

individual utility functions, /¥; and W>, must be scaled by a scaling factor, 4, to create Woeq. In
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the MXL and RE-OL approach, the pooled observed utility is simply the sum of /¥; and W, with

a single set of common parameters, indicated by the subscript com:

Wpooled = (B:\,IAI + Bé,lsl )+ (B:\,ZAZ + BlS,ZSZ )+ B!A,comAcom + B’S,comscom . (68)

Model Updating: The Bayesian framework provides a convenient means for updating the

hierarchical model as new data becomes available, for example as new model year surveys are
conducted for an automobile. In this case, the current model parameters are the prior distribution
and the new survey is the information necessary to calculate the new posterior distribution of the
model parameters. Updating can be useful when the initial model is estimated using survey data
acquired from prototype hardware. In Bayesian estimation, model parameters (including ordered
logit cut points k) are updated according to the ratio of variances in the prior distribution versus
that in the information (i.e. vehicle) data set (Johnson and Albert, 1999). Therefore, the prototype
based model can be updated with the limited vehicle survey to both update the model parameters,
B, to account for the influence of actual vehicle preferences, and to update the cut points, k, to

ensure that OL model rating predictions are reflective of actual vehicle ratings.

6.2.4 Integrated Choice Model Formulation
With mixed formulations for the M; level choice model (Eq. (6.4)) and the M, and M3 level
ratings models (Eq. (6.5)), an integrated formulation of the hierarchical choice model is derived
for estimation of the model. The general integrated model framework is shown in Figure 6.6. The
theoretical advantages of such a framework are as follows:
1. Mitigate error and quantify uncertainty by propagating the distribution of B throughout the
model hierarchy.

2. Track the respondent effect for a single person throughout the model hierarchy.
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3. Quantify uncertainty to create the enterprise level utility function for decision making.

,,,,,,,

W B/Tn,a,,ﬂz@,;*
Mld-level Utllltles

| T Integrated

Figure 6.6. Integrated Choice Model Estimation

The framework uses a propagation of cumulative respond-level utility (#), including cumulative
respondent-level error v, through a complete hierarchy of models from the bottom level (Low) to
the top level (Top). The complete hierarchy of models uses integrated multi-stage estimation to
fit model parameters (i.e. B) in upper-level models to model predictions from lower level models
to minimize prediction error when using the system of models to make choice share predictions.
The method for propagating utility, including respondent-level error through the model
hierarchy is formulated. To quantify error, the error distribution at each level of the model
hierarchy must be accounted for in the final choice prediction. This problem has been solved for
linear regression modeling, using instrumental variable techniques. Specifically, two-stage least
squares regression (Greene, 2002) has been used to account for error propagation in a 2-level
linear regression model system. The approach has been generalized by Lancaster (2004) using
Bayesian solution methods for linear regression systems with more than two models. In the

approach of Lancaster, error from the lower model level, denoted as My,,, is propagated to the
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top level model, My, such that the total error due to both models, &, = f (gLow,gTop), is

estimated. This approach is demonstrated assuming a 2-level model hierarchy:

X=y+0Z+e¢

. 6.9
y=&5+px+e, (6)
The lower-level equation for x is substituted into the upper-level equation for y, and y is rewritten

as follows:

y=E&+poz+v,
5* =&+ By, v, =&, + fe

(6.10)

In this new form, the posterior distribution of é* and v, is found, thus identifying the
cumulative intercept and error term directly in the upper-level model. This method can be
extended to any j-level model hierarchy.

The issue with applying this approach to the hierarchy of choice and ratings models is that
the error terms are not directly estimable in such models: the error variance is confounded with
the F terms. This confounding occurs because only differences in utility matter in the
choice/ratings model, and thus £ and Var(¢) in each model cannot be separately identified (Train,
2003; Lancaster, 2004). Thus the method of finding the posterior distribution of &z, developed
for least squares regression cannot be applied directly for the IBHCM problem.

To account for the error propagated in the hierarchical choice model, an error components
interpretation of the random term is applied (Train, 2003). In the random-effects ordered logit
model, the ﬂo term is added to the utility expression to capture the random respondent effect (Eq.

(6.3)). The /A term is the random intercept and can be interpreted as the portion of the overall

model error which is attributed to individual respondents (Hedeker and Gibbons, 1994). Thus,
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the part of the error attributed to respondent-level variation is observable, and we use a
formulation analogous to that presented in Lancaster (2004) for least-squares regression, with
modifications as required by the model form. The respondent-level error is propagated through
all levels of ratings models (M, and M3 in the current discussion) and the total observed error for
each system rating quantified at the M, level choice model.
As shown in Eq. (6.5), the expected rating predicted by the ordered logit model is a function
of the utility, W;,, with expected ratings predicted by the M3 and M, level models expressed as a
function of engineering and demographic attributes, Z (Z = {E, S}):

R, = f(WM3): f(ﬂz(\)u +B;\/I3ZM3)

. 6.11
Ry = f(WMZ) = f(ﬂfn + B;V[ZRMS) ( :

As seen in Eq. (6.11), the upper-level equation for Ry, is a function of expected ratings predicted
by the lower level model, R,s;. In order to enable the error term to be propagated through the
model hierarchy, utility, W7, is propagated through the model hierarchy instead of the expected

rating, R:

WM3 = IBAO43 + B’M3ZM3

. 6.12
Ry, = f(WMz) = f(,BA(ilz + B;VIZWM3) ( :

Using utility instead of expected ratings allows an approach analogous to two-stage least squares

regression to be used to estimate a total error term, given by vj:

VM2

Wiga = Bia + Bla W = Bro B+ Bla + BBl (13

The posterior distribution of v, thus captures the cumulative respondent-level error (4”) from all

preceding levels in the model hierarchy. The posterior distribution of vy, is sampled directly in
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the solution process, therefore simplifying model estimation. With this formulation, the predicted
rating for each subsystem for each vehicle alternative, i, for each person, n, is estimated for

customer-desired attributes, A, appearing in the M;-level choice model:
A= BBisZos +Viro)- (6.14)
With expressions for each level in the model hierarchy and a method for integrated multi-
stage model parameter estimation given in Eq. (6.13), the integrated choice model framework is
formulated. Because the models are estimated simultaneously, £ parameters from one model,

such as the M3 headroom model, can be correlated with £ parameters in another model, such as

the M, roominess model or the M; choice model. The set of models is solved simultaneously

using Markov Chain Monte Carlo (MCMC) sampling methods (Rossi et al., 2005).

When using the estimated model to calculate choice probabilities, the logit probabilities for
each person n and each alternative i must be integrated over the full distribution of B or v in each

model of the hierarchy (i.e. M, My, M3):

Pr, (i): .[Lm‘(BMl’VMZ )g(B,v |b,)2)d|3dv. (6.15)

Integration over the distribution of model parameters is used instead of the individual-level
S, which are recoverable from the Bayesian solution, because the model training data is a
population sample and the distribution of £, is assumed to be representative of the population as
a whole. The random parameters, B and v, are defined by a mean vector, b (b=0 for v
parameters), and a full variance-covariance matrix, X, of the parameters estimated in the IBHCM

solution process (B, v ~N(b, X)).
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6.3 CASE STUDY: VEHICLE OCCUPANT PACKAGE DESIGN

6.3.1 Integrated Bayesian Hierarchical Choice Model Estimation

Vehicle occupant package design is used as an example to demonstrate the use of the IBHCM in
system design. The focus is to present the features and benefits of the hierarchical choice
modeling approach in an illustrative manner, rather than completing a comprehensive design
optimization of the entire vehicle package. The scope of the case study is restricted to the
driver’s occupant package. The IBHCM framework and vehicle dimensions for this problem are
shown in Figure 6.7. The vehicle dimensions considered are the eight dimensions used in the

Programmable Vehicle Model (PVM) human appraisal experiment described in Section 5.2.

Vehicle Choice

Roominess Ingress/Egress Exterior Appearance

L

HNG, ROK, HEL, GRD, StoH HR, HR, HR,

Figure 6.7. Case Study Hierarchical Model Structure

Data Available for Model Estimation: Three data sets are available for model estimation: two

clinical studies—an interior packaging-based survey (DS)) and an exterior styling-based survey
(DS>)—and a combined roominess, ingress, and egress (DS3) study performed on the Ford
Programmable Vehicle Model (PVM). The interior and exterior clinical surveys were conducted
on four vehicles in the full-size luxury segment. In the interior package survey, 73 respondents
are asked to rate package attributes at both sub-system (e.g., overall roominess, ingress/egress)

and component levels (e.g., head room, knee room) for four vehicles. In the exterior survey, the
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same 73 respondents are asked to rate exterior appearance attributes and choose between the
same set of vehicles. In addition to the packaging attributes, demographic attributes S; and S,
(age, income, stature, gender) are recorded. Five vehicle attributes are included in the M; choice
model: (1) roominess (Room), (2) ingress (Ing), (3) quality of materials (Q Mat.), (4) exterior
styling (Ext), and (5) willing-to-pay (W to P). The attribute values are in the form of ratings on a
1-10 scale for each attribute for each respondent. The following demographic descriptors (S) are
used in the M; model: (1) gender, (2) stature (i.e. height), (3) income, (4) age.

The Ford PVM, described in Section 4.5, is a computer controlled vehicle model which can
simulate a large number of vehicle configurations, and hence is efficient for gathering preference
data. A comprehensive combined roominess, ingress, and egress human appraisal was conducted
using the PVM, consisting of 30 respondents each rating 18 vehicle configurations. The appraisal
was designed using the optimal experiment design method for human appraisals of Chapter 4. In
the designed experiment, the 8 engineering attributes of Figure 6.7 and 3 demographic attributes
were varied as described in Section 5.2. The PVM data is used to estimate M, and Mj level

roominess, ingress, and egress RE-OL models in the hierarchy.

Models to be Estimated: The hierarchical model used to model consumer choices and

preferences for the occupant package roominess and ingress/egress used in the case study is the
random parameter IBHCM described in Section 6.2. This model links the preferences for
roominess and ingress/egress at the choice level with the vehicle variables which determine the
roominess and ingress/egress design (i.e. £1—Es). This model estimation is presented later in this
section. RE-OL M, and Mj level models linking the vehicle variables to the preferences for

exterior styling are also created. For these models, a height-to-width ratio variable, (GRDz +
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HR7z)/ ROKYy, called H/W, and a height-to-length variable, (GRDz + HRz)/ HNGgx, called H/L are
created to capture the finding that respondents view styling in terms of the ratio of dimensions,
rather than the absolute dimensions. Also, HELz, GRDg, and StoH are expressed in terms of
H130, the Step Height to the driver’s door, as GRDz - HEL; + StoH. The exterior styling M, and

M3 models, estimated using an integrated multi-stage approach, are shown in Table 6.1.

Table 6.1: Exterior M, and M; Models

M;: Front Appearance

coef. t-value
H/W -0.799 -10.15
Gend | -0.304 -3.65
age 0.318 1.95
M;: Side Appearance
H130 | -0.219 -2.19
H/L -0.732 -8.07
Gend | -0.262 -3.08
age 0.281 1.75
M;: Rear Appearance
H/W -0.840 -10.52
Gend | -0.318 -3.69
age 0.644 3.61
M,: Exterior Appearance
front 0.45 19.59
side 0.66 8.76
rear 0.35 13.35

Variance-Covariance Matrix of Random Effects

Front (M) 0.99

Side (M3) 0.90 | 0.98

Rear (M;) 0.86 | 0.93 | 1.07
Exterior (M) 0.69 | 0.76 | 0.72 | 0.83

RE-OL Model Updating: An issue to address is that the M, and M3 model estimation data for the

occupant package is collected using the PVM, while the resulting model estimated is to be used
for predicting ratings for actual vehicle designs. The PVM lacks vehicle-specific features and

styling. This is important because PVM-based ratings models will not include the influence of
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customer perceptions created by unique styling and layout features, in addition to the influence
of the purely dimensional PVM features. Using actual vehicles to gather survey data for model
estimation is challenging because it is difficult to achieve the necessary factor randomization and
variation to achieve efficient model parameter estimates as described in Chapter 4. However, the
IBHCM framework can be utilized for updating the PVM-estimated ordered logit model with the
limited actual vehicle survey data (i.e. DS;) to include the influence of vehicle styling features in

the model and ensure the predicted ratings are relative to the actual vehicles.

IBHCM Estimation: The model hierarchy and the use of the data sets for the

roominess/ingress/egress model estimation are shown in Figure 6.8.

Prior: Non-informative I\J Vehicle Choice
?

Info: Int Vehicle Survey + | —— Mixed Logit Discrete
Ext Vehicle Survey Choice Analysis
Z =
1N MZ
Prior: PVM Model Expected System
Parameters \ Rating
T
Info: Interior Vehicle | >| Random Effects
Market Survey Ordered Logit
4  —
i —

Prior: PVM Model Sub-System Ulility |

Parameters \ ¥

Random Effects
Info: Interior Vehicle — Ordered Logit

Martket Survey

Figure 6.8. Integrated Bayesian Hierarchical Choice Model

In order to illustrate the benefits of the IBHCM approach, four versions of the hierarchical choice
model are estimated. The alternative model versions use fixed (i.e. no random heterogeneity)
versus random coefficients, and separate versus integrated model estimation in these

combinations:
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e  Scenario I: Fixed parameters, each model individually estimated (SEP).

e  Scenario 2: Fixed parameters, integrated approach (INT).

e  Scenario 3: Random parameters, each model individually estimated (SEP).

e Scenario 4: Random parameters, integrated approach (INT) (as in Section 6.2.4).
In Scenarios 1 and 3, each of the three models (M;, M,, and M) is estimated independently,
whereas Scenarios 2 and 4 utilize the integrated estimation; however, only Scenario 4 utilizes the
full error propagation method described in Section 6.2.4. Additionally, Vehicle 4 is the vehicle
under design, and thus is the only vehicle in the choice set linked to the M, and M3 level models.
The IBHCM was estimated using WinBUGS (Spiegelhalter et al., 2003), interfaced with R-
Project (Ihaka and Gentleman, 1996) for data pre- and post-processing.

The results (i.e., model B coefficients) of the 4 model scenarios are shown in Table 6.2 (note:
the ordered logit cut points are not shown for simplicity, see Appendix H for full model results).
The variance and variance-covariance matrices for the two random effects models are shown in
Table 6.3. For the Random SEP model, covariance between parameters in different models
cannot be estimated since each model is estimated separately. In the Random INT model,
covariance can be estimated between parameters in different models. All variance-covariance
values in the M, and M3 models are significant at greater than the 99% confidence level. While
significant covariance was found among the parameters in the M3 and M, level models,
significant covariance was not found between the ratings models at the M3 and M, levels and the
parameters in the M; level model. Studies of the M, level choice model indicated that the
covariance between M; model parameters is statistically insignificant, and thus a diagonal

variance matrix can be specified to aid in convergence.



Table 6.2: Results of Four Model Scenarios

Fixed SEP Fixed INT Random SEP Random INT
M;: Headroom
coef. t-value coef. t-value coef. t-value coef. t-value
ROKy 1.53 8.26 1.50 8.10 1.55 8.53 1.60 6.74
GRD, -0.19 -097 (| -018 -0.89 | 0.11 0.54 0.09 0.46
HR; 4.02 1880 | 3.90 16.81 || 4.64 19.91 || 4.67 16.05
HRy 1.36 9.01 1.29 8.50 1.67 1043 || 1.67 10.97
Stat 216 -6.84 | 220 -7.23 | -3.27 -8.00 | -3.13 -7.92
BMI 1.46 4.84 1.53 5.23 1.76 4.56 1.62 4.43
Age -0.84 -347 || -0.87 -2.71 | -1.148 -3.72 || -1.07 -3.67
M;: Leftroom
ROKy 3.48 16.83 || 3.45 18.27 || 3.54 17.16 | 3.51 18.16
GRDy 153 -824 | 1.64 -9.77 | 144 -7.67 | -1.37 -8.00
StoH 0.28 1.63 0.25 1.59 0.27 1.55 0.29 1.51
HR; 172 10.30 || 1.63 9.65 1.71 10.59 || 1.69 9.87
Stat 217 -6.88 | 2143 -6.15 | -3.147 -8.07 | -3.07 -8.62
BMI 121 -433 || 1.08 -390 || -1.87 -529 ||-1.78 -5.07
Age -0.36 -1.44 | -0.32 -1.22 | -0.63 -2.03 | -0.30 -0.92
M;: Kneeroom
ROKy 1.38 9.62 1.44 8.88 1.36 8.98 1.36 8.55
HEL; 1.01 6.70 1.03 6.62 1.05 6.93 1.04 6.80
StoH -0.36 -222 | -0.34 -232 | -0.34 -206 |[-0.38 -2.24
HRz 0.81 5.04 0.86 5.51 0.84 5.06 0.88 4.82
Stat 140 -452 | 1.38 -441 | 1.02 -2.37 | -1.67 -4.25
BMI -1.01 -355 || 1.06 -4.19 | 142 -4.13 | -1.42 -4.25
Age 1.02 4.13 0.92 3.56 1.70 5.15 1.08 3.50
M,: Roominess
Head 0.38 6.93 0.27 2.90 0.52 9.53 0.21 2.02
Left 0.48 6.50 0.39 2.50 0.66 7.63 0.42 1.32
Knee 0.59 8.00 | -0.18 -1.15 | 0.58 7.47 | -0.53 -1.23
M,: Ingress/Egress
ROKy 0.83 5.39 0.86 5.55 0.80 5.26 0.81 5.77
HEL; 186 710.37 || 1.93 12.81 187 10.56 | 1.85 10.91
GRD; -2.03 -10.83 || -2.09 -711.53 | -2.26 -11.57 | -2.23 -12.67
StoH -2.79 -14.97 | 279 -15.32 | -2.83 -15.30 || -2.84 -16.53
HR; 187 10.23 || 1.81 11.46 | 1.86 9.95 1.88 10.90
Stat -2.28 -6.82 || -2.03 -598 | -2.92 -7.41 | -2.87 -8.06
Age -1.04 -3.53 || -1.01 -3.88 || -1.75 -4.83 | -1.66 -6.68
Gend -0.09 -0.60 | -0.01 -0.04 [ -0.31 -1.11 || 0.02 0.10

190
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M;: Choice Model

Roominess 0.53 4.11 0.90 1.30 1.17 4.45 || 1.90 2.30
Ingress/Egress 0.43 3.75 0.44 0.95 1.25 2.99 1.10 2.74
Quality Materials | 0.41 3.90 0.51 4.82 1.45 4.05 1.30 3.14
Ext. Appearance 1.48 5.22 1.52 4.87 2.68 3.70 | 2.69 5.03
Willing to Pay 0.39 2.06 0.34 1.65 0.87 1.83 | 0.89 1.49
Gend X Alt2 0.03 0.06 | -0.10 -0.18 | 0.35 0.37 || 0.09 0.12
Gend X Alt3 -0.03 -0.05 || -0.01 -0.02 | 0.11 0.172 | 0.08 0.11
Gend X Alt4 -024 -043 || -0.31 -0.62 [ -0.37 -0.39 ||-0.35 -0.48
Stat X Alt2 -0.54 -054 || -1.57 -1.52 | -2.02 -1.08 | -3.09 -1.96
Stat X Alt3 -089 -079 || 114 -0.99 | -2.34 -1.31 | -3141 -2.17
Statx Alt4 -0.18 -0.176 | 0.00 0.00 (| 177 -1.00 | 116 -0.77
Inc X Alt2 0.87 0.77 | -0.01 -0.01 1.59 0.77 || -0.06 -0.04
Inc < Alt3 0.23 0.20 0.00 0.00 0.84 0.43 || 0.45 0.31
Inc X Alt4 -0.17 -0.13 | 118 -1.18 | 1.51 0.67 | -1.16 -0.75
Age X Alt2 0.93 0.94 2.16 2.06 2.34 1.44 3.76 1.97
Age X Alt3 0.71 0.71 1.22 1.10 1.72 1.10 || 3.16 1.70
Age X Alt4 1.29 1.24 1.51 1.75 2.33 1.49 | 3.00 1.57
Gpackaging 1.31 2.44 0.98 3.28 1.27 2.26 || 0.95 3.67

Table 6.3: Variance-Covariance Matrix for Random Effects Models

M, & M; Variance (-Covariance) Matrices

Random SEP Random INT
Headroom (M3) 1.94 Headroom (M3) 3.96
Leftroom (M3) 2.31 Leftroom (M3) 3.54 5.40
Kneeroom (M) 2.16 Kneeroom (M) 3.26 435 | 4.64
Roominess (M) 1.99 Roominess (M) 3.32 3.86 | 3.71 | 4.05
Ingress/Egress (M,) | 1.15 Ingress/Egress (M,) 3.08 3.52 | 3.22|3.35|3.94

M, Variance (-Covariance) Matrices

Random SEP Random INT
Roominess 0.93 Roominess 1.29
Ingress/Egress 2.00 Ingress/Egress -0.10 1.19
Quality Materials 1.54 Quality Materials -0.08 | -0.21 | 1.38
Ext. Appearance 1.00 Ext. Appearance — — — | 0.98
Willing to Pay 1.61 Willing to Pay — — — | 0.09 | 1.81

The actual distributions of the random parameters for the Random INT model (i.e., random effect

for the M, and M3 models and random betas for the M; model) are shown in Appendix 1.
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6.3.2 Vehicle Occupant Package Design Optimization

A vehicle package optimization formulation is used to demonstrate the benefits of the estimated
IBHCM in setting package design targets. The package optimization problem is to select the
HNGyx, ROKy, HEL;, GRDz, StoH, and HR; dimensions to maximize choice share for Vehicle
4, of the four vehicles in the clinical surveys, while meeting vehicle-level requirements (i.e., fuel
economy and weight). The six dimensions to be optimized are shown in Figure 6.9 (solid line
oval), as well as the overall vehicle dimensions which will be used in the constraint functions
(dashed line oval).The height, a function of GRDz and HRy, is limited by the overall vehicle
height, given by H100, assumed to have a limit of 58 inches. Also, it is assumed that the weight
of the vehicle is limited to 3500 1bs maximum for overall performance reasons, and that the fuel

economy must be at least 24 mph to meet federal standards.
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Figure 6.9: Relationship among Vehicle Packaging Dimensions (Society of Automotive Engineers,
2002)

The optimization problem is summarized in Table 6.4. The optimization is conducted using
both the integrated random parameter model, and the integrated fixed parameter models to
compare the difference in results between the two approaches. While the choice model captures
consumers’ trade-offs among interior and exterior attributes, it is necessary to mathematically

express the relationships between packaging dimensions and other vehicle design performances
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(e.g., weight, fuel economy) to capture vehicle-level design trade-offs. Data to estimate linear
regression models is collected for a total of 77 vehicles from the automotive website
Edmunds.com (Edmunds Inc, 1995-2007), based on the segment of the vehicles in the occupant-
based packaging survey DS;. From Kumar (2007), fuel economy is modeled as a function of
weight, engine size, and width/length ratio, and the weight is expressed as a function of vehicle

dimensions as summarized in Table 6.4.

Table 6.4. Vehicle Choice Share Optimization Problem

GIVEN
a) Vehicle Dimensions (L103, W103, H100) for Vehicle 4
b) Preference Models for My, M,, and M3 (
c) Table 6.2, Table 6.1)
d) Models for fuel economy and weight
e) Target Market Demographics (S)

FIND:
Dimensions: HNGy, ROKy, HEL ;, GRD,, StoH, HR,
to MAXIMIZE
Choice share, Q, for Vehicle 4
Subject to:
e H100<58in.
e Fuel Economy f(engine size, L103, W103, H100, weight) = 24.0
mpg

e Weight =f(L103, W103, H100) < 3500 /bs
Relationships:

e L103=165.4in. + HNG

¢ W103 =41.8in. + 2ZROKy

e H100=2.0in. + GRDz + HRz[cos (8 deg)]

The results of the optimization are shown in Table 6.5, with the current values of the six
dimensions to be optimized listed under stating value. The initial choice share estimated using
the hierarchical choice model is 32.65%. The optimization converges with the final optimum
values for the six dimensions listed in the table, leading to a choice share increase to 40.07 %

using the Random INT model vs. 41.97% for the Fixed INT model. The final values of fuel
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economy, weight, and vehicle height are also presented below, with GRDz and StoH reaching the
lower constraint on their values. The optimum values of the variables and the maximum choice
share solution are different when using the fixed parameter model. Because, as will be shown in
Section 6.4, the goodness of fit of the random parameter model is significantly higher than the
fixed parameter model and the choice share prediction accuracy higher, the choice share

prediction accuracy is higher for the random parameter model.

Table 6.5. Optimization Results for the Package Design

Optimum Value

Attribute Starting Value | Random INT Fixed INT
HNGx 29.5in. 31.5in. 31.5in.
ROKy 16.1 in. 15.4 in. 16.1 in.
HEL, 12.2 in. 13.0 in. 13.0 in.
GRD, 22.0in. 21.6in. 21.6in.
StoH 5.6 in. 5.3in. 5.3in.
HR; 32.2in. 36.3 in. 33.6in.
Fuel Economy 24.2 mpg 24.2 mpg 24.0 mpg
Weight 3480 Ib 3460 Ib 3475 Ib
Vehicle Height (H100) 56.9 in. 56.7 in. 55.2 in.
Vehicle Choice Share 32.65% 40.07% 41.97 %

6.4 VALIDATION OF THE INTEGRATED BAYESIAN HIERARCHICAL CHOICE MODEL

The IBHCM is validated both to ensure convergence of the model as well as to test the fit of the
model and its ability to accurately predict choices within the data set. The four model scenarios
presented in Section 6.3.1 are used for comparison purposes.

IBHCM Convergence: Convergence of the Monte Carlo Markov Chains (MCMC) is assessed to

determine if the posterior distribution is stationary and thus is a reasonable approximation of the

actual posterior distribution. The most popular practical measure of MCMC convergence is the

Gelman-Rubin R statistic (Brooks and Roberts, 1998). In order to test for convergence, at least

two chains must be utilized and two intermediate measures must be determined to calculate the
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R statistic. A measurable quantity of the each iteration of each chain for each model parameter
(i.e. b, ) is defined as . The first measure is the between-chain variance, B, and the second
measure is the within-chain variance, W, as illustrated in Figure 6.10. The expressions for B and

W are given in Eq. (6.16) as:

: (6.16)

where m is the number of parallel chains, n is the number of realizations of each chain, ® is the
overall mean value of all m'n realizations, ®, is the mean of the » realizations of chain £, and
®, is the j" realization of chain £.

Between-Chain Within-Chain
Variance (B) Variance (W)

[

T T
1500 1750
iteration

Figure 6.10: Example of Between vs. Within Chain Variance

Using the measures B and W, the R statistic is defined as:

s [(1=1/nw +(1/n)B
R—J v . (6.17)

The within-chain variance, W, will initially be small as the sampler will not fully explore the
state space, whereas the between-chain variance, B, will initially be large before the j chains have
converged to the posterior distribution. Therefore, R will initially be large, but will converge to

1.0 as the j chains converge to the posterior distribution (Lancaster, 2004). While there is no
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formal definition for acceptable convergence, it is recommended by Gelman-Rubin that a value

of R of less than 1.2 is a reasonable measure of convergence for a chain (Gelman et al., 2004).

Histograms of R for each of the model parameters (i.e. b, ) are shown in Figure 6.11. As

seen in the figures, each of the models generally converged with R less than 1.2; however, each

of the models has a few (less than 5%) of the chains with R greater than 1.2. These outliers have

been investigated and found to be related either to the ordered logit cut points, or the variance

components, and not the model parameters in the utilities functions (i.e. B). The cut points have

more difficulty in converging, possibly due to the ordinal constraint upon them.
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Figure 6.11: R-hat Statistic Distribution for Parameters in Each Model Scenario
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IBHCM Model Fit and Prediction Tests: Unlike physics-based models, model validation for

behavioral models is challenging in that a physical experiment may be difficult to conduct to

validate the model. Validation must be done utilizing the same data available for model

estimation in most situations. The following validation techniques are used for behavioral

models:

1.

Goodness-of-Fit Measures: Goodness-of-fit measures based upon the log-likelihood of
the converged model, such as the likelihood ratio index p,”, are measures of how well the
estimated model predicts actual individual choices in the data set. Higher values of py*
indicate better prediction of the choices.

Comparison Bayesian MXL to MLE NL: As described in the previous section, the method
for data fusion used in the Bayesian MXL method is different than that used in the
Maximum Likelihood Nested Logit method.

Choice Share/Segment Prediction Tests: Due to the hierarchical nature of the model,
prediction errors in the lower level models propagate to the choice level model, creating
inaccuracies in choice prediction. Therefore, a test is conducted to determine overall
vehicle choice share prediction accuracy, as well as a test of predictions on specific
segments of the market, for example predictions on several segments of human stature
(Ben-Akiva and Lerman, 1985).

Confirmation of Effect of Modeling Heterogeneity: The effect of including both

systematic and random heterogeneity in the model is shown.
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Hierarchical choice models were estimated for the four scenarios outlined previously. The log-
likelihood and the statistic p,° for each of the models within the hierarchical model framework

are reported in Table 6.6.

Table 6.6: Comparison of the Model Fits of the 4 Scenarios

Fixed SEP Fixed INT Random SEP Random INT

L-L o0 L-L o L-L o0 L-L o0
M, Model -209.99 0.353 -228.88 0.294 -67.00 0.793 | -135.71 | 0.582
M, Ingress/Egress -1198.18 | 0.316 | -1197.03 | 0.317 | -906.63 | 0.483 | -924.24 | 0.473
M. Roominess -867.99 0.471| -1086.98 | 0.338| -733.56 | 0.553 | -810.70 | 0.506
M; Headroom -1104.35 | 0.339 | -1101.91 | 0.340 | -84564 | 0.494| -865.22 | 0.482
M; Leftroom -1146.00 | 0.320 | -1144.64 | 0.320 | -804.25 | 0.523 | -827.82 | 0.509
M; Kneeroom -1204.12 | 0.307 | -1205.65 | 0.307 | -889.15 | 0.489 ] -907.28 | 0.478

-5730.6235 -5965.0935 -4246.233 -4470.96

Goodness-of-Fit: As seen in the table, significantly higher log-likelihood and subsequently p;°

values are achieved using the random parameter models versus the fixed parameter models. This
is to be expected as the random parameter model captures random taste heterogeneity in addition
to the systematic taste heterogeneity of the fixed parameter models. The inclusion of random
heterogeneity provides the largest improvement to the M; level choice model, indicating that
there is much taste variation at the choice level not accounted for by the choice of model
parameters. Additionally, the models estimated separately have better goodness-of-fit statistics
than the integrated estimated models. This is due to the fact that the parameters in the integrated
models are fit to models in which the response is predicted by a model as opposed to the actual
responses.

Comparison Bayesian MXL to MLE NL: A comparison of the Bayesian MXL versus the Nested

Logit method is shown in Table 6.7 for the customer-desired attribute (A) in the model. The
MLE NL results are scaled to be on the same scale as the Bayesian MXL results, because, as

discussed earlier in this chapter, MLE identifies the mode of the parameter distribution versus
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Bayesian which identifies the mean of the distribution. As seen in the table, there is strong

agreement between the two methods.

Table 6.7: Comparison Bayesian MXL vs. Nested Logit Data Fusion

Bayesian MXL MLE NL Scaled NL | Difference
Roominess 0.53 4.11 0.51 3.78 0.53 0.07%
Ingress/Egress 0.43 3.75 0.41 3.55 0.43 0.81%
Quality Materials 0.41 3.90 0.40 3.77 0.42 2.83%
Ext. Appearance 1.46 5.22 1.36 5.06 1.43 2.10%
Willing to Pay 0.39 2.06 0.38 1.92
Sigma/scale 1.31 2.44 1.15 0.14

The NL or MXL method of combining data can be compared to a MNL method in which the
multiple data sets are merged into a single set and a single scale, x, based upon the pooled
variance of both data sets is used. Because all parameters in such an approach are scaled by the
same pooled scale factor, the MNL approach will over or under-estimate the importance of
model coefficients. For example, estimating the M; model using the single scale MNL approach
and comparing to the NL approach demonstrates that the exterior styling-to-interior packaging
ratio decreases from 1.46/.53 =2.76 estimated using the MXL approach, to 1.36/.54 =2.52
using the MNL approach. As seen, the importance for interior packaging would be overestimated

while the importance for exterior styling is underestimated using the MNL approach.

Choice Share Predictions: The models are compared based upon the error in choice share

predictions for the four different vehicles in the choice set as shown in Table 6.8.

Table 6.8: Comparison of Choice share Predictions for the 4 Scenarios

Fixed Parameter C.S. Predictions Random Parameter C.S. Predictions
Actual SEP % Error INT % Error SEP % Error INT % Error
Veh. 1 0.1410 | 0.1412 0.124 0.1370 2.855 0.1353 4.060 0.1441 2.180
Veh. 2 0.3803 | 0.3579 5.900 0.3677 3.324 0.3764 1.036 0.3758 1.194
Veh. 3 0.1795 | 0.1753 2.333 0.1958 9.089 0.1727 3.781 0.1774 1.163
Veh. 4 0.2991 | 0.3256 8.843 0.2995 0.119 0.3157 5.534 0.3027 1.188
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The error for both fixed parameter models is relatively high; however, the integrated approach
successfully minimizes the error of the vehicle under design (Veh. 4) from 8.84% to 0.12%.
Introducing random parameters has the effect of more evenly distributing the error among the
C.S. predictions, thus reducing the maximum choice share errors. The integrated estimation with
random parameters has a similar effect as the integrated fixed parameter estimation in that it
significantly reduces the error of the vehicle under design (Veh. 4), but also lowers the C.S.
prediction error for the other vehicles as well.

The market segment prediction test is conducted for three segments of Stature (small,
medium, large) and three segments of Age (low, medium, high). The results of the Stature market
segmentation test are shown in Table 6.9 and the results of the Age market segment test are
shown in Table 6.10. In order to determine a 95% confidence interval for the segments, the
variance of the observed choice share is calculated using the binomial proportion confidence

interval (Ben-Akiva and Lerman, 1985):

) (- p
Pz, pn P (6.18)

s

where p is the observed choice share proportion, z,, =1.96 for a 95% confidence interval, and

n is the number of people in each market segment.



Table 6.9: Stature Market Segment Test

Fixed Parameter SEP

Fixed Parameter INT
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Small Stature Segment
Veh. 1 Veh. 2 Veh. 3 Veh. 4 Veh. 1 Veh. 2 Veh. 3 Veh. 4
Predicted| 0.094 0.348 0.226 0.332 0.084 0.384 0.248 0.284
Observed| 0.100 0.388 0.238 0.275 0.100 0.388 0.238 0.275
95% C. I. 0.034 0.281 0.144 0.177 0.034 0.281 0.144 0.177
0.166 0.494 0.331 0.373 0.166 0.494 0.331 0.373
% Error 6.00% 10.09% 4.84% | 20.58% 15.70% 0.95% 4.42% 3.24%
Medium Stature Segment
Predicted|| 0.159 0.405 0.146 0.291 0.157 0.408 0.172 0.264
Observed| 0.125 0.513 0.175 0.188 0.125 0.513 0.175 0.188
95% C. I. 0.053 0.403 0.092 0.102 0.053 0.403 0.092 0.102
0.198 0.622 0.258 0.273 0.198 0.622 0.258 0.273
% Error 26.88% | 21.00% | 16.86% | 55.20% 25.36% | 20.47% 1.60% 40.59%
Large Stature Segment
Predicted| 0.174 0.317 0.153 0.357 0.173 0.307 0.165 0.355
Observed| 0.203 0.230 0.122 0.446 0.203 0.230 0.122 0.446
95% C. I. 0.111 0.134 0.047 0.333 0.111 0.134 0.047 0.333
0.294 0.326 0.196 0.559 0.294 0.326 0.196 0.559
% Error 14.41% | 38.09% | 25.66% | 20.05% 14.85% | 33.74% | 35.77% | 20.36%
Random Parameter SEP Random Parameter INT
Small Stature Segment
Veh. 1 Veh. 2 Veh. 3 Veh. 4 Veh. 1 Veh. 2 Veh. 3 Veh. 4
Predicted| 0.080 0.386 0.238 0.296 0.086 0.396 0.240 0.278
Observed| 0.100 0.388 0.238 0.275 0.100 0.388 0.238 0.275
95% C.|. | 0-034 0.281 0.144 0.177 0.034 0.281 0.144 0.177
0.166 0.494 0.331 0.373 0.166 0.494 0.331 0.373
% Error || 20.00% 0.41% 0.25% 7.64% 13.70% 2.14% 1.18% 0.95%
Medium Stature Segment
Predicted| 0.147 0.428 0.128 0.297 0.150 0.438 0.153 0.259
Observed| 0.125 0.513 0.175 0.188 0.125 0.513 0.175 0.188
95% C. 1. | ©0-053 0.403 0.092 0.102 0.053 0.403 0.092 0.102
0.198 0.622 0.258 0.273 0.198 0.622 0.258 0.273
% Error | 17.52% | 16.47% | 26.69% | 58.24% 20.32% 14.58% | 12.63% | 38.13%
Large Stature Segment
Predicted| 0.182 0.310 0.150 0.357 0.203 0.266 0.157 0.373
Observed| 0.203 0.230 0.122 0.446 0.203 0.230 0.122 0.446
95% C. 1. | 0111 0.134 0.047 0.333 0.111 0.134 0.047 0.333
0.294 0.326 0.196 0.559 0.294 0.326 0.196 0.559
% Error | 10.01% | 35.05% | 23.36% | 19.85% 0.05% 15.98% | 29.36% | 16.26%




Table 6.10: Age Market Segment Test
Fixed Parameter SEP

Low Age Segment

Fixed Parameter INT
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Veh. 1 Veh. 2 Veh. 3 Veh. 4 Veh. 1 Veh. 2 Veh. 3 Veh. 4
Predicted 0.177 0.354 0.164 0.306 0.186 0.341 0.185 0.288
Observed 0.174 0.419 0.163 0.244 0.174 0.419 0.163 0.244
95% C. I. 0.094 0.314 0.085 0.153 0.094 0.314 0.085 0.153
0.255 0.523 0.241 0.335 0.255 0.523 0.241 0.335
% Error 1.38% 15.53% 0.43% | 25.35% 6.54% 18.54% | 13.51% | 18.10%
Medium Age Segment
Predicted 0.093 0.333 0.190 0.384 0.083 0.350 0.215 0.352
Observed 0.100 0.314 0.200 0.386 0.100 0.314 0.200 0.386
95% C. I. 0.030 0.206 0.106 0.272 0.030 0.206 0.106 0.272
0.170 0.423 0.294 0.500 0.170 0.423 0.294 0.500
% Error 7.50% 6.05% 5.00% 0.41% 16.80% 11.20% 7.50% 8.66%
High Age Segment
Predicted 0.146 0.385 0.175 0.294 0.131 0.414 0.191 0.264
Observed 0.141 0.397 0.180 0.282 0.141 0.397 0.180 0.282
95% C. I. 0.064 0.289 0.094 0.182 0.064 0.289 0.094 0.182
0.218 0.506 0.265 0.382 0.218 0.506 0.265 0.382
% Error 3.40% 3.22% 2.40% 4.36% 6.88% 4.08% 6.30% 6.35%
Random Parameter SEP Random Parameter INT
Low Age Segment
Veh. 1 Veh. 2 Veh. 3 Veh. 4 Veh. 1 Veh. 2 Veh. 3 Veh. 4
Predicted | 0.170 0.361 0.159 0.310 0.178 0.369 0.163 0.290
Observed | 0.174 0.419 0.163 0.244 0.174 0.419 0.163 0.244
95% C. I. 0.094 0.314 0.085 0.153 0.094 0.314 0.085 0.153
0.255 0.523 0.241 0.335 0.255 0.523 0.241 0.335
% Error 2.47% 13.69% 2.64% 26.95% 1.83% 11.80% 0.12% 18.84%
Medium Age Segment
Predicted | 0.086 0.367 0.186 0.361 0.092 0.343 0.209 0.357
Observed | 0.100 0.314 0.200 0.386 0.100 0.314 0.200 0.386
95% C. I. 0.030 0.206 0.106 0.272 0.030 0.206 0.106 0.272
0.170 0.423 0.294 0.500 0.170 0.423 0.294 0.500
% Error 14.10% | 16.67% 6.85% 6.40% 8.50% 9.07% 4.50% 7.52%
High Age Segment
Predicted | 0.141 0.402 0.176 0.281 0.145 0.402 0.181 0.272
Observed || 0.141 0.397 0.180 0.282 0.141 0.397 0.180 0.282
95% C. I. 0.064 0.289 0.094 0.182 0.064 0.289 0.094 0.182
0.218 0.506 0.265 0.382 0.218 0.506 0.265 0.382
% Error 0.07% 1.08% 1.89% 0.35% 3.12% 1.03% 0.95% 3.62%
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In general, the choice shares vary more substantially by Stature market segment than by Age
segment. In the Stature study, only 2 choice share predictions are outside the 95% confidence
intervals; one prediction is from the Fixed Parameter SEP model, while the other is from the
Random Parameter SEP model. No observations are outside the 95% confidence intervals in the

Age study.

Modeling Heterogeneity: The non-linear choice vs. utility curve implies that the model with the

best representation of heterogeneity and the least restrictions on the choice probabilities (i.e.
L.LILA.) will provide the best estimate of the choice share for a design change or the introduction
of a new design. To demonstrate this concept, a comparison among five DCA models (i.e. M;
level only models) estimated for the set of four competing vehicles in DS| and DS, is provided.
The five choice models estimated are as follows:

o  Model 0: Aggregate Logit model estimated using average vehicle ratings.

e Model 1: MNL model with no demographics (no S).

e Model 2: MNL model with demographics included (S).

e Model 3: MXL model with no demographics (no S).

o  Model 4: MXL model with demographics included (S).
The five models are estimated, resulting in initial choice shares for each of the four vehicles of
[0.141, 0.380, 0.180, 0.299]. Case studies are conducted in which various hypothetical changes
to the design of each of the vehicles are made individually, which are assumed to increase the
respondent ratings by two points (e.g. rating 4 increases to 6) for each change. The effects of the
design changes upon the choice share of the changed vehicle are shown in Table 6.11 for each of

the four cases investigated. For example, the Ingress (/ng) and Exterior Styling (Ex?) ratings are
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increased (+) for Vehicle 1 (Case I) in the first case study, with the predicted choice share (C.S.)
estimated using each model (Model 0—Model 4) for the improved design shown in the respective

row.

Table 6.11. Effect of Design Changes on Choice Share using Different Models

Case 1 Case 2 Case 3 Case 4
C.S. C.S. C.S. C.S.
Initial C.S.| 0.141 0.380 0.180 0.299
Attribute |+ Ing + Room + Room + Q Mat.
Change |+ Ext + Ext + Ext + Wto P 00
Model 0 0.418 0.830 0.814 0.489 0.056
Model 1 0.270 0.588 0.383 0.416 0.350
Model 2 0.260 0.595 0.395 0.407 0.381
Model 3 0.318 0.592 0.411 0.466 0.678
Model 4 0.313 0.600 0.429 0.472 0.806

The differences among the five models are characterized by the goodness-of-fit measure, py’,
which ranges between 0-1, with higher values indicating better model fit. The py> metric
indicates that the MXL with S model has the best fit, while the aggregate (i.e. average rating)
model has the worst fit. Considering only the aggregate logit model in comparison to the four
other models for each case, it is seen that the aggregate model always overestimates the effect of
a design change. In the first case study using Vehicle 1, the models without S tend to
overestimate the effect of the change for a given model type (i.e. MNL and MXL), while the
MNL models underestimate the effect of the change versus the respective MXL models (i.e. with
S and without S). Other patterns of over- or under-estimation are seen in the case studies for

Vehicles 2-4.

6.5 DISCUSSION AND SUMMARY

The Integrated Bayesian Hierarchical Choice Modeling framework proposed in this work utilizes

multiple model levels to create a link between qualitative attributes considered by consumers
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when selecting a product and quantitative attributes used for engineering design. This new
framework addresses the shortcomings of previous methods while providing a highly flexible
modeling framework to address the needs of complex system design, such as the vehicle design
problem considered in this work. In the proposed framework, both systematic and random
consumer heterogeneity is explicitly modeled at all levels of the model hierarchy. The
importance of including a complete representation of consumer heterogeneity in the model
framework is clearly demonstrated using the vehicle design example. The ability to combine
multiple sources of data for model estimation and updating is significantly expanded over
previous methods. A comprehensive method to mitigate error propagated throughout the model
hierarchy is developed and its effectiveness demonstrated. The new modeling framework is
demonstrated for the vehicle occupant package design, in which optimal vehicle package
dimensions are identified. The modeling approach is validated using several metrics and
techniques, demonstrating the ability of the new approach to better capture heterogeneous
consumer preferences and mitigate error propagated.

The integrated Bayesian hierarchical choice model, formulated for model updating and
model fusion, can be incorporated into the overall economic benefits equation of Figure 6.2 (i.e.
V =QP—-C), forming the selection criterion used in the enterprise utility function. The role of
the Bayesian hierarchical choice model is illustrated in Figure 6.12. Initially, at time =0, the
prior information and the evidence are combined to estimate the B parameters of the choice
model (including M;, M,, and M3 levels), which together with an estimate of the total market
size, D(f), enables estimation of Q. To complete the profit function, costs and relevant
uncertainties are quantified as was demonstrated in the sensor case study in Section 3.5. With a

profit function available and the risk attitude of the enterprise, the enterprise utility function can



combination of both information and preference change.
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be formulated. As illustrated in Figure 6.12, the demand model can be updated in future time

periods (e.g., t = 1, t,...,t;) as more information becomes available, as preferences change, or a
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Figure 6.12: Bayesian Choice Modeling Framework

or multiple sub-systems, or for the entire system.

The hierarchical choice modeling approach presented in this chapter will make possible the
realization of a comprehensive Decision-Based Design framework for complex systems, in
which a hierarchy of systems and sub-systems exist, as well as multiple sources of survey data

over different time periods. Using this method, detailed design decisions can be made on a single
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Chapter 7
CONCLUSIONS AND INTELLECTUAL MERIT

7.1 CONTRIBUTIONS OF THE DISSERTATION

The primary research contribution of this work is the development of the comprehensive
Enterprise-Driven Design approach to support design decision-making for configuring
complex engineering systems, considering the heterogeneity of the consumers for these systems.
The specific tools and methodologies which comprise the system configuration approach are
necessary for the design of complex systems in which there is a hierarchy of sub-systems and
product attributes, consumer heterogeneity results in different experiences and preferences for
the system design, and there is a need to combine multiple sources of data, update models, and
quantify uncertainty for decision making. This framework is built upon the principles of the
Decision-based Design (DBD) paradigm, providing a tool to implement the DBD method in
application, a method to conduct the surveys required to support preference modeling, and a
comprehensive choice modeling approach to support engineering design. The proposed approach
provides a rigorous design approach which is suitable for use on a wide variety of engineering
systems in a wide variety of markets.

The specific research contribution of each of the new tools and methodologies comprising
the enterprise-drive design approach is detailed as follows. The Product Attribute Function
Deployment (PAFD) method is developed to offer a mathematically rigorous, decision-theoretic
process tool for use during the product planning phase of a product development program. Such

a method is needed based on an investigation of the flaws of current methods, such as Quality
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Function Deployment, which could lead to a faulty design decision process. The PAFD method
extends the QFD mapping matrix concept to qualitatively identify relationships and interactions
among product design attributes while employing the DBD principles to provide rigorous
quantitative assessments for design decisions. The PAFD method can be implemented for a real
design problem, with a team composed of marketing science, engineering, and manufacturing
experts.

The Optimal Design of Human Appraisal method can be widely applied to assess
consumer preference for any system in which an interaction between the design and a human
user exists. In this work, the attributes of the consumer which were believed to influence the
consumer’s experience of the system where human attributes, such as the consumer’s height,
weight, or gender; however, the demographics used in the design of the experiment can be much
broader, such as usage context or skill level of the user of the system. The optimal design of
human appraisal method is a necessary development to complement the development of flexible
prototype hardware, such as the Programmable Vehicle Model, which can assume a wide variety
of configurations for evaluation.

The methods for Statistical Data Analysis of Consumer Heterogeneity can be applied to a
wide variety of human appraisal data and the respective predictive models estimated using the
data. These methods are developed specifically for separating the effect of the different types of
respondent heterogeneity from the influence of the product design attributes. Application of the
methods will result in better predictive models for forecasting the impact of new designs or
design improvements on consumer opinion, and ultimately enterprise profitability.

The proposed Integrated Bayesian Hierarchical Choice Modeling approach provides the

necessary comprehensive choice modeling methodology to guide the design of a complex
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system, characterized by a hierarchy of component, sub-system, and system design activities.
This approach explicitly captures the effect of consumer heterogeneity in the choice process, and
is formulated to address the challenges of complex system design, such as qualitative choice
attributes, multiple data sets, and the need to quantify uncertainty for decision making. This
methodology could find wide spread use in setting target levels of performance for complex
systems, such as automobiles, airplanes, medical devices, or power tools in which the system
design must meet the needs of a diverse consumer population. The approach could also find
application in other disciplines, such as in the design of services, which are characterized by
multiple data sets, preference heterogeneity, and mapping from qualitative choice attributes (e.g.
convenience of a service) to quantitative measures (e.g. hours service is offered).

The methods developed in this research can be applied to several trends within industry
today. One such trend is the development and management of incremental innovation. Much
focus has been directed to breakthrough innovation, in which a new technological breakthrough
creates a brand new market, with no immediate competitors and potentially high profits. These
types of breakthroughs are rare, however (Pine, 1993; Otto and Wood, 2001); it has been noted
most recently in the Harvard Business Review (Kanter, 2006) that attention must also be paid to
incremental innovations, which are capable of creating competitive advantages for a firm in
existing markets, to enable incremental improvements in profitability and/or market share. These
incremental innovations must be implemented in product configurations to ensure consumer
acceptance and profitability. Without solid methods for decision-making to manage innovation,
enterprises must overly rely upon mimicking (benchmarking) successful competitors, creating
superficial cosmetic changes to existing products to generate interest, or introducing a wide

variety of disparate products to mitigate the uncertainties of the market place. The methods
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provided in this dissertation can be used to guide the design process for configuring systems to
include incremental innovations.

Another issue to address is the increasingly rapid obsolescence of product designs. For
example, in the cell phone industry, product cycles are short and consumers demand new
products at an ever increasing rate. As noted recently in Business Week (Crockett, 2007),
companies are looking toward updating popular products to maintain interest throughout the
product life, rather than waiting for introduction of entirely new products. These changes are
intended to improve the base design, as well as to optimize the features to correspond with
current consumer preferences. The Integrated Bayesian Hierarchical Choice Model provides a
method to update consumer preference models at any time throughout the product design life
cycle, and make decisions upon feature improvements.

7.2 RECOMMENDATIONS FOR FUTURE WORK

PAFD Method: The recommended future work for the PAFD method is to study the use of the
method for the design of a complex system, such as the vehicle problem. When the PAFD tool is
used in the conceptual design phase, it is not reasonable to expect that the detailed survey data
used in the hierarchical choice modeling approach would be available. Also, the knowledge
needed to conduct the PAFD analysis may be spread over several disciplines, requiring the use of
multidisciplinary optimization techniques. Therefore, research is required to determine how to
implement the method considering the unique issues present in the selection of a preferred
complex system concept. Another area of future work is extension of the PAFD method for use
in the detailed design phase, such as the target setting process for the vehicle problem. While it is
intended that the PAFD method be applied throughout the design process, from the conceptual

design phase through the detailed design phase, it has been demonstrated in this work for use in



211

conceptual design. The principles of mapping qualitative customer-desired attributes to
quantitative engineering attributes are applicable to the design of a human appraisal experiment

presented in Chapter 4 and to guide the modeling described in Chapters 5 and 6.

Optimal Design of Human Appraisal Experiments: The primary research need for the Design of
Human Appraisal Experiment method is an improved search method. Currently several tries are
used to identify the optimal design, with no methodology available for determining the number
of tries needed to indentify an acceptable design. Improvements to the efficiency of the search
algorithm should be investigated using memetic or stochastic evolutionary algorithms, which
would eliminate the need for multiple tries and potentially lead to more repeatable results using
the algorithm. Another future research area is to adapt the method to design choice experiments
to support building the discrete choice model at the top level of the model hierarchy. This could
be accomplished using the basic framework in place for the design of human appraisal
experiments, but replacing the information matrix for the random effects ordered logit model
with the information matrix for the MNL or MXL model.

Analysis of Human Appraisal Experiments: Methods have been developed for preprocessing the

data collected in a human appraisal experiment, specifically for response reduction,
understanding the factor-response relationship, and general methods to guide the random effects
ordered logit modeling process. The use of machine learning methods from data mining,
specifically a decision tree and a Bayesian network, were also investigated as methods to better
understand the data. The primary future work in this area is further exploration and use of the
machine learning methods to support the modeling process. The machine learning methods have
a primary advantage in that they can identify the important factors which influence the

classification process, such as selection of a rating or a choice made from among a choice set.
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Further, a better understanding of the advantages and disadvantages of the parametric modeling
methods, such as ordered logit and discrete choice analysis, versus the machine learning
classification methods would be beneficial to the Decision-based design paradigm. For example,
design situations in which a well structured data set with defined choice sets does not exist may
be better served with the use of a Bayesian network or Decision Tree.

Integrated Bayesian Hierarchical Choice Model: Several areas for future work remain in for the

Bayesian hierarchical choice modeling approach. Convergence of the hierarchical model, as
measured by the Gelman-Rubin statistic, is a challenge for such models. In this work, a
simplified set of models at the M;, M,, and M3 levels was used to demonstrate the method;
however, it is desired to utilize more descriptive models, such as the complete random-effects
ordered logit models of Chapter 5, in the hierarchy. The Bayesian framework has been developed
with the ability to both combine multiple data sources to estimate the choice model, as well the
ability to update the model over time. An example of combining data at the choice model level,
and updating at the ratings level was provided; however, an example in which data from several
product segments is combined to estimate the models, or in which the entire set of models is
updated with a complete set of data from another model year is used should be investigated.
Also, the use of other types of data sets, for example actual purchase data (i.e. revealed

preference) such as data collected by J. D. Power and Associates, should be investigated.
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Example

Table A.1: Sample of Choice Set Used for Estimation of DCA Model

Demographic S

Market
Customer Region Segment Purchase
Customer 1 N. America $30,000.00 Our
Customer 2 N. America $29,000.00 Our
Customer 3 Asia $22,000.00 | SensorA
Customer 4 N. America $24,000.00 | SensorB
Customer 5 N. America. $24,500.00 | Sensor B
Customer 6 Asia $34,000.00 | SensorC

Table A.2: Analytical Relationships between E and X

Engineering Attribute E

Concept 1
E as a function of X’

Concept 2
E as a function of X?

Sense element accuracy

g(calibration) + ¢(A/D)

g(calibration) + ¢(A/D)

Full scale span

KAl

EogA/Ad

Min[T,ax(IC), Min[T,ax(IC),
Temperature range Tq(Housi(ng))] Tq(Housi(ng))]
Housing footprint Housing width*length Housing width*length
Natural frequency Cn JEl] pAL Cn JEI pAL’
Connector mating force 25,35, 40 25, 35,40
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Appendix A: Choice Set and Analytic Relationships for PAFD
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Appendix B: Information Matrix Computation for Algorithmic

Implementation

This appendix provides a method for expressing the information matrix, M, and estimating the
prediction variance of a given extended design point, f(x), for use in the optimization algorithm.
The ordinal data GLM information matrix of Eq. (4.9) can be written in analogous fashion to the
GLS formulation of Eq. (4.7) (Johnson and Albert, 1999). An H, matrix is defined as a matrix of

derivatives of the logistic CDF as H = diag( 1o Soaaens fn(m)). The extended design point f(x;,)

for a given respondent and given configuration is defined as:

1 0 - 0 -x,

o1 - 0 -x,
f(x,)=. . . . . (B.1)
. O
0 0 0 1 -x,
A C,, matrix defined as:
10 0 ]
-1 1 0
C,=/0 -1 0 (B.2)
: : o1
10 0 - —1]
With C,, H, and f(x) defined, the information matrix can be written as (Johnson and Albert,
1999):
d 1
M=>F W, F, (B.3)

n=1

whereW ' =H C'V.'C H,, and F is the extended design matrix composed of the f(x).

n n n
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Blocks
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Appendix C
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Appendix D: PVM 4 Block Human Appraisal Designs

Table D.1: Full 1-Part 4 Block Experiment
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X4 X2 X3 X4 X5 X6 X7 Xg
SgRPto | SgRPto | SgRPto | SgRP to Sill to SgRP to | SgRPto | SgRP to

Hinge Rocker Y HeelZ | Ground Z Heel Roof Z | Frt Hdr X [Side Rail Y

(PtoH) (ROKy) (HEL,) (GRDy) (StoH) (HR7) (HRy) (HRy) [Block
800 380 288 450 70 777 241 122 1
700 520 400 625 140 777 241 122 1
800 520 175 625 140 977 241 122 1
725 380 175 800 70 777 366 122 1
800 380 400 800 0 977 366 122 1
800 520 175 625 0 777 491 122 1
800 380 400 625 140 877 491 122 1
700 380 175 800 0 977 491 122 1
700 520 175 625 0 777 241 197 1
700 380 175 625 140 777 241 272 1
725 520 175 625 70 877 241 272 1
700 520 400 625 0 977 241 272 1
725 380 400 625 140 977 241 272 1
800 520 400 625 140 777 366 272 1
700 380 400 625 0 777 491 272 1
800 380 175 800 0 777 491 272 1
800 380 175 450 70 977 491 272 1
700 520 288 450 140 977 491 272 1
800 380 175 625 0 777 241 122 2
800 380 400 625 140 777 241 122 2
700 380 175 450 140 977 241 122 2
700 520 400 800 0 877 366 122 2
800 450 288 450 70 877 366 122 2
700 380 175 450 140 777 491 122 2
725 380 400 625 0 977 491 122 2
800 520 400 625 70 977 491 122 2
800 380 175 800 70 977 491 122 2
725 450 288 625 140 977 491 122 2
700 380 175 800 0 777 241 272 2
700 520 288 450 70 777 241 272 2
800 380 175 450 140 777 241 272 2
800 520 175 625 140 777 241 272 2
800 520 288 800 0 977 241 272 2
800 520 400 800 0 777 491 272 2
700 520 175 625 0 977 491 272 2
700 380 400 625 140 977 491 272 2
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700 520 400 625 0 777 241 122 3
800 520 175 450 140 777 241 122 3
800 380 175 800 0 877 241 122 3
800 380 288 450 70 977 241 122 3
700 380 400 625 140 777 366 122 3
800 520 400 625 140 977 366 122 3
800 380 400 625 0 777 491 122 3
700 520 175 450 70 977 491 122 3
700 520 400 800 70 777 491 197 3
800 380 400 800 70 777 241 272 3
700 380 400 625 0 977 241 272 3
700 520 175 625 140 977 241 272 3
800 520 175 625 0 777 366 272 3
700 450 175 450 140 777 491 272 3
700 380 288 625 0 877 491 272 3
800 450 400 625 0 977 491 272 3
700 380 175 800 70 977 491 272 3
800 520 175 625 140 977 491 272 3
700 380 175 450 70 777 241 122 4
800 520 288 800 70 777 241 122 4
725 520 175 625 0 977 241 122 4
700 380 400 800 70 977 241 122 4
700 520 400 625 0 777 491 122 4
700 380 175 800 0 777 491 122 4
700 520 175 625 140 877 491 122 4
800 380 175 450 140 977 491 122 4
800 520 400 625 0 877 241 197 4
700 450 288 625 70 977 366 197 4
700 520 400 800 0 777 241 272 4
800 380 400 625 0 977 241 272 4
800 380 175 800 70 977 241 272 4
800 520 175 450 140 977 241 272 4
800 520 175 450 70 777 491 272 4
725 380 400 625 140 777 491 272 4
700 380 288 450 70 977 491 272 4
800 520 400 800 70 977 491 272 4




X1

Table D.2: Blocks 3 and 4 to be Augmented in 2-Part Experiment

X2

X3

X4

X5

X6

X7

Xs
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SgRP to | SgRPto | SgRP to | SgRP to Sill to SgRP to | SgRP to | SgRP to
Hinge RockerY | HeelZ | GroundZ Heel Roof Z | Frt Hdr X [Side Rail Y
(PtoH) (ROKy) (HEL,) (GRDy) (StoH) (HR>) (HRx) (HRy) Block

700 520 400 625 0 777 241 122 3
800 520 288 800 70 777 241 122 3
700 520 400 625 140 777 241 122 3
800 380 175 800 0 877 241 122 3
800 380 288 450 70 977 241 122 3
700 380 175 450 140 977 241 122 3
800 520 175 625 0 777 491 122 3
700 380 175 450 140 777 491 122 3
700 380 175 800 0 977 491 122 3
800 520 400 625 70 977 491 122 3
700 520 288 450 70 777 241 272 3
700 380 400 625 0 977 241 272 3
800 520 288 800 0 977 241 272 3
725 380 400 625 140 977 241 272 3
700 380 400 625 0 777 491 272 3
800 380 175 800 0 777 491 272 3
700 380 288 450 70 977 491 272 3
800 520 175 625 140 977 491 272 3
700 380 175 450 70 777 241 122 4
800 520 175 450 140 777 241 122 4
725 520 175 625 0 977 241 122 4
700 380 400 800 70 977 241 122 4
725 380 175 800 70 777 366 122 4
800 380 400 625 0 777 491 122 4
700 520 175 625 140 877 491 122 4
725 380 400 625 0 977 491 122 4
800 380 175 450 140 977 491 122 4
700 450 288 625 70 977 366 197 4
700 520 400 800 0 777 241 272 4
800 380 175 450 140 777 241 272 4
800 520 175 625 140 777 241 272 4
800 380 400 625 0 977 241 272 4
700 520 175 625 140 977 241 272 4
725 380 400 625 140 777 491 272 4
700 380 175 800 70 977 491 272 4
800 520 400 800 70 977 491 272 4
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Appendix E: PVM Investigation Questionnaire

PVM Roominess and Ingress/Egress Experimental Protocol
Northwestern URP
March 2008

Setup (for the test administrator):

At the beginning of each day of experiments:

1. Setup the video camera to capture motion.

2. Determine the set of configurations and the configuration order for each respondent.

3. Ensure all platforms needed for the respondents to be tested are available and close to the
PVM.

Install A-pillar, B-pillar, armrest
Have hinge pillar and sill inserts handy

Ensure scale, chair and meter are ready to get anthropometric dimensions from subjects

N o o &

Ensure seat motion is turned on

For each respondent:

1. Place the PVM in configuration 1 for the given respondent.

Place the driver’s seat in a “neutral” position (lowest and rearmost)
Ensure the armrest is in the correct position for configuration 1

Read the “Description of Experiments” to the respondent.

o &~ b

Record the respondent's demographic attributes: gender, age, and current vehicle
ownership.

6. Measure and record the respondent’s anthropomorphic dimensions: height, seated height,
weight, shoe size, heel height.

Respondent enters the PVM as a practice for the experiments.

Once the respondent is in the vehicle, read the complete Ingress questions to get the
respondent familiar with the questions

9. The respondent adjusts the driver’s seat position in the vertical (z) and frontal (x) positions
and the seat back angle («) to attain a comfortable driving position. Record the seat
position.

10. Close the door and read the complete Roominess questions to get the respondent familiar
with the questions

11. Open the door and let the respondent exit the PVM. Read the complete Egress questions to
get the respondent familiar with the questions
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Description of Experiments (read to the respondent):

You will be evaluating 18 different vehicle configurations for ingress, egress and roominess of
the driver’s compartment.

Before you begin the experiments, | will record the age group you belong to, the current vehicle
you drive and will measure your height, seated height, weight, shoe size and heel height.

You will then be asked to enter the PVM to practice the procedure, as well as to adjust the
driver’s seat to your preferred position in the vertical and frontal directions, and the seat back
angle. The seat adjustment will be done this one time only for the rest of the experiment. Once
you enter the vehicle for the practice run | will read the experiment questions regarding Ingress
so that you get familiar with them. You can then adjust the driver's seat and | will record the
adjustment. | will then close the door and read the questions regarding Roominess. | will then
open the door for you and once you exit the vehicle, | will read the questions regarding Egress.
All your responses will be given as ratings which are posted in front of the vehicle. In each case
| will indicate which of the three scales we are going to be using.

The experiment procedure is as follows.

1. Enter the vehicle on the driver’s side when instructed by the test administrator, but do not
close the door.

Evaluate the ease of entering the vehicle.
Wait for the test administrator to close the door.

Evaluate the driver’'s compartment amount of head room, the room to the left of the driver
seating area, the knee room in the driver’s compartment and the overall roominess.

5. 1 will open the door for you and you may exit the vehicle.
6. Evaluate the ease of exiting the vehicle.
7. We may repeat these steps as necessary to ensure the evaluation is accurate.

In few cases, | will need to make adjustments to the vehicle dimensions before evaluating
roominess, in which case you will need to evaluate ingress and egress first and then reenter the
vehicle to evaluate roominess only. | will let you know when this is the case.

You may now enter the vehicle. Please adjust the seat to a comfortable position.
[wait for subject to adjust seat and record adjustment]

These will be the ingress questions:

1. How acceptable is this vehicle configuration for ingress? This is rated on a 1 to 4 scale with
the following definition for each rating as you can see posted in front of the vehicle: 1 is
“very unacceptable”, 2 is “somewhat unacceptable”, 3 is “somewhat acceptable” and 4 is
“very acceptable”.

Very unacceptable Somewhat Somewhat Very acceptable
unacceptable acceptable
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2. What is the overall ease of ingress, for the vehicle? This includes evaluation of stepping up
and passing through the door opening. This question is rated on a 1 to 5 scale, again as you
can see posted in front of the vehicle, with the following definition for each rating: 1 is “very
strong effort”, 2 is “strong effort”, 3 is “moderate effort”, 4 is “weak effort”’, and 5 is “no effort
at all”.

Very strong effort Strong effort Moderate effort Weak effort No effort at all

3. How would you rate the space available for ingress? This includes evaluation of the step-up
height and the size of the door opening. This is rated on a 1 to 5 scale, with the following
definition for each rating: 1 is “very insufficient”, 2 is “insufficient”, 3 is “barely sufficient’, 4 is
“sufficient”, and 5 is “excellent”.

Very insufficient Insufficient Barely sufficient Sufficient Excellent

I will now close the door as will be done when you evaluate roominess.
[Evaluator closes the door]

The questions you will be answering to evaluate the roominess are as follows. All questions are
rated on a 1 to 5 scale, with the following definition for each rating: 1 is “very insufficient”, 2 is
“insufficient”, 3 is “barely sufficient”, 4 is “sufficient”, and 5 is “excellent”, as posted in front of the
vehicle. The questions are:

1. How do you rate the amount of headroom? This includes space above, to the left side, and
in front of your head.

2. How do you rate the overall room to the left of the driver seating area? This includes the
space between your shoulder, upper arm, hips, elbows, and the left side of the vehicle.

3. How do you rate the amount of knee room? This includes the space to the left, and in front
of your knees.

4. How do you rate the overall roominess of the driver’'s compartment? This includes to the lefft,
in front, and above you.

Very insufficient Insufficient Barely sufficient Sufficient Excellent
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[Open the door]

You may now exit the vehicle.

These will be the egress questions:

1. How acceptable is this vehicle configuration for egress? This is rated on a 1 to 4 scale with
the following definition for each rating as you can see posted in front of the vehicle: 1 is
“very unacceptable”, 2 is “somewhat unacceptable”, 3 is “somewhat acceptable” and 4 is
“very acceptable”.

Very unacceptable Somewhat Somewhat Very acceptable

unacceptable acceptable
1 2 3 4
2.

What is the overall ease of egress for the vehicle? This includes evaluation of stepping up
and passing through the door opening. This question is rated on a 1 to 5 scale, again as you
can see posted in front of the vehicle, with the following definition for each rating: 1 is “very

strong effort”, 2 is “strong effort”, 3 is “moderate effort”, 4 is “weak effort”’, and 5 is “no effort
at all”.

Very strong effort Strong effort Moderate effort Weak effort No effort at all

3. How would you rate the space available for or egress? This includes evaluation of the step-
up height and the size of the door opening. This is rated on a 1 to 5 scale, with the following

definition for each rating: 1 is “very insufficient”, 2 is “insufficient”, 3 is “barely sufficient”, 4 is
“sufficient”, and 5 is “excellent”.

Very insufficient Insufficient Barely sufficient Sufficient Excellent

Now that you have completed the practice run, we will begin the experiments.
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Sample Respondent Data

Appendix F

woyog e saily | 520 z ¢ z I I I G I I ¢ A YA
NS wwzg) Sl 6681
do] spe 1saIly L L L € o 7 € L L L
159) SSBUIWO00Y 10} UMOP WWGH] J|24] A0
wonog e 1saiuny| g7 z z z L # I L | | L 8z
wonog el sauy] 0 ! ! ! ! b b L L L L LEFF
doL spepisal 0 L L L L ¢ ¢ L L L L 8z6v
do] e 1SRy i} L L L - - W W L L L 0E6T
|7 014 Wwgg 0 9
LIOR0G e IS8y L C [ 4 4 4 & [ € [
wioyag ylep jsaiuig 007 ¢ z 7 g g g g t t ¢ 86¥9
WOR0g e sallly] G/ z z z z c c i L z L 0019
do| sep 1saiuy| 5/ i ¥ i i i i G i i i 8259
do] e psaiug|  G2) e < z G G G G & & e 62F1
NS wwzg) Sl 159
do) e ISy L L L 7 7 7 S [ [ [
159) SSAUIWO0Y 10§ UMOP WG] 21| Al
do] :
0] ey jsalligl Gl ¢ ¢ ¢ ¢ G G z z ¢ z 8re
da] e ey G| b b e e b b e e e e 6061
CIREPEIE T [4n)
LOP0g e 1S58ty 4 £ 4 4 & & b 4 4 4
do| sep 1saiuy| 5/ L z L z G G L L z L ILES
do] e 15aLl -
1B 7l SiL z z z L I I L L L L rosi
s wwzz) 521 0009
doy| opepy Jsaiuy L L L C g g L L L L
159) SSBUIWO00Y 10} UMOP WWGH] J|24] A0
EEEN] wuope|d| soeds | poyemses | sigeidenoy | sesuiiony ] wooy sauy ! wooy ye7iwoopesy| eoeds | NoyemssET | SIGEINSIOY
ssalh] ITITE] ssalbu|
sBuney paploasy
7z 8wy LZ'EL ¥ Enine| [ 0z SZal Lzl 9'5E 599 El
02 wid Aiobarery uy ur qf uy uy
am whiay
mg PR A JUB LN by whiay |2ay| 2215 aoys | wbapy | paeas wbiay 13puag
Juaunsnipe jeas uoneunoyu 2iydesfowag pue anydiowodoyuy peplossy
¥ES awey

8l
11

9

Gl

rl

£l

4%



234

[@a1 0 sunn 0 zewes 3 ewed o
/N
GZ9 £i8 == GIBGRET ==

wns awa
\« \
az
/

99E 98 ==

Tree for Ingress Response

-

n £E == £EL =

2 K K
7))

ol

&

m 408 = 108 ==

1

4

@)

Appendix G

CECREL =+ mnmwm == SUIPELF =

II II
N/ N/

9E =98 == GUT T =
Gva  * lamovnvrewans
/ \ * o/
99EL H9E == iE =i =r SLigld =
[wuspo zumen o fl
M fooN v/
Y BFEED = 99 =99 == 0= 0n== 0= 0==

\

mmm@mm == ohnoh == 99E = 99L == 0i=04 =+

fay

dig= 148 =+ 05 = 05F ==

05F = 0S¢ ==

Gil ==

——



Appendix H: Full M2 and M3 Models with Cut points

Fixed SEP Fixed INT Random SEP Random INT
Mi: Headroom
coef. t-value coef. t-value coef. t-value coef. t-value
ROKy 1.53 8.26 1.50 8.10 1.55 8.53 1.60 6.74
GRD; -0.19 -0.97 -0.18 -0.89 0.11 0.54 0.09 0.46
HR; 4.02 18.80 3.90 16.81 4.64 19.91 4.67 16.05
HRy 1.36 9.01 1.29 8.50 1.67 10.43 1.67 10.97
Stat -2.16 -6.84 -2.20 -7.23 -3.27 -8.00 -3.13 -7.92
BMI 1.46 4.84 1.53 5.23 1.76 4.56 1.62 4.43
Age -0.84 -3.47 -0.87 -2.71 -1.18 -3.72 -1.07 -3.67
cut 1 -4.97 -7.01 -5.03 -6.78 -6.73 -8.55 -6.61 -9.13
cut 2 -3.99 -8.19 -4.08 -7.12 -5.75 -9.68 -5.63 -10.04
cut 3 -2.64 -7.86 -2.73 -5.94 -4.33 -9.38 -4.23 -9.48
cut 4 -1.97 -6.53 -2.06 -4.80 -3.56 -8.32 -3.45 -8.24
cuts -1.08 -3.84 -1.17 -2.88 -2.43 -6.00 -2.30 -5.87
cut 6 -0.05 -0.17 -0.14 -0.36 -0.97 -2.45 -0.85 -2.24
cut7 1.18 417 1.07 2.68 0.79 1.99 0.91 2.33
cut 8 2.38 8.30 2.26 5.59 2.55 6.13 2.71 6.59
M;: Leftroom
ROKy 3.48 16.83 3.45 18.27 3.54 17.16 3.51 18.16
GRD; -1.53 -8.24 -1.64 -9.77 -1.44 -7.67 -1.37 -8.00
StoH 0.28 1.63 0.25 1.59 0.27 1.55 0.29 1.51
HR; 1.72 10.30 1.63 9.65 1.71 10.59 1.69 9.87
Stat -2.17 -6.88 -2.13 -6.15 -3.17 -8.07 -3.07 -8.62
BMI -1.21 -4.33 -1.08 -3.90 -1.87 -5.29 -1.78 -5.07
Age -0.36 -1.44 -0.32 -1.22 -0.63 -2.03 -0.30 -0.92
cut 1 -6.19 -8.71 -6.32 -9.02 -9.07 -11.59 -8.74 -10.69
cut 2 -5.40 -9.96 -5.54 -9.56 -8.26 -12.89 -7.96 -11.60
cut 3 -4.40 -10.77 -4.48 -9.97 -7.15 -13.52 -6.86 -12.02
cut 4 -3.40 -9.99 -3.45 -8.95 -6.02 -12.80 -5.70 -11.42
cutb -2.08 -6.78 -2.12 -5.98 -4.25 -9.90 -3.91 -8.60
cut 6 -0.92 -3.08 -0.96 -2.79 -2.37 -5.76 -2.02 -4.85
cut?7 0.41 1.39 0.38 1.13 -0.07 -0.18 0.30 0.74
cut 8 1.42 4.71 1.38 4.11 1.70 3.94 2.10 5.27
Ms: Kneeroom
ROKy 1.38 9.62 1.44 8.88 1.36 8.98 1.36 8.55
HEL; 1.01 6.70 1.03 6.62 1.05 6.93 1.04 6.80
StoH -0.36 -2.22 -0.34 -2.32 -0.34 -2.06 -0.38 -2.24
HR; 0.81 5.04 0.86 5.51 0.84 5.06 0.88 4.82
Stat -1.40 -4.52 -1.38 -4.41 -1.02 -2.37 -1.67 -4.25
BMI -1.01 -3.55 -1.06 -4.19 -1.42 -4.13 -1.42 -4.25
Age 1.02 4.13 0.92 3.56 1.70 5.15 1.08 3.50
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cut 1 -4.95 -7.29 -4.97 -7.34 -5.99 -7.72 -6.86 -9.00
cut 2 -3.63 -8.30 -3.62 -8.15 -4.59 -8.30 -5.44 -10.21
cut 3 -2.69 -7.83 -2.68 -7.60 -3.56 -7.54 -4.41 -9.35
cut4 -1.74 -5.96 -1.74 -5.88 -2.46 -5.66 -3.29 -7.29
cutbs -0.67 -2.45 -0.66 -2.38 -1.05 -2.51 -1.87 -4.41
cut 6 0.47 1.77 0.48 1.82 0.71 1.72 -0.11 -0.26
cut7 1.67 6.17 1.68 6.42 2.67 6.39 1.86 4.38
cut 8 2.58 9.19 2.60 9.41 4.22 9.75 3.44 7.62
M,: Roominess
Head 0.38 6.93 0.27 2.90 0.52 9.53 0.21 2.02
Left 0.48 6.50 0.39 2.50 0.66 7.63 0.42 1.32
Knee 0.59 8.00 -0.18 -1.15 0.58 7.47 -0.53 -1.23
cut 1 2.03 2.46 1.46 -5.66 2.84 1.90 -9.30 -7.05
cut 2 4.26 5.77 5.77 -8.92 5.35 6.15 -7.23 -10.34
cut 3 5.23 8.58 8.58 -9.72 6.45 8.44 -6.32 -11.17
cut 4 6.92 12.37 12.37 -10.27 8.46 11.89 -4.87 -10.37
cuth 8.76 15.45 15.45 -7.10 10.70 14.69 -3.10 -7.26
cut6 10.73 17.55 17.55 -1.97 13.08 16.81 -1.16 -2.78
cut7 12.93 19.33 19.33 4.10 15.81 18.58 1.12 2.60
cut 8 14.68 20.73 20.73 8.68 17.97 19.72 3.15 6.87
M,: Ingress/Egress
ROKy 0.83 5.39 0.86 5.65 0.80 5.26 0.81 5.77
HEL; 1.86 10.31 1.93 12.81 1.87 10.56 1.85 10.91
GRD, -2.03 -10.83 -2.09 -11.53 -2.26 -11.57 -2.23 -12.67
StoH -2.79 -14.97 -2.79 -15.32 -2.83 -15.30 -2.84 -16.53
HR; 1.87 10.23 1.81 11.46 1.86 9.95 1.88 10.90
Stat -2.28 -6.82 -2.03 -5.98 -2.92 -7.41 -2.87 -8.06
Age -1.04 -3.53 -1.01 -3.88 -1.75 -4.83 -1.66 -6.68
Gend -0.09 -0.60 -0.01 -0.04 -0.31 -1.11 0.02 0.10
cut 1 -7.48 -12.81 -12.81 -12.73 -10.39 -15.65 -9.98 -14.94
cut 2 -6.36 -14.73 -14.73 -14.82 -9.03 -17.27 -8.70 -16.61
cut 3 -5.24 -14.25 -14.25 -15.07 -7.60 -17.46 -7.33 -17.52
cut 4 -4.48 -12.68 -12.68 -13.60 -6.56 -16.08 -6.32 -16.72
cutbs -3.78 -10.83 -10.83 -11.75 -5.58 -14.27 -5.37 -14.84
cut6 -2.47 -7.18 -7.18 -7.53 -3.69 -9.65 -3.49 -10.33
cut7 -1.22 -3.58 -3.58 -3.39 -1.80 -4.70 -1.59 -4.71
cut 8 -0.02 -0.06 -0.06 0.50 -0.01 -0.01 0.27 0.77
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Appendix I: Distribution of Beta Parameters M1, M2, M3 Models
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Figure 1.1: M, Level (Choice) Beta Distributions
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