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has continuously evolved parallel with the changes in human motivation.
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expertise accumulated since the Prehistoric era. Evolution of design shares
some similar pathways with ’Engineering-in time’ discussed by Harms [18]. 6

2.3 Natural system embraces all entities that make up the human-made sys-
tem. Design artifacts are initially created within human-made systems
and then becomes part of the natural world. Design ecosystem encom-
passes all multi-dimensional entities that are part of the natural system,
including abstract ones. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Modern design is a synthesis of multi-disciplinary domains. Various do-
mains interact during product development process. Human-in-the-loop
design framework makes connections with these domains through integrat-
ing engineering design, industrial design and human factors disciplines.
Outer domains show generalized/abstract disciplines that have relatively
loose connections with human-in-the-loop design framework, whereas in-
ner disciplines are more concentrated and reflect direct relations. A robust
human-centered design methodology should consider collective existence
of these multi-disciplinary domains. . . . . . . . . . . . . . . . . . . . . 12

2.5 An engineering design study demonstrates how multi-disciplinary domains
(Computational Fluid Dynamics, CAD modeling, Occupant packaging and
Virtual Reality) are integrated for a race car cockpit development. Empha-
sis is given to the functional attributes of the design process. Final form is
a synthesis of all functional attributes that make up the end-product. Yet,
form aspects of the end-product have strong connections with the perfor-
mance and/or functionality of the overall system (e.g., aerodynamics of
the race car). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
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2.6 An industrial design concept study shows how abstract ideas are trans-
formed into three-dimensional (3D) models through surface and free-form
modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Venn diagram summarizes interacting disciplines within HFE domain. The
main focus of the HFE is design of optimal products and systems. HFE
design content makes connections to engineering and industrial design
through physical and cognitive human factors. . . . . . . . . . . . . . . 19

2.8 Contribution of design engineers and industrial designers depend on the
context of the design project. Despite the di↵erence, each domain shares
similar ambition and concerns towards human-centered design problems.
The slider represents a virtual fulcrum between form and function aspects
of the product design. Designers should incorporate expertise and tools
from each domain interchangeably. . . . . . . . . . . . . . . . . . . . . 21

2.9 HFE is often conceived as a method of post-processing ergonomics evalua-
tion. In contrast, HFE design principles should be concurrently integrated
to earlier design process. Considering HFE principles at later stages of
product design is associated with higher costs of design modification. A
parallel approach enables discoveries of design errors earlier in comparison
to conventional serial design process. . . . . . . . . . . . . . . . . . . . 22

2.10 Human aspects of design process is either neglected or omitted. A ro-
bust product design system must be pursued to incorporate human needs,
abilities and limitations systematically. . . . . . . . . . . . . . . . . . . 24
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2.11 Modern vehicles are designed around the motivation of fuel economy. Gas
mileage depends on the coe�cient of drag, which is directly related to the
overall topology/surface geometry of the vehicle. As the vehicles become
more streamlined (lower drag coe�cient), cabin space becomes tighter and
confined, which has severe a↵ects on driver’s posture. Drivers often take a
posture where lumbar area is not supported. The gap between lumbar area
and the seat causes chronic pain. Unless bucket seats or lumbar support
systems are provided, drivers take a reclined position. Poor posture results
in high compression forces occur between 4th and 5th lumbar section of
drivers due to awkward (extreme reclining) sitting angles. As the drag
coe�cient (Cd) decreases, driver’s posture becomes poorer (high FL4/L5).
This may not be a critical problem on a short distance highway cruising.
However, when the e↵ects of road bumps and longer cruising are combined,
poor posture not only creates discomfort but also results with a prolong
back-pain. In addition, poor posture leads to severe back and neck injury
in case of a tra�c accident. Without the presence of a human-centered
systematic design framework, it could be highly infeasible to predict the
connection between equations governing the aerodynamics flow and its
e↵ects on driver safety, comfort and performance. . . . . . . . . . . . . 27

2.12 Design process includes trade-o↵ between various design parameters. As
a result, a group of ideas are refined and reduced into best ideas (from
abstraction to concrete). This process can be imagined as a filtration
operation, where conceptual (coarse) ideas are filtered and refined into
implementations (fine). Reaching to a future meta model from idea(s)
today require a systematic filtration process. This can be conceptualized
as a funnel model, which refines best ideas amongst a group of alternatives,
systematically. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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3.1 DHM includes visualizations of the human with the mathematics and sci-
ence in the background. This figure shows identical manikins with sur-
face and skeletal model separately. Surface human model includes overall
topology that represents body sections with realistic rendering. Skele-
tal human model shows musculoskeletal relations, kinematics properties,
physiological attributes, and embedded equations thats run biomechanics
calculations. Analysis modules can include force and moment distributions
associated with upper and lower limbs, which are linked to anthropometric
libraries. Kinematics related data can either retrieved from pre-recorded
motion data or directly obtained from a motion capture system. Pop-up
window on the right demonstrates forces and moments associated with a
generic lifting task. A 10kg virtual vector load is assigned palm centers
of each hand. Analysis output shows moment and force distributions on
the lower 4th and 5th section of the lumbar section (L4/L5). Analysis
incorporates applied load, anthropometric attributes and associated pos-
ture. The capability of blending mathematics/science with visual aspects
of human body creates abundance of opportunities for designers to gener-
ate evaluation techniques that can go beyond the traditional coverage of
human-centered design strategies. . . . . . . . . . . . . . . . . . . . . . 32

3.2 DHM can be used not only as an ergonomics evaluation tool but also a
method to embrace form and function during product development. A
hospital code cart design study shows how biomechanics assessment pro-
cess can be integrated to test product design alternatives (Current cart
model vs. Improved cart model). This approach integrates form aspects
of industrial design with functional aspects of engineering design early in
the product development phase. Financial costs and excess time required
for physical prototyping can be reduced. This approach allows generating
ergonomics analysis in a fraction of less time. . . . . . . . . . . . . . . 33

3.3 DHM can reduce cost associated with physical prototyping or mockups
[101]. In addition, identifying problems of human-product interactions
early in design phase can reduce additional costs arises from product in-
compatibility. If errors reduced early in the design phase, cost associated
to product modifications at later phases can be further reduced. Thus,
DHM provides additional cost savings on top of cost savings established
by CAE strategies. Solid red arrow indicates estimated cost savings when
concurrent engineering tools (e.g., CAE) used without DHM. Dashed red
arrow shows further savings when DHM is integrated to concurrent design
tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
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3.4 Virtual Build design methodology integrates DHM, MoCap and VE for
ergonomics evaluation of products [112]. Similar to VB, various traditional
design methodologies are often used as ergonomics evaluation methods.
This approach (post-design ergonomics assessment) is associated with high
cost and extended time-to-market when design modifications are addressed
at later stages of product development. . . . . . . . . . . . . . . . . . . 37

3.5 A macro-level view of the human-in-the-loop design. The framework inte-
grates early stages of design framework with modeling and analysis phases. 39

3.6 In conventional design strategies, HFE design principles are often applied
sequentially at later stages of product development as a post-evaluation
method. This approach is associated with high costs and excessive time-to-
market. In contrast, human-in-the-loop design framework o↵ers a parallel
approach, which considers human-element early in product development
phase. Within human-in-the-loop design framework, conceptual design
ideas iteratively modified through DHM and CAE in a parallel sequence -
before ever getting into prototyping phase. This way, human needs, abil-
ities and limitations are considered early in the design process. Design
errors or human-product incompatibilities can be captured before proto-
typing begins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7 Human-in-the-loop framework expands through modular integration of
multi-disciplinary disciplines. A design methodology should not solely
consider technical aspects of design process. Design embraces various
domains, disciplines and methodologies. This multi-disciplinary nature
brings a holistic approach into the product design process, which builds
connections with a wide range of professions from marketing, policy-making,
engineering to business. Each entity that represents a specific discipline
is integrated into the framework through di↵erent mechanisms. Techni-
cal entities (engineering, technology) can be integrated via multi-physics
simulation applications. DHM can work back-and-forth with various CAE
packages, where it can share data with multi-physics applications such as
Finite Element Analysis, Fluid Dynamics, Photo-realistic rendering. Non-
technical entities can be integrated through user-questionnaires (market-
ing), quality standards (e.g., ISO), policies (policy-making), and photo-
realistic rendering (arts). . . . . . . . . . . . . . . . . . . . . . . . . . . 43
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3.8 Human-in-the-loop design framework embraces various tools, methods and
technologies in a modular fashion. Each toolkit can be added/plugged to
the framework. DHM acts as a merger between modular entities. Each
toolkit communicates back-and-forth, iteratively, to realize a product -
from sketching to ergonomics assessments, structural integrity and proto-
typing. Figures demonstrates how various toolkits can be integrated to
the human-in-the-loop framework under di↵erent design context. . . . . 44

3.9 Image shows extended overview of the human-in-the-loop design frame-
work, from macro-level to micro-level. At micro-level the framework func-
tions similar to the VB methodology discussed in previous chapters. In
contrast to VB, human-in-the-loop framework does not only functions as a
post-processing ergonomics analysis tool. It is actually an integrated part
of a concurrent product design and development system (macro-level).
This approach creates a holistic coverage of design entities while keep-
ing human needs, abilities and limitations at focus throughout the design
process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.10 The need for full-scale modeling or full-simulation in a design project
is shown in a continuum. Depending on the complexities of human-
product/process interactions, DHM simulations can either be used as
stand-alone (simulation) or linked to data capturing tools (prototyping)
[111]. The degree of the using either full or a moderate simulation/prototyping
depends on the nature of the design project. . . . . . . . . . . . . . . . 51

3.11 Depending on the design study, either Industrial Design or Engineering
Design can dominate each other. In product design studies, often Indus-
trial Design or Engineering Design contribute equally. DHM can function
either way by blending form and function aspects of design attributes cen-
tered at human needs, abilities and limitations. . . . . . . . . . . . . . 52

3.12 The framework merges human subject data with a full scale CAD model
and a low-fidelity physical prototype to generate three di↵erent outcomes:
motion, ergonomics analysis and rendering. Through this approach human
aspects of design data was integrated to realize a code cart that reflects
user needs, abilities and limitations. DHM provided tools to validate er-
gonomics and visualization aspects of the human-product interactions. 53

3.13 Three design studies summarized to show how human-in-the-loop design
framework could work in projects with di↵erent design scope. Each project
represents di↵erent levels of industrial design and engineering design con-
tribution. Design scales and design compasses reflect information about
the level of contribution. . . . . . . . . . . . . . . . . . . . . . . . . . . 54
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3.14 Human-in-the-loop design framework merges MoCap, haptic devices (sen-
sory force-feedback) and subject questionnaire (user studies) data with a
full scale CAD model and a low-fidelity physical prototype to generate
three di↵erent outcomes: motion, ergonomics and visualization. Through
this approach both objective (motion and pressure) and subjective (ques-
tionnaire) aspects of design data were integrated to realize a concept code
cart model that reflects user needs, abilities and limitations. DHM pro-
vided tools to validate ergonomics and visualization aspects of human
element within design process. Human-in-the-loop design framework pro-
vide multi-disciplinary creative pursuits for industrial designer and design
engineers to work together on the same design project without isolation.
Form and functional aspects of product development can be monitored,
modified, tested and furthered refined in a parallel sequence, with human
needs, abilities and limitations are kept at the center. In addition, qualita-
tive nature of design process can also be integrated through user feedback,
questionnaires and field studies. This approach o↵ers a more systematic
method to evaluate of what customer wants. . . . . . . . . . . . . . . . 56

3.15 Design process started with identifying key features that are essential for
nurses. These features were gathered after on-site observations and ques-
tionnaires data collected from nurses. This approach reflected what was
missing in current code carts and what could be included in the concept
design in terms of improving nurses’ comfort and performance. Features
such as retractable handles and dual-way access drawers, as well as swivel
defibrillator and AC plug were amongst the most that provided versatility
and ease of use to nurses. These conceptual ideas were further refined
through QFD, functional decomposition and Pugh’s charts. Finally, a
representative conceptual model that includes surface and solid models
were developed as a CAD assembly. After this stage, CAD model was
linked to DHM to get validation in terms of its ergonomics compatibility.
Meanwhile, structural tests were conducted on multiple what-if scenar-
ios. After running various biomechanics and FEA simulations, conceptual
features were modified, some features were disregarded, and new features
were added. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.16 At this stage haptic (force-feedback data) and motion data were integrated
to create digital representation of users in computer environment. Low-
fidelity prototype cart model was used as physical probe to gather realistic
information about push-pull forces required by nurses. Data collected were
sent to DHM for conducting ergonomics analysis. . . . . . . . . . . . . 58
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3.17 After haptic and motion data were incorporated with CAD model, various
ergonomics analysis were conducted to evaluate human-product interac-
tions. Manikins that represented di↵erent percentile of populations were
tested for their capabilities in pushing-pulling the cart with various load-
ing scenarios. Performance of nurses between current code cart model and
concept design were compared in terms of ergonomics adequacies. In this
figure percentage capability analysis was performed for 50th percentile fe-
male when pushing current and concept cart with identical external loads.
Once can see that current cart model created a wider range of accommo-
dation. Almost every nurse can conduct a pushing task without exerting
a large force readings on their joints. In contrast, only few nurses can
complete the same push test when they used current code cart. . . . . 59

3.18 Structural analysis demonstrates lower center of gravity, weight reduction
and good structural integrity in top-loading scenario. . . . . . . . . . . 60

3.19 CAD model and digital manikins used in engineering design analysis were
also used for design visualization purposes to enhance industrial design
process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.20 Integrated stages of product development are shown from concept model-
ing to biomechanics analysis. At each stage human element is kept at the
center of the design process. . . . . . . . . . . . . . . . . . . . . . . . . 61

3.21 Summary of the human-in-the-loop design framework shows how di↵erent
stages of design process are synthesized within a single design platform.
Form and function aspects of design are centralized around the human
element - from conceptual design to photorealistic rendering. . . . . . . 62

3.22 Human-in-the-loop framework merges anthropometrics data with 2D ve-
hicle blueprints and a full-scale CAD model. Major outcomes are summa-
rized under motion, ergonomics and rendering. DHM blends function and
form aspects of vehicle design and provides tools to validate ergonomics as
well as visualization aspects of human element in cockpit development. 63

3.23 Integrated stages of vehicle development from CAD modeling to CFD
analysis, and from VR and DHM were summarized. At each stage human
element is kept at the center of the design process. . . . . . . . . . . . 64

3.24 Summary of the design actions taken during the design process were sum-
marized within human-in-the-loop design framework. This approach inte-
grates form and function aspects of design centralized around the human
element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



xix

Figure Page

3.25 Digital manikin and CAD model from Formula-1 study was carried to
this project. Digitized posture data from anthropometric libraries were
linked with CAD model and surface model to generate a futuristic ve-
hicle concept. CFD simulation was conducted to evaluate aerodynamics
performance of the concept vehicle. Major DHM outcomes were mostly vi-
sualization focused, however, ergonomics and biomechanics outcomes can
also be generated - if needed. . . . . . . . . . . . . . . . . . . . . . . . 66

3.26 Integrated stages of futuristic vehicle development from storytelling to
CFD analysis are summarized. The vehicle was developed through an
inside-out approach, by taking the manikin and monocoque cockpit as the
central theme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.27 Concept vehicle development stages were summarized within human-in-
the-loop design process. Surface modeling and conceptual development
was linked to cockpit design and fluid dynamics analysis. Finally, a pho-
torealistic output was rendered. . . . . . . . . . . . . . . . . . . . . . . 68

4.1 There are three major pillars (A, B and C) found in a family (sedan) car.
The very last column found on station-wagon cars is named D-pillar. In
this study, the very last column is represented by ’CD pillar’. . . . . . 74

4.2 At Top View, shaded areas on each pillar zone represents portions of the
pillars that obscure driver’s line-of-sight. The primary parameter that
a↵ects the size of obscuration is the thickness of the pillar. Secondarily,
the angle that pillar makes with the lateral plane has minor a↵ects on
obscuration. Thus, obscuration zone is a variable phenomenon, which
reflects combined a↵ects of seating location, posture of driver and overall
vehicle design. SAE J941 manikin o↵ers recommended design standards
and dictates pillar obscuration as being a critical packaging parameter. In
SAE J941, obscuration angles associated with each pillar zone are denoted
as A✓, B✓ and C✓. Location of the head-turn associated with each pillar
is referred as A

0

, B
0

and C
0

. The size of each angle depends on the
dimensions of pillar thickness. Thus, each vehicle has di↵erent field of
obscuration associated with the vehicle packaging. . . . . . . . . . . . . 78

5.1 This study includes three types of experiments: Eye-tracker subject-data
collection, Questionnaires subject-data collection and structural integrity.
Experiment-I includes human subject data collection through a static sim-
ulator and an eye-tracker device. Experiment-II uses various subjective
data collection methods to capture subject’s perception and performance
related data without the eye-tracker device. Experiment-III is a FEA to
validate the structural integrity of New Pillar design under FMVSS roof-
crush test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
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5.2 Body frame that acts as a chassis was constructed based on referenced
CAD surface geometry. Image shows inner skeletal section (body frame)
and outer surface model. . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Two types of pillar models associated with A, B and CD pillars. Current
Pillars are composed of solid bodies, whereas New Pillars are composed of
see-through spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
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6.4 Simulation setup in Experiment-I consisted of an eye-tracker, an LCD
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6.6 Experiment-I involves a static driving simulator to capture eye-movements
of subjects. It starts with subjects taking a driving posture, orienting eye-
tracker device according binocular field, followed by calibration and finally
with data collection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
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7.1 Experiment-II is a human subject data collection experiment through three
sub-experiments: Tra�c Object Detection Experiment, Cooper-Harper
Test and User Questionnaire/Review. . . . . . . . . . . . . . . . . . . . 210
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7.11 A), B) and C) represents improvements on correctly identifying tra�c
objects between Old and Old Pillar design for A, B and CD pillar respec-
tively. D) represents summary of tra�c object detection between A, B
and C pillars for Old Pillar design. . . . . . . . . . . . . . . . . . . . . 225
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ABSTRACT

Demirel, Hasan Onan Ph.D., Purdue University, November 2015. Modular Human-
in-the-loop Design Framework Based on Human Factors. Major Professor: Vincent
G. Du↵y.

Human-in-the-loop design framework introduced in this dissertation utilizes Digi-

tal Human Modeling (DHM) to incorporate Human Factors Engineering (HFE) design

principles early in design process. It embodies scientific methods (e.g., mathematics)

and artistic approaches (e.g., visualization) to assess human well-being and overall

system performance. This framework focuses not only on ergonomics assessments

but also actual design process including, but not limited to, concept development,

structural integrity and digital prototyping. It addresses to three major limitations

found in HFE literature and practices:

1. Poor HFE communication between product designers

2. Poor HFE practice inside product design cycle

3. Lack of HFE awareness in systems approach

The e�cacy of the framework is tested through a design study, where an au-

tomobile pillar design with see-through gaps was evaluated for its potential in re-

ducing look-but-failed-to-see obscuration errors. Two human-subject experiments

and a simulation experiment were conducted to examine the fidelity and value of

this framework. A blend of statistical (ANOVA/MANOVA), and visual (heat-maps)

studies were performed to analyze eye-tracking data. Statistical results obtained from

subjects’ feedback (questionnaires, Cooper-Harper test) and structural data (finite el-

ement analysis) were combined with eye-tracking data analysis. Results show that

human-in-the-loop design framework: 1. demonstrates high test-retest reliability, 2.
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has potential to overcome HFE design problems associated to conventional design

methodologies, and 3. can detect safety and reliability related problems early in de-

sign process. Key findings about the design study include: 1. proposed pillar model

provides improved visual field to drivers and 2. subjects rated visibility, safety and

aesthetics related design attributes of proposed pillar model higher than current pillar

models.

Design is an integrative mechanism of scientific methods and artistic approaches,

which has been the major driver of human prosperity. Everything is done by, for,

or against humans through the inherent activity of design. Thus, considering hu-

man needs, abilities and limitations in design process is inevitable. However, this is

either neglected or not equally considered when compared to other design contribu-

tors. Human-in-the-loop design framework germinates a hybrid design environment

to integrate form (industrial design) and functional (engineering design) requirements

of product development - from conception to creation - with human element at the

focus.
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1. INTRODUCTION

Design is considered as one of the central activities in engineering [1]. It is often

associated with creation and making [2, 3]. It is a primary human endeavor, and

inextricably linked to human progress. Design occupies our lives, from dawn to dusk,

everything is designed by humans - intentionally or not [4, 5]. Today, sustaining a

modern society would be unimaginable without design [6, 7].

This thesis is based upon the historical foundations that design is one of the most

important factors that not only fuels but also drives the human progress. Human

element is at the center of all design activities. However modern design methods have

shortcomings in embodying human needs, abilities and limitations into design pro-

cess [8–13]. With the ever increasing complexities associated to designing products,

processes and environments, consideration of human element early in design process

becomes more prominent.

Human-in-the-loop design framework described in this thesis provides a systematic

approach on how to integrate human element early into design process. It encapsu-

lates scientific (engineering design), artistic (industrial design) and human-centered

(human factors) nature of design process. In contrast to human-centered design guide-

lines, human-in-the-loop framework provides actual design platform, which blends

engineering design and industrial design methods/tools together. It focuses on multi-

physics simulations to incorporate human needs, abilities and limitations through

Digital Human Modeling approach. The main goal is more to motivate and inspire

than exhaustively cover every research article on human-centered design process. To

that end, the primary emphasis is to explain the general principles of human-in-the-

loop design framework, and demonstrate its theoretical and practical contributions

on how to integrate human aspects early into the design process.
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This chapter will start with a brief review on historical foundations and importance

of design in human progress. Then, a detailed literature review will be provided about

what human-centered design is - including human factors, engineering, and industrial

design aspects associated with product development process. Finally, a section on

shortcomings in human factors design process will be explored. The motivation is

to inspire the field as a whole, not just from a sense of scientific curiosity, but from

an engineering excitement on how to transfer findings of the experiments to practi-

cal designs. Human-in-the-loop design framework brings substantial theoretical and

practical contributions to scientific community, which, eventually, could contribute to

human well-being and prosperity.
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2. LITERATURE REVIEW

2.1 Historical Foundations of Design in Human Progress

Life is a progress. The urge towards attaining well-being and prosperity is in-

evitable. Historical landmarks of human progress show that the central tendency of

civilizations is primarily not a statement of being, but evolved around the quest of

doing (making and creation) [1,14]. There is a tremendous value proposition given to-

wards making or creating something new that brings potential benefit to society [15].

That something new could be a product and a process (engineering), an artistic work

(arts), a body of knowledge (science) or combination of both [16].

The tendency of progress through making something new is di↵erent than the

philosophical or intellectual pursuit of existence. It excludes theological or spiritual

search of finding meaning of life in general. It is about the aggregated will, which

instinctively pushed societies forward, towards improvement in the human condition.

That is, humans can become better in terms of quality of life through progression. One

other alternative to progression is stagnation, which eventually leads to extinction.

Whether it is explained best by scientific approaches (e.g., theory of evolution) or

perceived within system of beliefs (e.g., optimism), the well-being of humans as well

as the prosperity of humankind depends on progression.

Part of human progress is very systematic and rational. Amongst all the drivers

of human progress, scientific methods (through engineering) has been the most in-

fluential on creation of modern societies. Today, human progress highly depends on

how we utilize body of techniques to investigate a phenomenon, acquire knowledge,

falsify and integrate previous knowledge, then transferring knowledge to set of prob-

lem solving methodologies, products, environments or processes. In contrary, a part

of the human progress is unstructured and ambiguous, which is rooted to attributes
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Figure 2.1. Human progress is composed on rational and irrational
components. Maslow’s ’Hierarchy of Needs’ provide some of the foun-
dations that explain the mechanism behind human progress, which is
rooted to human motivation - a balancing game of satisfying basic,
psychological and higher needs [17].

of human psychology such as existence, happiness, belongingness (Figure 2.1). Ar-

chaeological studies uncovered that early people designed primitive homes (caves)

as a method of protection and shelter [2, 3]. They also designed wall paintings and

various ornaments to communicate and make their shelters more comfortable, where

they feel belonged and content. Even at the early ages, design activities showed a

tendency of blending rational and irrational motivations to satisfy human needs. As

the time progresses, from prehistoric ages until today, people reflect on new ideas

and alter their process of making. Yet, the motivation of satisfying basic needs and
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fulfilling higher needs still hold paramount. Given the same motivation exists today,

people design structural members of high-rise buildings and decorate interiors with

wall paintings. The inner-dynamics of human progress has been relatively unchanged,

but the processes associated with designing evolves dynamically [4]. Thus, the mo-

tivation of blending rational (e.g., basic needs - protection) and unstructured (e.g.,

higher needs - peace) needs is an inseparable part of human progress, which also con-

stitutes the driving force behind designing. Maslow’s ’Hierarchy of Needs’ perhaps

provides one of the most intuitive approaches in portraying the mechanism behind

human progress, which is deeply rooted to the theory of human motivation (Figure

2.1). Maslow’s hypothesis suggests that once basic needs of survival (safety, food,

shelter) are satisfied, the mechanism shifts towards more intrinsic and higher level of

needs such as belonging, esteem, and self-actualization [17]. Thus, human motivation

towards progress is an amalgamation of basic and higher level of needs, which are

synthesized within our physiological and cognitive worlds, and bounded by the laws

of nature.

The art of synthesizing this collective knowledge and expertise to satisfy our basic

to higher needs define the aptitude of human progress. Thus, this art is design,

which is inextricably link to making and creating [2, 3]. It is a ubiquitous character

of every human [3]. From a cook preparing a fine tasting dressing, to an engineer

manufacturing a high temperature cooking utensil - all are part of designing. Design

controls our whole life, a↵ects everybody, at all times, perpetually [19]. We live in

it. Our e�ciency at work, comfort at living spaces, speed of traveling, chance of

survival in a surgery, our prosperity depends on it. Entire human history is built on

the process of ’designing’, not only tools and shelter for survival but artifacts: from

the most tangible items - compasses, refrigerators, airplanes - to the most abstract

forms - plans, problem-solving, hypotheses [20].

In summary, design is a reflection to human motivation. A greater part of human

progress depends on the activity of design (Figure 2.2). Throughout the history,

humans, both as individuals and societies, have made progress through design [18].



6

Discovery of 
Primitive 
Devices

Prehistoric
Design

Ancient
Design

Medivial
Design

Renassaince
Design

Expansive
Design

Modern
Design

Contemporary
Design

104 BC 5000 BC 500 AD 1400 1800 1950 2000

Social Utility 
of Devices

Social 
Promotion of 

Devices

Form and 
Function 

Concerns of 
Devices

Scientific 
Principles of 
Organized
Production

Mass 
Production 

and 
Globalization

Complex 
Coupled 
Systems

Shelter
Fire
Tools

Wheel
Irrigation 
Hand tools

Cathedrals
Wind Mills

Swords

Galleons
Sextant

Print Press

Engines 
Heavy Equip. 

Aviation

Computers
Nuclear Eng.
Space Tech.

Networks
Sensors

Healthcare

Human Progress

Spear-
thrower Craftsman Polymath Inventor Engineer Designer

1 2 3 4 5
nX

i=1

Xi

survival societical sciences & arts production technology systems

Figure 2.2. Evolution of design and landmarks of human progress
are portrayed on a timeline. The urge of satisfying basic needs and
fulfilling higher needs relatively unchanged since early ages. However,
process/strategies of designing has continuously evolved parallel with
the changes in human motivation. Today, Contemporary Design em-
braces a body of collective knowledge and expertise accumulated since
the Prehistoric era. Evolution of design shares some similar pathways
with ’Engineering-in time’ discussed by Harms [18].

Results have not always been smooth or positive, and the path often been painful

and inadvertent. Progress is not autonomous and does not guarantee to a direct

improvement. However, aside all the struggles, widely accepted improvements have

attained from increasing life expectancy to faster and safer transportation. The good

news is that scientific and engineering knowledge is in a geometric growth. With

the turn of the millennium, the developed world has seen the healthiest, safest and

most productive civilization in history [21]. Unimagined breakthroughs attained in

a large measure to scientific discoveries and advancements in engineering. Now, the

inconvenient truth is that the world becomes more connected, crowded, and resource

limited than ever - which challenges the e�cacy of current design methodologies.
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2.2 On Holism, Emergence and Modularity

The fundamental complexity associated with human-centered design arises from

the emergent and holistic nature of human progression. Humans make connections

with every facet of life. The vast array of entities that has relations with human pro-

gression is ultimately composed of natural and human-made systems. Human-made

systems are those in which humans created through synthesis of resources found in

nature. Natural systems are those that existed by natural processes. All human-made

systems becomes a part of the natural world once they are brought into existence.

Thereby, human progression is perpetually evolving within a continuously expanding

ecosystem. This ecosystem embraces all entities (natural and human-made) associ-

ated with human progression, which are embedded in a complex hierarchy (Figure

2.3). The ecosystem is composed of smaller sub-systems that are modularly inte-

grated. Human progression takes a place within this complex coupled ecosystem. To

that end, design is about wholeness. It works in harmony with entities of the ecosys-

tem, embraces a wide range of domains to develop solutions (e.g., methodologies,

products, processes) that serve benefit to people. In the context of design process,

these entities can range from resources (e.g., raw material) and tools (e.g., computers,

machines) to information (e.g., engineering requirements), stakeholders (e.g., users),

and policies (e.g., environmental policies). Each entity exists independently, mod-

ularly interlinked, and collectively makes up the ecosystem. Due to its complexity

and inseparable nature, we assign random properties and explain the ecosystem in

statistical terms. Thus, the modular system can not be entirely simplified or fully-

understood but reasonably structured and predicted.

For traditional craft-based societies, designing was not di↵erent than making.

Basic needs were often satisfied through unstructured processes that did not require

the consideration of interactions between multi-dimensional entities. Psychological

and higher needs were only an interest of significantly fortunate classes (e.g., royal-

ties, clerics), but a common concern of society. Thus, designing process was highly
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Figure 2.3. Natural system embraces all entities that make up the
human-made system. Design artifacts are initially created within
human-made systems and then becomes part of the natural world.
Design ecosystem encompasses all multi-dimensional entities that are
part of the natural system, including abstract ones.

specific across a single or few entities, which only possessed small number of inter-

actions with other entities. These interactions were relatively easy to observe and

their realization did not necessitate any scientific method (e.g., experimentation and

probabilistic theory). Thus, design process did not require any thorough planning,

conception and/or modeling. Any tool or equipment that gets the job done in favor

of the user could fulfill the design objectives. The process of making a clay pottery

was solely based on the skills and expertise of a single craftsman, who often did

not work in strict timelines of delivery nor concerned about the product’s life-cycle.

The craftsman did not worry about socio-ethical (e.g., environmental e↵ects) impli-

cations of his end-product. Throughout the human progress, motives of human needs

have shifted from modest propositions (basic needs) to multi-dimensional complex

schemes (higher needs). In modern industrial societies, activities of designing become
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a balancing game of decision making under uncertainty. Today, designing an aircraft

is utterly di↵erent than a craftsman making a clay pottery. Entire design process,

from raw material selection to recycling, top-level goals as well as component level

attributes, must be considered before committing to production. Modern design in-

volves significant intellectual and technical preparation, which incorporates planning,

conception and realization of various entities from resources (e.g., humans, finance,

time, raw material) and technical knowledge (e.g., economics, engineering, logistics)

to environmental policies and marketing [22–25]. Today, designers need take a holis-

tic approach and consider of a wide range of entities that independently exist, and

must work in harmony [26, 27]. Complex design projects often require a good blend

of scientific knowledge (e.g., probabilistic theory) and artistic skills (e.g., aesthet-

ics), as well as consideration of limited resources (finance, time, materials) with their

socio-ethical implications (e.g., sustainability).

In summary, managing such a complex embedded ecosystem require an inclusive

approach with the capability of concurrently monitoring what goes in and out of the

system. Without considering holistic, emergent and modular characteristics of this

complex ecosystem, design solutions are inadequately realized.

2.3 What is Design?

Design is neither a pure science, nor a true representative of arts, perhaps combi-

nation of both or a synthesis of scientific and artistic approaches [2,3]. Many authors

have tried to explain what design is. Often, e↵orts failed to provide a well-rounded

definition. In fact, this is all expected because design involves both objective and

subjective pursuits towards realization of ideas into tangible (e.g., products, environ-

ments) and/or intangible (e.g., problem solving methodologies, plans) entities. It is

a six letter word with so many meanings, which explains why looking for a unique

definition may not be helpful to grasp what design is - yet, could be impossible to

state what it is not. Whether it is practiced by a craftsman or an engineer, design
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is ubiquitous to everyone. It is fueled by the human motivation, executed by hu-

mans and serves for humanity - both the designer and the user are humans. This

multifaceted nature requires not only taking functional (e.g, sciences) and form (e.g.

arts) aspects into account, but also focusing on the human well-being and the overall

system performance [28].

Design is human centered (e.g., physiology and cognition) and addresses to our

multi-dimensional level of needs (Maslow’s Hierarchy of Needs). It is composed of

structured (e.g., scientific - power output of an engine) and unmethodical (e.g., artistic

- styling of a vehicle) worlds. It defines parameters of economical growth (e.g., creativ-

ity and innovation), creates new cultures (e.g., social media), connects resources (e.g.,

raw material), translates ideas to products (e.g., cars, airplanes), improves well-being

of humans (e.g., assistive technologies), and provides solutions to grand challenges

(e.g., sustainability) [29–32].

Design can be thought as an integrative mechanism of scientific methods and artis-

tic approaches, which utilizes combination of technical, cognitive and social processes

to respond our problems [2, 3]. It is a quest of searching for the most creative and

exclusive solutions to a problem, and make sure that each solution satisfies boundary

requirements to make it safe, useful, practical, and reliable [33].

Design is a goal directed reasoning, which can be methodologically schemed, but

cannot be universally formulated [34]. It is a melting pot of objective and subjective

pursuits. Successful designs need to be not only functional, reliable and safe but

also creative, novel and fulfilling. This perspective makes design a holistic field,

where one requires to gather complex bodies of knowledge to solve a specific problem

[6, 35, 36]. Thus, curiosity and skillset of a versatile person (Renassaince man or

polymath) is appreciated within design process. This is often correlated to a person

who possesses a profound knowledge and expertise in at least few or more fields

related to design (e.g., engineering, arts, biomechanics, architecture). Individuals

who can demonstrate technical competence of an engineer with aesthetics concerns

of an artist are often referred as good designers. Notable names such as Shen Kuo,
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Leonardo da Vinci, Mimar Sinan, Nasuh Al-Matraki, Isambard Kingdom Brunel,

Benjamin Franklin, Nikola Tesla, James Dyson and Jonathan Ive are some of the

pioneers and known figures who drew technical expertise in multiple fields with keen

interest in creating/making artifacts.

Design in 21st century is a di↵erent phenomenon than what polymaths were in-

volved in past centuries. Today, designers work in coherence with multi-dimensional

sectors with strict turnover times, high quality expectations and financial constraints.

Solution space is designated by the e↵ective understanding and utilization of not only

scientific and artistic expertise but also technical communication, resource manage-

ment, economics and environmental policies. Designing better products heavily rely

on systematic realization of knowledge and collective expertise of design teams, rather

than based on individual skills or talent of a virtuous (polymath). However, expertise

in multiple fields are still essential character what makes a good designer. Holistic

perspective still has paramount importance and only gained more significance.

Since design covers such a vast array of multi-disciplinary domains, combining

every entity under a single framework is relatively out of reality. However, one can

focus on the inner domains that have direct interactions with design process, and

expands as the design scope enlarges. This dissertation focuses on design in the more

limited sense - designing human-centered products. Figure 2.4 demonstrates some

of the multi-disciplinary domains that have loose and direct relations with human-

centered design.

In this dissertation, the exposition of design rationale is split into a troika struc-

ture: Engineering Design, Industrial Design and Human Factors Engineering. The

unique integration of these three domains contribute to development of a new design

methodology called ’human-in-the-loop design framework’.
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Figure 2.4. Modern design is a synthesis of multi-disciplinary do-
mains. Various domains interact during product development pro-
cess. Human-in-the-loop design framework makes connections with
these domains through integrating engineering design, industrial de-
sign and human factors disciplines. Outer domains show general-
ized/abstract disciplines that have relatively loose connections with
human-in-the-loop design framework, whereas inner disciplines are
more concentrated and reflect direct relations. A robust human-
centered design methodology should consider collective existence of
these multi-disciplinary domains.

2.3.1 Engineering design

Design activities in the field of engineering is mostly regarded as the analytic

processes (mental work) [37, 38]. It is a game of decision making and optimization,
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where engineers contemplate on what should be built and which strategies should

be sought among several alternatives. The goal is to satisfy customer needs through

well-directed engineering requirements within a resource limited environment. It is a

collective envelope of planning, modeling, analysis and manufacturing to determine

the final form given the functions defined by stakeholders [28, 39]. In engineering

design domain, emphasis is given to the functionality of products. Functions are often

defined by technical, economic, safety, social, environmental or regulatory constraints,

which shape the boundaries of the design process [40].

Drafting and sketching are often referred as standard tools of engineering design

process. Engineers use drafting techniques for generating concepts and communicat-

ing ideas. However, design work in engineering discipline is heavily based on mental

work [4, 41]. Although drafts are important part of the design practice, they are not

the end-product of engineering design, rather tools for generating the intended design

tasks. Engineering design uses a structured methodology, which can be iteratively

modified, systematically improved and replicated with precision. Modeling and anal-

ysis activities dominate engineering design process [42]. Instead of an artist’s or a

craftsman’s intuitive approach, scientific methods rely on the investigation of potential

paths for error and failures before making actual products. Numerous what-if scenar-

ios related to safety, structural integrity, comfort and cost of products are assessed

through physical mockups or digital prototypes. Often, cost, quality and time to mar-

ket are the most common measures of an e↵ective design. These multi-disciplinary

measures require a systematic control of the design interventions from conception to

recycle [39, 43].

In modern engineering design applications concurrent approach dominates con-

ventional practices. Digital design software are utilized as common components of

engineering design process. Computer Aided Design (CAD) tools form the backbone

of design process (Figure 2.5). There are numerous digital methods (e.g., Product

Life-cycle Management) provide systems approach on product design from concep-

tion to recycling. Scope of such tools di↵er depending on the nature of design (e.g.,
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INTEGRATED COCKPIT DESIGN AN INTEGRATED OCCUPANT PACKAGING STUDY FOR A RACE CAR A.1
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Proof

About: This study was held as an integrated concept vehicle development 
research	project	at	European	Ford	Design	Studios.	I	was	asked	to	demonstrate	
an integration showcase of Digital Human Modeling (DHM) and Virtual 
Reality (VR) for a concept vehicle development.

Focus: to incorporate Digital Human Modeling (DHM) early stages of the vehicle development and to improve 
driver	posture	comfort	(in	terms	of	joint	angles	and	vision)	without	sacrificing	structural	integrity.

TRANSPORTATION

Methodology: consist of using my Human-in-The-Loop design framework for modeling and simulation, and 
utilize Virtual Reality (VR) tools to extend the advance visualization techniques during design process. 
Results: joint	angle	discomfort	were	improved	while	maintaining	the	aerodynamics	and	structural	integrity	of	
the vehicle. Center of gravity was further lowered. 
Future Work: includes	 a	 total-vehicle	 integration	design	 study,	which	aims	 to	 form	a	high	fidelity	digital	
vehicle design system that manages and monitors engine simulation, steering controls, suspensions with DHM. 

Posture Improvement Study Based on Joint Angles through DHM Assembly Simulation in Virtual Reality with CAVE

Integrated CAD Model with DHMIntegrated CFD with DHM

INITIAL POSTURE IMPROVED POSTURE

Yellow indicates posture angles out of comfort range
Green indicates posture angles are within comfort range

Figure 2.5. An engineering design study demonstrates how multi-
disciplinary domains (Computational Fluid Dynamics, CAD model-
ing, Occupant packaging and Virtual Reality) are integrated for a
race car cockpit development. Emphasis is given to the functional
attributes of the design process. Final form is a synthesis of all func-
tional attributes that make up the end-product. Yet, form aspects of
the end-product have strong connections with the performance and/or
functionality of the overall system (e.g., aerodynamics of the race car).

apparel vs. aerospace design), the size of the project (e.g., co↵ee maker vs. airplane)

and stakeholders (e.g., small firm vs. large company). Systematic design procedures

increase the likelihood of reaching rational solutions through the optimization of var-

ious parameters that contribute to design process.

In summary, engineering design use scientific principles, tools and technology to

create products in the definition of structure, machine or system to perform opera-
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tions safely with minimum resources and maximum e�ciency [44, 45]. It focuses on

generating final form based on functions driven by customer needs and engineering

requirements.

2.3.2 Industrial design

Industrial design is mostly associated with artistic and creative side of the design

process. It provides benefits to users in terms of product aesthetics and ergonomics.

Industrial design is an important component of value-added process. It primarily

a↵ects the uniqueness (product di↵erentiation) of the product [46–48]. The degree of

uniqueness often arises exclusively from the appearance (form/shape/topology). Di-

mensions, proportions, flow and geometry exclusively reflect visual cues of a product,

which has direct interactions with how a product is perceived by customers [6,49–51].

Industrial designers require a sound technical understanding of materials, manufactur-

ing processes and user needs. Industrial design process heavily relies on the subjective

judgment of individuals to generate creative solutions [52].

A good industrial design process improves product appeal and customer satisfac-

tion through adding desirable features, minimizing ergonomics problems and provid-

ing higher usability outcomes (better human-product interactions) [53]. These bene-

fits not only a↵ect the market share but also creates a consistency with the corporate

identity [54]. Within industrial design domain, emphasis is given to form aspects of

products. Often the most influential factor that attracts customers to a product is

aesthetics, which is a collective body of form attributes such as: topology, geometry,

color, shape, textures, and dimensions (Figure 2.6). Together, these qualities cre-

ate perception of appreciation or criticism. Customers are inclined to products that

are functionally sound and aesthetically pleasing. Aesthetics attributes can generate

emotional and logical satisfaction (or repulsion). Emotional qualities are composed

of subjective attributes of ’likes’ and ’dislikes’, which are closely related to enjoyment

or appreciation. Similarly, features that do not play along with customers’ subjective
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perception may create repulsion [33]. Logical qualities are often related to universal

perception, which are rooted deeply to cultural or learned behaviors. A red sports

car often evokes perception of speed. Rounded shapes reflect dynamism and flow.

FUTURISTIC HYBRID VEHICLE A CONCEPTUALIZATION SHOWCASE OF NEXT-GENERATION TRANSPORTATIONS.1

pg.10
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>>The perfect hydrofoil form of denticals 
creates tiny vortices that reduce drag to 
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VSTOL nozzle is fully-retracted, solar turbine is shot down, nitro-electrolysis struts are acti-
vated and main nozzle is extended in scram mode.

VSTOL nozzle is semi-retracted, solar turbine is in alernative thrust mode.

VSTOL nozzle is extended, solar turbine is in full power.

%t	low	speeds,	2itro	Solaris ś	uniUue	jet	chamFer	is	powered	solely	Fy	nano-crystal	solar	
cells. When high speeds are needed, it extracts nitrogen from air through nitro-electrolysis 
system.	E\tracted	nitrogen	runs	the	scram	jet.	8hanks	to	its	silent	scram	jet	technology	and	
�D-vector-thrust	capaFility,	2itro	Solaris	offers	a	comfortaFle	journey	at	e\treme	speeds.		

Figure 2.6. An industrial design concept study shows how abstract
ideas are transformed into three-dimensional (3D) models through
surface and free-form modeling.

Higher quality of a product also depends on how industrial design practice is

represented within the product development process [50, 51, 55–58]. Today, with the

common use of CAD software, industrial design aspects of products can be integrated

directly into concept development phase. Designers can generate surface models and

three-dimensional representations of products on a computer environment and rapidly

generate design alternatives. A typical concept product development process includes
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investigation of customer needs, conceptualization, refinement of concepts, digital

prototyping, and finally integration to engineering/manufacturing. Before concept

models are integrated to engineering/manufacturing, a great deal of time and hu-

man resources are dedicated to prototyping phase. Prototyping in the context of

industrial design assists designers to discover the perception of actual dimensions and

hidden ergonomics aspects of human-product interactions. Today, some of the pro-

totyping is done on computers, which eliminates expenses associated with physical

prototyping. Even though digital tools dominate design process, hand drawings (e.g.,

quick sketches) and physical prototyping (e.g., clay modeling) are still required and

practiced in various industrial design applications.

In summary, industrial design is a creative pursuit on aesthetics and ergonomics

[59]. Form, proportion, style, composition, balance and harmony define visual appear-

ance of a product. Ease-of-use, positive emotions and safety are vital components of

industrial design practices. Together, they play a major role in overall product quality

and market success.

2.3.3 Human factors engineering

Human Factors Engineering (HFE) is a multi-disciplinary domain with a broad

scope and wide range of applications. It is the primary discipline that consider human

element in engineering systems. HFE contemplates on human interactions with other

humans, artifacts and the environments [60]. The discipline is di↵erent than most

of the human-centered scientific disciplines (e.g., anthropology, cognitive sciences,

psychology...etc.), which often focuses on human physiology and cognition. Purpose

of these disciplines are to understand and model human behavior. HFE utilizes the

knowledge gained from these disciplines to design and evaluate products, services,

tasks, environments and systems. Therefore, HFE is both a theoretical and an applied

discipline, and mostly associated with engineering and industrial design domains due

to its design emphasis [61–66]. Despite the historical di↵erences in the context and
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application areas, ’Human Factors Engineering’ and ’Ergonomics’ often reflect a very

similar subject matter and used without distinction [44, 67].

The main focus of HFE is design of optimal products and systems [68]. This

involves developing both research and application framework to build a knowledge

base about human needs, abilities and limitations, then apply this knowledge to the

design of human-machine systems that are safe to operate and comfortable to use [69].

In the context of HFE design, compatibility between human and artifact defines the

functional requirements. HFE design principles play a major role in mapping these

functional requirements to overall system requirements (design constraints, cost, time,

safety).

HFE provides opportunities for multi-disciplinary collaboration with other dis-

ciplines (e.g., engineering, industrial design). It gathers data from sciences, arts,

technology and biomechanics to provide design solutions to problems relating to man

and the machine [70,71].

In summary, HFE has direct a↵ects on well-being and quality of life [12,68,70,72,

73]. Within the design context, improving human well-being and quality of life are

usually achieved by reducing hazard, discomfort and fatigue while maximizing utility,

usability, safety, etc. of systems and/or products, which all share a medium with

humans [44, 67]. Today, HFE theory and practice not only require to include human

physiology and cognition, but also embrace design parameters such as functionality,

form, cost, time, and regulations. This extends the scope of HFE from a contemporary

design approach to a more hybrid form of a design, which requires a holistic coverage

of numerous design entities (Figure 2.7). In this context, the very top-level goals are

to increase human well-being and quality of life by optimizing interactions between

the human and the artifacts.
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Figure 2.7. Venn diagram summarizes interacting disciplines within
HFE domain. The main focus of the HFE is design of optimal prod-
ucts and systems. HFE design content makes connections to engi-
neering and industrial design through physical and cognitive human
factors.

2.4 Shortcomings in Design from Human Factors Stand Point

Over the years, global marketing competition, range of technologies and sophis-

tication of products increased considerably. In parallel to these changes, customers

are inclined to an innovation driven purchasing perspective. Today, products that

go into market are expected to gather a good blend of appealing form and robust

functionality with ease of use, cost e↵ective maintenance, high level of safety and

comfort [74]. These design attributes are all correlated with human needs, abilities

and limitations. However, due to complexities and variations of the human element,
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additional complications arise in the design process. To that end, understanding the

actual human needs, abilities and limitations are an essential component of the prod-

uct design practice, which plays a crucial role with other success indicators such as

time to market, cost reductions, safety, and comfort/usability [74–77]. Designers are

known for their ambition to consider of human element during design process. How-

ever, academic and practical evidence shows that human factors of product design

is either neglected or omitted during design process [8, 10, 11, 68, 78, 79]. In contrast,

consideration of human element must be a top priority. Ignoring human aspects of

design brings costly human error and poor performance. As means of providing a

summary of HFE related shortcomings, fundamental problems are broken-down into

three sub-sections, where each sub-section addresses a specific HFE related problem.

2.4.1 Poor human factors communication between product designers

The needs, abilities and limitations of humans may carry some rational (objec-

tive) and irrational (subjective) attributes depending on the product of interest [78].

Therefore, design engineers and industrial designers need to communicate within an

integrated medium. Both disciplines are highly concerned about human element when

it comes to human-centered product design [33,80,81]. However, due to di↵erences in

curriculum, social norms and field practice, a seamless integration is missing. Artistic

judgment of industrial designers and/or structural approach of design engineers are

either missing or dominating each other in product design process [52, 67, 82].

There is a need of a collective e↵ort from both sides, which directs technical,

cognitive and social expertise to address challenging design problems [65, 83]. HFE

provides a common ground for both disciplines [6, 33]. Engineering and industrial

design focus on the human element with a mutual interest but within a compartmen-

talized environment. Each domain has its own field of interest in safety, reliability

and usability attributes of designs process [30]. However, there is a gap exist be-

tween two worlds - even though human element is a common interest. Engineering
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Function Form

Engineering Design Industrial Design

?

Figure 2.8. Contribution of design engineers and industrial designers
depend on the context of the design project. Despite the di↵erence,
each domain shares similar ambition and concerns towards human-
centered design problems. The slider represents a virtual fulcrum
between form and function aspects of the product design. Designers
should incorporate expertise and tools from each domain interchange-
ably.

and industrial design professionals must work in harmony to address human needs,

abilities and limitations in their product design practices. This approach assures a

holistic and well-rounded design coverage, which allows consideration of ergonomics

principles early in design process [84]. It has potential to increase the successful syn-

thesis of form and function while making connections to other design contributors

(e.g., management, manufacturing) (Figure 2.8).

2.4.2 Inadequate human factors practice in product design process

Studies and expertise show that good ergonomic practice is important for an

e↵ective and a safe working environment. Poor ergonomic practice can result in not
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only physical injuries but also significant financial and reputation losses. However,

the literature review reveals that most of the designers do not regard HFE principals

during design of products [67, 68, 74, 75]. Often, designers consider HFE principles

at late stages of product design as a post-evaluation method (Figure 2.9). Also,

not enough fundamental interest is paid to HFE principles comparing to mechanical

engineering or software programming [77, 85]. However, if designers employ a better

design practice through HFE and follow a human-centered design approach, failures

due to poor design practice would decrease [68, 77, 85].
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Figure 2.9. HFE is often conceived as a method of post-processing
ergonomics evaluation. In contrast, HFE design principles should be
concurrently integrated to earlier design process. Considering HFE
principles at later stages of product design is associated with higher
costs of design modification. A parallel approach enables discoveries
of design errors earlier in comparison to conventional serial design
process.
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Studies show that only two percent of decisions taken during design process follow

a systematic decision making, and the rest 98% were decisions based on past experi-

ence and intuition. This evidence points out that most of the time designers follow a

case-based trial-and-error procedure. They work with unmethodically driven design

ideas, and then see if they work for a specific design problem [44,67]. Later, they make

slight design changes and evaluate results to see any progress is made. During this

associative and negotiating cognitive work, human needs, abilities and limitations are

sometimes omitted or not get su�cient attention. The nature of subjective decision

making do not allow a systematic control of how decision will a↵ect design process

(e.g., manufacturability), satisfaction of users (e.g., comfort, safety) and profitability

(e.g., cost, recycling).

Although, design characteristics regarding human element are not easy to classi-

fied universally, it is still possible to put many human aspects of design attributes

(comfort, fatigue, vision, etc.) into a much systematic and structured order. This

may eliminate some of the irrational/erroneous decisions taken in conceptual design

phase.

2.4.3 Lack of human factors awareness in systems engineering

Systems Engineering (SE) is a fairly new discipline comparing to other tradi-

tional engineering disciplines such as civil and mechanical engineering. Therefore,

the role and the practice of HFE (especially in terms of product design) inside sys-

tem engineering approach is not clearly defined [86,87]. Systems approach is initially

developed in biological sciences and further refined by engineers. The popularity of

systems approach increased during World War II when it was recognized as a tool for

logistics and operations management. It also served as a tool for modeling complex

human behavior in military environment. This discovery gave a rise to recognition of

systems approach in engineering domain, especially in HFE. Its integration to human
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factors domain holds paramount, however its utilization as a design approach is still

subject to question [44, 68].

In addition, HFE domain has traditionally been treated as a separate domain from

engineering and have not fully integrated inside design cycle. However, the domain

covers very important aspects of product design (e.g., anthropometry, biomechan-

ics, industrial/mechanical engineering, industrial design, kinesiology, physiology and

psychology) and must be fully integrated into design cycle [44, 77].

Figure 2.10. Human aspects of design process is either neglected or
omitted. A robust product design system must be pursued to incor-
porate human needs, abilities and limitations systematically.

The fundamental tenet of HFE is to integrate knowledge about physiological and

cognitive aspects of humans to the optimal design of products. Instead of focusing

on a particular system component or element in isolation, HFE o↵ers a synergetic

(holistic) approach to recognize the overall e�ciency of the system by optimizing

human-well being and overall system performance [44, 88] (Figure 2.10). This is the
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pursuit of creating an e↵ective symbiosis between human and the system components

so that system members can work in a complementary fashion.

The holistic characteristics of HFE naturally provides a multi-disciplinary col-

laborative approach, which considers not only human-artifact interactions but also

embraces entire life-cycle of products. It can also provide a systematic monitoring that

covers conception and disposal of products. Meanwhile, systems perspective builds

connections with stakeholders functional, physical and operational performance re-

quirements as well as economics, logistics and marketing constraints.

Although systems theory shares a great interest with human well-being and overall

system performance, understanding and practicing the HFE design principles within

systems engineering has not fully realized. Inside systems engineering cycle HFE

methods are mostly used as check points or evaluation steps rather than design guide-

lines. Since the main objective of HFE is to consider needs, abilities and limitations

of products, then, systems principles should be integrated early in the design cycle of

products.

2.5 The Need for A Systematic Human-Centered Design Process

2.5.1 Embracing form and function centered on human element

It is natural to conceive that human-centered design domain positions itself on

the foundations systems concept, which is deeply rooted to philosophy of holism and

emergence. In contrast to reductionist approach, the systems thinking recognizes that

the whole is more than the sum of its parts. This approach is driven by the necessity

to understand the interactions between integrative levels of nested entities. Biological

sciences had a long history of inquiring nature as a body of collective entities that

work together to accomplish a greater purpose - survival (existence). Hegel was

amongst the first who recognizes that the unity that exists in a complex system

can not be predicted or deduced from behavior in the lower-level of components.

Even though every sub-level parts of a system are linked to each other, whether in
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a weak or strong emergence, their performance require consideration of the whole.

This perspective does not devalue the sub-system level importance. Specialization

at sub-levels of the system, such as component level expertise, is still required and

hold paramount interest in design process. In contrast, systems perspective provides

a top-down approach to recognize the comprehensive functionality of collective body

of sub-systems (components or entities). In other words, focusing solely on each nut

and bolt that goes into the airplane assembly does not guarantee the prediction of

aerodynamic coe�cient. One needs to consider not only sub-level components, but

also synthesis of components that makes the whole airplane. The unique behavior

(e.g., aerodynamic coe�cient) of the finished airplane is independent (or loosely-

coupled) from the surface topology of a single bolt, but directly related to the assembly

of thousands of bolts, which their collective existence a↵ects the overall topology,

so the aerodynamics coe�cient. Thereby, systems approach provides both synthesis

and decomposition, from bottom-up and top-down, at component and assembly level.

Figure 2.11 shows a comphrehensive example of how form and function aspects of a

design study could e↵ect human well-being and the overall system performance.

Within design process, a system can be summarized as aggregation of entities

organized in structured ways to accomplish design objectives. In general sense, a

system is formed through interactions of entities (e.g., raw material, machines), have

external boundaries (e.g., environmental policies) and work for a common design

goal/purpose (e.g., design objectives). All of these entities communicate and interact

to achieve systems goals with in an environment that is formed by boundaries and

should respond to changes [44]. This approach focuses on the e↵ectiveness of the

system as a whole, while still considering the harmony of sub-system level components.

The process is decomposed in an interactive fashion, from general macro functions, to

molar functions and then to micro functions. At each stage, constraints that bound

the design process are cross-checked with the design objectives.
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Figure 2.11. Modern vehicles are designed around the motivation of
fuel economy. Gas mileage depends on the coe�cient of drag, which is
directly related to the overall topology/surface geometry of the vehi-
cle. As the vehicles become more streamlined (lower drag coe�cient),
cabin space becomes tighter and confined, which has severe a↵ects
on driver’s posture. Drivers often take a posture where lumbar area
is not supported. The gap between lumbar area and the seat causes
chronic pain. Unless bucket seats or lumbar support systems are pro-
vided, drivers take a reclined position. Poor posture results in high
compression forces occur between 4th and 5th lumbar section of drivers
due to awkward (extreme reclining) sitting angles. As the drag coef-
ficient (Cd) decreases, driver’s posture becomes poorer (high FL4/L5).
This may not be a critical problem on a short distance highway cruis-
ing. However, when the e↵ects of road bumps and longer cruising are
combined, poor posture not only creates discomfort but also results
with a prolong back-pain. In addition, poor posture leads to severe
back and neck injury in case of a tra�c accident. Without the pres-
ence of a human-centered systematic design framework, it could be
highly infeasible to predict the connection between equations govern-
ing the aerodynamics flow and its e↵ects on driver safety, comfort and
performance.
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2.5.2 Systematically filtering best idea(s) to reach meta model(s)

The process of designing requires systematic (structured and methodical) ap-

proach to manage a complex body of entities. Although one can argue that structur-

ing the design process is a way of suppressing creativity. On the contrary, structured

approach supports creative pursuits in design process without sacrificing imagination

and inspiration. It provides a structural road-map to consider both mechanics and

management aspects of the product development and methods to monitor growth and

decline of assets throughout a system’s entire life-cycle [86]. This approach assists

designers to reduce error and increase safety, e�cacy and marketability of products.

Best ideas from a pool of alternatives can be systematically evaluated and then filtered

according to attributes (design goals and constraints). Without the presence of a such

systematic procedure, subjective judgement can rarely be e↵ective in complex design

environment (Figure 2.12). One can think of systems approach as a top-down prob-

lem solving methodology, which focuses on the overall purpose of the problem area

with emphasis on mechanics, management and organizational skills [87, 89]. It could

be also proposed as a bridge between many disciplines (e.g., mechanics, operations)

to monitor the life-cycle of products. In modern design processes, any procedure that

dwell in unstructured processes for the sake of creative pursuits are destined to fail.

The sheer complexity of technical, operational, logistic and resources of product de-

sign process require concrete course of actions [36,90]. Systematic design process can

only serve to improve the successful decision making rates, which eventually increase

the creativity of a talented designer. Without a structured approach, design process

is obsolete.
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Figure 2.12. Design process includes trade-o↵ between various design
parameters. As a result, a group of ideas are refined and reduced
into best ideas (from abstraction to concrete). This process can be
imagined as a filtration operation, where conceptual (coarse) ideas are
filtered and refined into implementations (fine). Reaching to a future
meta model from idea(s) today require a systematic filtration process.
This can be conceptualized as a funnel model, which refines best ideas
amongst a group of alternatives, systematically.
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3. HUMAN-IN-THE-LOOP DESIGN FRAMEWORK

The main objective of Human Factors Engineering (HFE) is design of optimal prod-

ucts and systems [68, 91]. The domain is concerned about the interactions between

humans and the entire system - including all entities that make up the system (e.g.,

products, machines, computers). It focuses on human needs, abilities and limita-

tions to sustain, or ideally improve, human-system interactions. It is hard to imagine

any scientific discipline rather than HFE that has better overlapping interest and

objectives with human-centered design strategies.

Human Factors Engineering domain has diverse knowledge base and supports

a wide range of disciplines. It provides ergonomics assessment methods and tools,

which can assess safety, comfort, performance, and compatibility of human-product

interactions. One of the advanced HFE methods that could create a paradigm shift in

design domain is Digital Human Modeling (DHM). It has the potential to be a merger

between form and functionality aspects of product design process with focusing on

human needs, abilities and limitations.

In this thesis, DHM is proposed as a middle-ware to integrate Design, HFE

and Systems Engineering/Approach. The primary objective is to develop a human-

centered design framework that introduces HFE principles early in product design

phase. Secondarily, the framework forms a holistic design scope through embracing

emergent design methodologies and tools. In combination, the design framework con-

templates on form and function aspects of design process from conception to creation

with human needs, abilities and limitations are being central interests.
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3.1 What is Digital Human Modeling?

Complex functions of the human body, both physical and cognitive aspects, can be

digitally represented, simulated and/or analyzed through DHM tools [77, 92]. DHM

uses digital humans as representations of workers inserted into a simulation or virtual

environment to facilitate the prediction of performance and/or safety. DHM includes

visualizations of the human with the mathematics and science in the background

[7, 10, 11, 77] (Figure 3.1). It helps organizations design safer and e�cient products

while optimizing the productivity and cost [93]. Engineering design practices that

utilize DHM have the potential to enable engineers to incorporate HFE principles

earlier in the design process [74,77,94,95]. One of the advantages of DHM applications

is their integration flexibility with Computer-Aided Engineering (CAE) packages and

digital design technologies such as motion capture, eye-tracking and virtual reality

[10, 11, 77, 96].

Traditionally, DHM applications have been utilized by manufacturing and design

industry. One of the first DHM applications was implemented by the U.S. military for

cockpit design in which virtual drivers were used to assess the safety and the perfor-

mance of the prototype vehicles. The use of DHM reduced the need of expensive and

bulky physical mockups [74, 97–99]. Popularity of DHM applications has increased

in past decade and many companies have realized the e↵ectiveness of DHM tools for

ergonomics evaluation [100]. Recently, technological developments and advancement

in the CAE software expanded the application areas of DHM [92,101]. There are mul-

tiple DHM platforms introduced as part of CAD and CAE packages, which include

digital ergonomics and biomechanical assessment tools to evaluate injury, safety and

comfort related design attributes [102–104].
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Figure 3.1. DHM includes visualizations of the human with the math-
ematics and science in the background. This figure shows identical
manikins with surface and skeletal model separately. Surface human
model includes overall topology that represents body sections with
realistic rendering. Skeletal human model shows musculoskeletal re-
lations, kinematics properties, physiological attributes, and embedded
equations thats run biomechanics calculations. Analysis modules can
include force and moment distributions associated with upper and
lower limbs, which are linked to anthropometric libraries. Kinematics
related data can either retrieved from pre-recorded motion data or
directly obtained from a motion capture system. Pop-up window on
the right demonstrates forces and moments associated with a generic
lifting task. A 10kg virtual vector load is assigned palm centers of
each hand. Analysis output shows moment and force distributions on
the lower 4th and 5th section of the lumbar section (L4/L5). Analysis
incorporates applied load, anthropometric attributes and associated
posture. The capability of blending mathematics/science with vi-
sual aspects of human body creates abundance of opportunities for
designers to generate evaluation techniques that can go beyond the
traditional coverage of human-centered design strategies.
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Figure 3.2. DHM can be used not only as an ergonomics evaluation
tool but also a method to embrace form and function during product
development. A hospital code cart design study shows how biome-
chanics assessment process can be integrated to test product design
alternatives (Current cart model vs. Improved cart model). This
approach integrates form aspects of industrial design with functional
aspects of engineering design early in the product development phase.
Financial costs and excess time required for physical prototyping can
be reduced. This approach allows generating ergonomics analysis in
a fraction of less time.

3.2 How does Digital Human Modeling Provide an Integration between

Building Blocks of the Framework

The proposed design framework not only integrates Design, Human Factors and

Systems Engineering, but also provides a systematic understanding of human element

inside the product development process. It embraces cross-functional knowledge and

expertise through building connections with various disciplines (such as anthropom-

etry, biomechanics, industrial engineering, mechanical engineering, industrial design,

kinesiology, physiology, psychology and others) [105]. This multidisciplinary approach
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allows modular integration to second and third party design methodologies and tech-

nologies (Figure 3.2).

One of the advantages of DHM applications is in their integration flexibility

with concurrent engineering methodologies such as Product Life-cycle Management

(PLM), Virtual Product Development (VPD), and Computer-Aided Engineering (CAE)

packages [96]. Trial-and-error on physical prototypes may resolve some of the design

complexions, however it has limiting factors such as visualization, simulation, time

and cost. Time-to-market and cost of a product are critical for success in global

competition [77]. These versatile group of multi-faceted factors must be considered

early in the design process to have a safe, e�cient and profitable product [106–108].

It is important for designers (and manufacturers) to accomplish a competitive edge

during creation and marketing of products through reducing design timescales, over-

all costs and time to market [74, 95]. These complex goals need systematic product

development strategies, which embraces mechanics and aesthetics of design process

while considering manufacturing, marketing, management and recycling phases of the

product development. In this context, absence or poorly consideration of HFE princi-

ples can result in poor quality standards, which may lead to customer dissatisfaction,

safety and hazard concerns. Companies often end up in product recalls and lawsuits,

which eventually result in reputation loss. Concurrent engineering tools provide an

integrated platform to monitor technical and managerial aspects of the product de-

velopment [109], however fail to consider human element early in the design process.

DHM integrated with concurrent engineering tools enable designers to check if

people of di↵erent age, gender, size and strength characteristics can safely and e↵ec-

tively perform tasks inside computer simulation environment. Furthermore, Virtual

Reality (VR) tools could be used inline with DHM to provide a higher level of fidelity.

Through VR environment, user-product interactions can be assessed regarding com-

fort and safety without the need of full-scale physical prototypes [74,110,111]. A de-

sign platform that allows direct connections to DHM can assists designers to evaluate

both aesthetics (visualizations - concept sketching and rendering) and functionality
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(mathematics - simulation and analysis) of product innovation. DMH can also pro-

vide a common medium to connect subjective judgment and divergent (inspirational)

nature of industrial designers with objective and convergent (structural) nature of

the design engineers [67, 105].

DHM forms an ideal medium for integrating designers and engineers early in the

design process. It also promotes a more holistic design approach through embracing

emergent design methodologies and technologies, which can assist designers to con-

sider human element throughout the design-cycle. Thus, DHM can bring additional

time and cost savings on top of the savings associated to concurrent design methodolo-

gies. Figure 3.3 shows cost associated with conventional, CAE and DHM integrated

engineering design methodologies. Because of its interdisciplinary focus, quantitative

nature and flexibility of integration with other design platforms, DHM becomes a

potential problem solving tool to various multi-disciplinary design challenges.

3.3 Theoretical Building Blocks of Human-in-the-loop Design Framework

3.3.1 The framework is holistic and emergent: Virtual Build Structure

A structure called ’Virtual Build’ was first proposed by Ford Automotive Com-

pany [112]. Virtual Build (VB) methodology demonstrated a promise on integrating

research on DHM, Motion Capture (MoCap) and Virtual Environment (VE) for er-

gonomics evaluation of products and processes. The methodology is composed of a

physical or a virtual environment that represents a real workstation or a product.

Human motion data either comes from MoCap system, a motion prediction model

or a manikin posture through manual anthropometric setup [77]. If MoCap method

is used, actual representation of subject’s motion and posture can be captured and

attached to a representative manikin created on computer environment. This method

allows capturing actual human motion data without the need of predictive modeling.

If motion capture system is not used, then information related to descriptive task
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Figure 3.3. DHM can reduce cost associated with physical prototyping
or mockups [101]. In addition, identifying problems of human-product
interactions early in design phase can reduce additional costs arises
from product incompatibility. If errors reduced early in the design
phase, cost associated to product modifications at later phases can be
further reduced. Thus, DHM provides additional cost savings on top
of cost savings established by CAE strategies. Solid red arrow indi-
cates estimated cost savings when concurrent engineering tools (e.g.,
CAE) used without DHM. Dashed red arrow shows further savings
when DHM is integrated to concurrent design tools.

parameters (e.g., push-pull distance, lift-lower height, external loading) needed to be

input through manually or via predictive models. [77, 113,114].

There are various virtual design methods similar to VB structure. However, often

these methods are solely used for post-design ergonomics evaluation of products.

Thus, VB methodologies can be regarded as ergonomics approaches - not as direct

design methods. Human-in-the-loop design framework demonstrated in this thesis

study is a modified version of VB structure, which does not only function as an

ergonomic assessment tool but also acts as an actual design methodology. Figure

3.4 shows a generic framework where flow of human motion data is connected to

ergonomics assessment tool.
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Figure 3.4. Virtual Build design methodology integrates DHM, Mo-
Cap and VE for ergonomics evaluation of products [112]. Similar
to VB, various traditional design methodologies are often used as er-
gonomics evaluation methods. This approach (post-design ergonomics
assessment) is associated with high cost and extended time-to-market
when design modifications are addressed at later stages of product
development.

Through human-in-the-loop design methodology product/process design can be

analyzed prior to production. This approach provides an expansion to Virtual Build

structure used by Brazier towards a more global design platform with human-centered

focus [112]. The framework not only integrates DHM, MoCap and VE, but also

allows building connections with emerging HFE design tools/methods such as CAD,

CAE, PDM and PLM. These technologies are known for their individual potential
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in resolving HFE related design challenges, however, their integration with a global

design framework is still require further research and development [77].

3.3.2 The framework is built around human needs, abilities and limita-

tions: Human-Centered Design

Human-Centered Design (HCD) integrates various technical and non-technical

fields of design expertise to enhance well-being of humans through improving product-

user interactions. Results often include improved usability, safety and performance.

Definition of HCD may di↵er depending on the context, however the domain focuses

on methods that continuously improve the product-human interactions based on users

needs, abilities and limitations [67,105]. Although above definition shares similarities

with HFE, HCD is not a scientific domain but a design methodology. It captures vari-

ation between users and accommodate these di↵erences e�ciently in product design

with the goal of satisfying users from di↵erent physical and cognitive backgrounds.

In addition to the above, the growing interest in human-centered design practices

reiterate the importance of human safety, usability and performance. This motivates

engineers to understand human needs, abilities and limitations to design products,

services, and experiences people truly value as individuals and as a culture [77].

Researching to find better analytic models to address human variability in design

process is also a core challenge for designers. Incorporating human variability into

the design process creates design alternatives that serves to accommodate a diverse

human needs [115].

The backbone of the human-in-the-loop design framework is supported by DHM

tools which provide a human-centered focus for designing products and services. Phys-

iological and cognitive human needs, abilities and limitations can be modeled in DHM

environment. In addition, DHM provides a seamless integration with CAE tools to

assess ergonomics adequacy of products and services. This approach supplies a con-

tinuous monitoring capabilities to designers. User attributes could be cross-checked
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HUMAN INTEGRATED DESIGN APPROACH4.0
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▪ solid modeling
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Figure 3.6. In conventional design strategies, HFE design principles
are often applied sequentially at later stages of product development
as a post-evaluation method. This approach is associated with high
costs and excessive time-to-market. In contrast, human-in-the-loop
design framework o↵ers a parallel approach, which considers human-
element early in product development phase. Within human-in-the-
loop design framework, conceptual design ideas iteratively modified
through DHM and CAE in a parallel sequence - before ever getting
into prototyping phase. This way, human needs, abilities and limi-
tations are considered early in the design process. Design errors or
human-product incompatibilities can be captured before prototyping
begins.
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with design requirements. Figure 3.5 shows a macro-level of the human-in-the-loop

framework, from conceptual design to manufacturing. Figure 3.6 shows a more de-

tailed meso-level outlook of the human-in-the-loop framework with DHM and CAE

simultaneously applied to the design process.

3.3.3 The framework is emergent: Modular Integration

Product design domain highly depends on physiological and cognitive needs of hu-

mans, and expands through the dynamic trends in technology, engineering, economics,

arts and social interactions. This broad perspective brings the need of considering

both technical and non-technical aspects of the product development, which embraces

form and function, as well as non-technical design attributes.

A successful design platform need to allow the utilization of previous method-

ologies and expertise while providing means of integration with technical and non-

technical parameters from engineering aspects of design to artistic concerns, and from

technological advancements to resources and finance. [52, 109, 116]. Because of the

holistic and complex nature of the design process, one can not come up with a single

equation or a universally accepted rule for a good design strategy. Instead, the goal

in the context of human-centered design is to provide a synergic design framework,

which encompasses available tools and methods and continue to expand as new tools

and methods emerge. This approach provides flexibility of allowing additional new

technologies, design tools and methods on top of existing ones (Figure 3.7).

Human-in-the-loop design framework is built in a way to allow modular integration

of di↵erent tools and methods from various scientific fields, non-technical domains,

technologies and design methods. Some of these entities are demonstrated in cur-

rent DHM tools, however access to most of them are limited [117, 118]. Each tool

can be integrated in di↵erent stages of the design cycle (e.g., conception, modeling,

simulation....etc.) to enhance di↵erent stages of product development. These tools
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can be integrated to the framework through multi-physics platforms (Finite Element

Analysis, Computational Fluid Dynamics, Photo-realistic rendering packages.)

Therefore, the modular structure approach accommodates di↵erent design method-

ologies and technology tools at di↵erent stages of product development. Figure 3.8

shows how design entities can be integrated as modular blocks for under di↵erent

categories. Content of each category may di↵er depending on the technological and

domain requirements as well as context of the design of interest. The key here is

that most of these entities can be simulated/integrated into DHM software packages.

With the advancement in DHM research, additional HFE methods (physiological and

cognitive) can be added to design framework.

3.4 Fundamentals of Human-in-the-loop Design Framework

Human-in-the-loop framework is a modified verison of ’Virtual Build’ structure,

which brings HFE design principles earlier to product design process (Figure 3.5) [94].

Previous Virtual Build studies focused solely on ergonomics evaluation and human

factors assessment of products and/or systems [113, 114]. This framework focuses

not only ergonomics assessments but also actual design process including, but not

limited to, concept development, structural integrity and digital prototyping. It pro-

vides scientific insight (ergonomics, biomechanics) and artistic approach (rendering,

visualization) on product-user interactions.

Data related to human attributes can come from manual or digital sources. For

example, human posture data can either come from a manual antropometric setup

or from various digital systems (MoCap, eye-tracker, a motion prediction model).

If manual methods are used, descriptive task parameters (e.g., push-pull distance,

lift-lower height) are inserted manually to generate ergonomics evaluations. CAD

model can be updated parametrically depending on the changes required after each

ergonomic and structural assessments. A↵ects of changes on CAD model in terms of

ergonomics and structural integrity can be cross-checked simultaneously.
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Figure 3.7. Human-in-the-loop framework expands through modular
integration of multi-disciplinary disciplines. A design methodology
should not solely consider technical aspects of design process. De-
sign embraces various domains, disciplines and methodologies. This
multi-disciplinary nature brings a holistic approach into the prod-
uct design process, which builds connections with a wide range of
professions from marketing, policy-making, engineering to business.
Each entity that represents a specific discipline is integrated into the
framework through di↵erent mechanisms. Technical entities (engi-
neering, technology) can be integrated via multi-physics simulation
applications. DHM can work back-and-forth with various CAE pack-
ages, where it can share data with multi-physics applications such as
Finite Element Analysis, Fluid Dynamics, Photo-realistic rendering.
Non-technical entities can be integrated through user-questionnaires
(marketing), quality standards (e.g., ISO), policies (policy-making),
and photo-realistic rendering (arts).
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Figure 3.8. Human-in-the-loop design framework embraces various
tools, methods and technologies in a modular fashion. Each toolkit
can be added/plugged to the framework. DHM acts as a merger
between modular entities. Each toolkit communicates back-and-
forth, iteratively, to realize a product - from sketching to ergonomics
assessments, structural integrity and prototyping. Figures demon-
strates how various toolkits can be integrated to the human-in-the-
loop framework under di↵erent design context.
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There are few variants of VB structure that bridge DHM and MoCap for ergonomic

research [111, 119]. Di↵erent than those studies that use DHM as a method of post-

processing analysis tool, this framework utilizes DHM to bring human needs, abilities

and limitations earlier into design process. DHM is used as an actual product design

tool rather than as a method of ergonomics evaluation executed at the very late stages

of product development.

In this study, human-centered design approach forms the foundation of the design

strategy. It is composed of four product development phases (Understand, Concep-

tualize, Create and Realize) and four Constraints (Costumer Requirements, Human

Capabilities and Limitations, Physical Requirements and Process Requirements). De-

sign flow works in clockwise (from Understand to Realize) and in ascending order

(from 1 to 4) respectively, to establish a design hierarchy. This hierarchy provides

a systematical process flow to understand customer requirements, generate concept

ideas, then create digital models and finally realize a high-fidelity digital model. The

framework utilizes this hierarchal strategy to map user requirements with engineer-

ing constraints and find potential pathways to satisfy overall design goals (Figure

3.9). Each building block acts like an individual part of an embedded system, where

ascending blocks provide design decision filters to the information sent from lower

blocks.

Human-in-the-loop design framework functions similar to an Quality Function

Deployment (QFD) system, where Customer Attributes (WHATs) are mapped to

Engineering Requirements (HOWs) [120]. In QFD, WHATs provide customer’s (sup-

plier’s, maintenance personnel’s) desires and HOWs provide engineering (design and

supplier) characteristics to satisfy (or ways to achieve them) WHATs within available

resources. These elements (WHATs and HOWs) eventually define goals and con-

straints of the design system, which together form the available design space [121,122].

Goals are di↵erent than constraints. Goals define the ultimate design objectives (all

potential design alternatives) and constraints draw up the boundaries, which form

the feasible design space. Not all initial goals can be achieved. In other words what
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Figure 3.9. Image shows extended overview of the human-in-the-loop
design framework, from macro-level to micro-level. At micro-level
the framework functions similar to the VB methodology discussed in
previous chapters. In contrast to VB, human-in-the-loop framework
does not only functions as a post-processing ergonomics analysis tool.
It is actually an integrated part of a concurrent product design and
development system (macro-level). This approach creates a holistic
coverage of design entities while keeping human needs, abilities and
limitations at focus throughout the design process.

customer’s wish can sometimes be misleading or technically not feasible. Often, En-

gineering Requirements form the boundaries that shape up all feasible/alternative

ideas. In this context, DHM defines human-aspects of Engineering Requirements.

Without the use of DHM techniques, engineers utilize manual checklists or expert

opinion, which often fail to systematically generate a list of realistic Engineering Re-

quirements. How people interact with products, both physiologically and cognitively,
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goes beyond the scope of simple checklists and expertise. The use of DHM as a

core member of design cycle assists engineers in iterating various what-if scenarios

parametrically without the need of extensive use of physical prototypes or mockups.

Without such design strategy, decision making during design process would be mis-

leading and erroneous, which often resulted in high costs, hazard or dissatisfaction.

3.4.1 Phases of the human-in-the-loop design process

Product design process starts with identifying or understanding consumer needs,

abilities and limitations. Understanding the problem area is essential to create sound

design requirements. After this step, engineering requirements are linked with knowl-

edge base where each requirement can guide designers to generate necessary design

alternatives. Later, alternative (concept) models can be modeled and simulated to

check various design specific what-if scenarios. Best model(s) from pool of alternatives

can be refined to create the most feasible prototype model(s) that meet engineering

requirements while satisfying as much customer needs [120]. Finally, concept prod-

uct is selected and beta product for manufacturing and production are finalized at

Realization stage. More information is provided below for each design phase.

• Understand: This is the initial product development phase where user needs,

abilities and limitations are identified and checked with the knowledge base.

This phase is the most critical amongst other stages, which requires at most

attention to carefully identify design challenges. Designers often omit or ignore

human aspects of design process at the earlier stages of design process, which

ends up being a cost driver at the later stages of product development.

• Conceptualize: After design requirements are identified, concept models can

be generated. These models should reflect designers’ creativity while satisfying

design requirements. At the end of this phase, concept models should be filtered

to obtain prototype model(s), which represent the best models amongst a pool

of design alternatives.
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• Create: Prototype model(s) further go into more refinement process, which in-

cludes structural modeling and multi-physics simulations. If higher fidelity can

not be achieved with available multi-physics simulations, physical prototyping,

field tests and experiments should be sought.

• Realize: At this stage final prototype should be further refined to meet manu-

facturing, maintenance, production and packaging requirements. Depending on

the complexity of a product or the nature of the design project, a final prototype

can be a fully digital model, a physical prototype or a combination of both.

3.4.2 Goals and constraints

Within human-in-the-loop framework, upper blocks function as a filter for the

lower blocks. In Customer Requirements step, customer attributes are identified by

designers. These attributes may exceed physical and cognitive capabilities of users.

Therefore, Human Capabilities and Limitations block acts like a filter for the design

alternatives generated in previous stage. This step only allows attributes that are

capable to be performed by users. Later, qualified customer attributes are mapped to

Physical Requirements, which are used to generate the form and functions associated

with conceptual design model. At this stage of the design process, only human-

product interactions that are feasible pass to the next stage. In Process Requirements

stage concept model is further refined and working prototype is finalized. More

information is provided below for each phase.

• Customer Requirements: The foundation of the design development is to under-

stand customers wants and needs. This step provides a vast number of customer

needs and desires on a new product or modifications for an existing product.

Human centered products should be designed to reflect customers’ needs while

satisfying engineering requirements. This is also a very important step to define

the design scope. Surveys show that poor product design definition is a factor

in 80% of market delays [43].



49

• Human Capabilities and Limitations: This step filters customer requirements

and provide limitation to those that exceed human physiology and/or cognition

(e.g., control button distance exceed maximum reach of 75% male). Ignoring

or omitting the human aspects of design is a costly mistake and should be

avoided with all the cost. Products that do not reflect human capabilities and

limitations are not appreciated by customers and result in compatibility issues,

safety problems and market failures.

• Physical Requirements: In this step customer attributes and human character-

istic are mapped to each other to provide a conceptual design that satisfies users

characteristics from a wide range of population. Also, technical attributes such

as form, functionality, and material selection are generated and checked with

compatibility requirements.

• Process Requirements: After generating the conceptual models (or working pro-

totypes), products are further refined by usability studies and experiments. In

this step, available resources (suppliers, marketing...etc.) are mapped and the

working prototype is finalized for production.

3.5 How Does Human-in-the-loop Framework Function?

At the core of the framework DHM functions as an analytical design/analysis

tool as well as a communication medium between contributors of each stages of the

design. In this study, HCD approach retains user needs, abilities and limitations at

sight throughout the design cycle. Goals and Constraints link HFE knowledge and

methods with design requirements. Varying HFE methods and technology tools are

added to adequate stages of the product development through modular approach.

Variations and combinations of methods and technologies used inside the framework

depend on the nature of the design study. A consumer product design may not

require advance simulations. On the other hand, an aircraft design may demand

multi-physics simulations, as well as extended physical experiment and prototyping.



50

Thus, the domain of interest dictates what tools to be integrated to the framework.

In either case, DHM blends form and function of aspects of products with humans at

the center, and builds connections with other design entities.

Human subject data either comes from digital libraries or collected through man-

ual methods. Digital libraries include kinematics, anthropometrics and posture re-

lated human attributes. If manual methods are used, attributes can be linked design

framework through various data collection methods (MoCap, eye-tracker, sensors).

Similarly, environment input could be a fully digital CAD model, immersive VR en-

vironment, a physical prototype or a hybrid model (a physical model with limited dig-

ital probes). DHM blends human data and environment input and generate analysis

that constitutes mathematical (e.g., biomechanics) and visualization (e.g.,rendering)

outputs.

Within human-in-the-loop design work-flow concept model(s) go in digital test

that iteratively forces what-if design scenarios. This portion of the design framework

uses multi-physics simulation tools to answer what-if scenarios. In case multi-physics

tools are not capable of providing required answers to what-if questions asked by

designer, physical experiments and field tests should be conducted for further un-

derstanding and refinement, if necessary. The need for physical prototyping often

results due to complexity of design projects where product or process requires higher

levels of human-product interactivity [111]. At this stage designer should make the

decision of either fully relaying on simulation tools or collecting human subject data

through physical experiments. The choice of either method or degree of relaying

on one method depends on the level of human product interaction. If multi-physics

simulation tools provide su�cient fidelity, then digital prototypes would be a sound

strategy. At this stage, DHM can be utilized without the need of physical experi-

ments or full-scale prototyping. When simulation tools loses the fidelity, then human

subject experiments through physical models becomes an ideal path to follow (Figure

3.10).
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Full SimulationFull Prototype

Design Project

When human-product interactivity is complex When human-product interactivity is simple 

Figure 3.10. The need for full-scale modeling or full-simulation in a de-
sign project is shown in a continuum. Depending on the complexities
of human-product/process interactions, DHM simulations can either
be used as stand-alone (simulation) or linked to data capturing tools
(prototyping) [111]. The degree of the using either full or a moderate
simulation/prototyping depends on the nature of the design project.

The need for digital prototypes or full-scale models also define the scope of the

design project. Often, one can split design projects as either industrial design or

engineering design oriented. In the case where abstraction and conceptualization are

concerned, industrial designers heavily involve with the generation of design ideas,

which are often require low fidelity models that rely on form aspects of design. In

contrast, engineering design projects require high fidelity models that are based on

functionality of products with validation (proof). DHM has the advantage of working

back-and-forth with either extremes, and can accommodate form and functionality

requirements of design projects (Figure 3.11).

Within human-in-the-loop design approach, contributors of the product develop-

ment, whether it’s a group of industrial designers, design engineers or managers, can

interact with the design process in any given time. The framework connects technical

(engineers) and non-technical experts (managers) as well as third party contributors

(suppliers) together. It allows parametric modification of dimensions, tasks and en-

vironments. Results due to changes on CAD models and CAE simulations can be

simultaneously updated, and changes on ergonomics and structural evaluations can

be monitored accordingly. This work-flow creates opportunities for optimizing design

alternatives through iterative changes (what-if scenarios). In addition, holistic cov-
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Figure 3.11. Depending on the design study, either Industrial De-
sign or Engineering Design can dominate each other. In product de-
sign studies, often Industrial Design or Engineering Design contribute
equally. DHM can function either way by blending form and function
aspects of design attributes centered at human needs, abilities and
limitations.

erage of design disciplines and modular integration of various tools and technologies

can provide unexplored spaces for creativity (Figure 3.12).

There are three design studies summarized in following section. Each study focuses

on di↵erent design objectives that require integration of distinctive human subject

data (either manually, automated or through hybrid methods). Experimental pro-

cedures of these studies are not covered in details. Only figurative design story is

demonstrated to provide a breadth of the human-in-the-loop design framework, and

to demonstrate how it could be applied to di↵erent design studies. First design story

represents a reverse engineering of a hospital code cart design, which follows a de-

tailed visual design story in the order of: schematic layout, product design phases
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Figure 3.12. The framework merges human subject data with a full
scale CAD model and a low-fidelity physical prototype to generate
three di↵erent outcomes: motion, ergonomics analysis and rendering.
Through this approach human aspects of design data was integrated
to realize a code cart that reflects user needs, abilities and limitations.
DHM provided tools to validate ergonomics and visualization aspects
of the human-product interactions.
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and summary. Second study provides a concise visual synopsis of a Formula-1 race

car cockpit design, which blends form aspects with functional development. Final

study focuses on the conceptual development of a futuristic vehicle with emphasis

given to artistic conception. Figure 3.13 provides a summary of human-in-the-loop

studies with associated design content.

Design Studies

Study #1 
Hospital Code-Cart

Study #2
Formula-1 Cockpit

Study #3
Futuristic Vehicle

Industrial

Form

Concept

Engineering

Function

Proof

Full SimulationFull Prototype

Industrial

Form

Concept

Engineering

Function

Proof

Full SimulationFull Prototype

Industrial

Form

Concept

Engineering

Function

Proof

Full SimulationFull Prototype

Figure 3.13. Three design studies summarized to show how human-in-
the-loop design framework could work in projects with di↵erent design
scope. Each project represents di↵erent levels of industrial design and
engineering design contribution. Design scales and design compasses
reflect information about the level of contribution.

3.5.1 Reverse engineering a code cart

This design study embodies two theme areas: product design and design research.

Main objective of this project was to design a better code cart and to integrate haptic

feedback into design process (Figure 3.14). Although it seems that the study had two

separate areas of focus, human-in-the-loop design framework was used as a testbed
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to evaluate design research (haptic feedback) through a practical design study (code

cart design).

Product design in this study focused on reverse engineering a hospital code cart

according to needs, abilities and limitations of nurses. Emphasis was given on creating

a light-weight, maneuverable and a versatile code cart (Figure 3.15). The main HFE

objective was to test whether new design proposes an improved L4/L5 compression

force readings on lumbar section during a push-pull task. In addition, subjective

feedback of users about the cart design was collected to further accommodate design

attributes (e.g., bi-directional drawers, adjustable handle) that nurses were expecting

on an ideal code cart design [77].

The design research question focused on integrating a haptic feedback mechanism

(sensory-force feedback) for ergonomic evaluation of products during design phase

(Figure 3.16). Ultimately, the above methodology was evaluated through a push-pull

experiment (a physical and a virtual push-pull experiment) in which two di↵erent

product designs (a market available code cart and the prototype code cart) were

evaluated for ergonomic adequacy under di↵erent loading conditions (Figure 3.17).

Also, a questionnaire was given to subjects to assess their subjective opinion on

whether the prototype cart was more preferred than current cart [77].

Human-in-the-loop design framework integrated haptic-feedback and motion cap-

ture with a digital and a low-fidelity physical prototype model. DHM modules were

used for generating percent capable, compression and comfort evaluations. CAD code-

cart model went through several multi-physics assessments including: FEA for top

loading scenario, weight estimation and center-of-gravity calculations (Figure 3.18).

After defining parameters that satisfies user needs and engineering requirements, a

photo-realistic rendering of the concept cart model was generated (Figure 3.19). Fig-

ure 3.20 and Figure 3.21 provide a human-in-the-loop design summary. Starting by

next section, information about how human-in-the-loop framework was applied to

this project was provided in details.
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Figure 3.14. Human-in-the-loop design framework merges MoCap,
haptic devices (sensory force-feedback) and subject questionnaire
(user studies) data with a full scale CAD model and a low-fidelity
physical prototype to generate three di↵erent outcomes: motion, er-
gonomics and visualization. Through this approach both objective
(motion and pressure) and subjective (questionnaire) aspects of de-
sign data were integrated to realize a concept code cart model that
reflects user needs, abilities and limitations. DHM provided tools
to validate ergonomics and visualization aspects of human element
within design process. Human-in-the-loop design framework provide
multi-disciplinary creative pursuits for industrial designer and design
engineers to work together on the same design project without iso-
lation. Form and functional aspects of product development can be
monitored, modified, tested and furthered refined in a parallel se-
quence, with human needs, abilities and limitations are kept at the
center. In addition, qualitative nature of design process can also be
integrated through user feedback, questionnaires and field studies.
This approach o↵ers a more systematic method to evaluate of what
customer wants.
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Product design stages

 

4.0
2D

Sketching

4.1
3D

Modeling

2D/3D Modeling

Figure 3.15. Design process started with identifying key features that
are essential for nurses. These features were gathered after on-site
observations and questionnaires data collected from nurses. This ap-
proach reflected what was missing in current code carts and what
could be included in the concept design in terms of improving nurses’
comfort and performance. Features such as retractable handles and
dual-way access drawers, as well as swivel defibrillator and AC plug
were amongst the most that provided versatility and ease of use to
nurses. These conceptual ideas were further refined through QFD,
functional decomposition and Pugh’s charts. Finally, a representative
conceptual model that includes surface and solid models were devel-
oped as a CAD assembly. After this stage, CAD model was linked
to DHM to get validation in terms of its ergonomics compatibility.
Meanwhile, structural tests were conducted on multiple what-if sce-
narios. After running various biomechanics and FEA simulations,
conceptual features were modified, some features were disregarded,
and new features were added.
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Figure 3.16. At this stage haptic (force-feedback data) and motion
data were integrated to create digital representation of users in com-
puter environment. Low-fidelity prototype cart model was used as
physical probe to gather realistic information about push-pull forces
required by nurses. Data collected were sent to DHM for conducting
ergonomics analysis.
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INITIAL PUSH POSTURE IMPROVED PUSH POSTURE
(Commercial Cart Model) (Prototype Cart Model)

Poor Static Strength results (high strain forces applied on corresponding body segments) 

Accaptable  Static Strength results (avarage strain forces applied on corresponding body segments) 

Good  Static Strength results (low strain forces applied on corresponding body segments) 

Ergonomics Evaluation
4.2

Digital 
Human

Modeling
(DHM)

Figure 3.17. After haptic and motion data were incorporated with
CAD model, various ergonomics analysis were conducted to evalu-
ate human-product interactions. Manikins that represented di↵erent
percentile of populations were tested for their capabilities in pushing-
pulling the cart with various loading scenarios. Performance of nurses
between current code cart model and concept design were compared in
terms of ergonomics adequacies. In this figure percentage capability
analysis was performed for 50th percentile female when pushing cur-
rent and concept cart with identical external loads. Once can see that
current cart model created a wider range of accommodation. Almost
every nurse can conduct a pushing task without exerting a large force
readings on their joints. In contrast, only few nurses can complete
the same push test when they used current code cart.
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Structural Analysis

Lightweight: 63 lb vs. 90+ lb

Low Center of Gravity: ~20 in., 45% lower

Top loading at 100 lb: 2.23E6 Nm2 < 9.5E7 Nm2

Figure 3.18. Structural analysis demonstrates lower center of gravity,
weight reduction and good structural integrity in top-loading scenario.

Photo-realistic Rendering
4.4

Digital / 
Rapid

Prototyping

Figure 3.19. CAD model and digital manikins used in engineering
design analysis were also used for design visualization purposes to
enhance industrial design process.
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3.5.2 Integrated cockpit design of Formula-1 race car

Main objective of this study was to develop a cockpit design for a Formula-1

car through human-in-the-loop design process (Figures 3.22). Driver’s cockpit was

the central theme in the design process, where driver’s joint angles were optimized

to sustain a comfortable posture inside a confined space (cockpit) (Figures 3.23).

This project demonstrates capabilities of human-in-the-loop design framework in a

full-digital environment. Figure 3.24 shows overall summary of human-in-the-loop

framework from conceptual development to photorealistic rendering, which encapsu-

lates functional as well as the form aspects of design process.

Method of Human Data Input

Method of Environment Input

Full-scale 
CAD Model

Motion & Ergonomics
 Analysis

1. Clas Detection
2. Coverage Zones
3. Ingress-Egress
4. …

1. Reach Envelope
2. Discomfort
3. Vision Analysis
4. …

1. Posture
2. Virtual Reality
3. Rendering
4. …

Visualization

Anthropometric
Library

2D Blueprints

Digital Human Modeling 
Environment Motion Output

Ergonomics Output

Rendering Output

DHM

Figure 3.22. Human-in-the-loop framework merges anthropometrics
data with 2D vehicle blueprints and a full-scale CAD model. Major
outcomes are summarized under motion, ergonomics and rendering.
DHM blends function and form aspects of vehicle design and provides
tools to validate ergonomics as well as visualization aspects of human
element in cockpit development.
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3.5.3 Futuristic transportation design

Formula-1 design project represented a fully-digitized engineering design study

without any subject data collection. Digital anthropometric data and vehicle blueprints

were used to generate driving postures. This study does not include any human data

collection. Manikin and the monocoque cockpit data from Formula-1 study was used.

The design objective in this study was creating an artistic conceptual model of a

futuristic vehicle (Figures 3.25). Emphasis was given to industrial design (Figures

3.26). This project demonstrates how human-in-the-loop design framework can func-

tion even with artistic development of products (Figures 3.27).

Method of Human Data Input

Method of Environment Input

Concept
CAD Model

Motion & Ergonomics
 Analysis

1. Clash Detection
2. Coverage Zones
3. Ingress-Egress
4. …

1. Reach Envelope
2. Discomfort
3. Vision Analysis
4. …

1. Posture
2. Virtual Reality
3. Rendering
4. …

Visualization

Anthropometric
Library

Digital Human Modeling 
Environment Motion Output

Ergonomics Output

Rendering Output

Surface Model

DHM

Figure 3.25. Digital manikin and CAD model from Formula-1 study
was carried to this project. Digitized posture data from anthro-
pometric libraries were linked with CAD model and surface model
to generate a futuristic vehicle concept. CFD simulation was con-
ducted to evaluate aerodynamics performance of the concept vehicle.
Major DHM outcomes were mostly visualization focused, however,
ergonomics and biomechanics outcomes can also be generated - if
needed.
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4. DESIGN STUDY

A systematic design framework that captures human needs, abilities and limitations

has been missing in design research. Although few platforms o↵er some limited DHM

based human-simulation coverage, utilization of these methods as part of product

design framework has some limitations. Often, DHM is used a post-design ergonomics

evaluation tool. Utilization of DHM as a direct design tool (similar to CAD or CAE)

has not been at the central interest of designers. This dissertation proposes DHM as a

direct design tool, rather than a post-processing ergonomics evaluation methodology.

Human-in-the-loop design framework is built based on DHM. It integrates design

(industrial and engineering), HFE and systems approach. Some of the details of

this approach has been introduced through three design studies covered in Chapter

2: code-cart design, F-1 cockpit design and futuristic vehicle design (Figure 2.13).

These studies provided a brief information about the capabilities of human-in-the-

loop design framework and how the framework can be used for systematically blending

industrial and engineering design principles with human-element at the center.

This chapter introduces a more comprehensive design research method, which not

only demonstrates capabilities of human-in-the-loop framework in product design but

provides a scientific validation to the framework. In this experiment, human-in-the-

loop framework is proposed both as a testbed to integrate human element into design

research and to validate the use of DHM toolkits in product development. Design

methods used in this study are:

• Human subject data collection through an eye-tracker device

• Human subject data collection through user input, Cooper-Harper test and

questionnaires
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• Finite Element Analysis for structural integrity assessments

In this experiment, a combination of di↵erent design approaches, technologies and

data collection methods were integrated within human-in-the-loop design framework.

This multi-disciplinary design approach demonstrates holistic, emergence and mod-

ular characteristics of the framework. This experiment involves an automobile pillar

design study, which makes connections with form and functional aspects of indus-

trial and engineering design process. DHM was used as a bridge to connect form

and functional attributes of automobile design with needs, abilities and limitations

of humans. E�cacy of human-in-the-loop design framework was validated through

human-subject data collection. Chapter 4 and Chapter 5 provide a detailed intro-

duction to the design study, which includes statement of design problem, objectives,

hypothesis and measures.

4.1 Statement of the Design Problem

The importance of occupant safety is one of the most vital aspects of product

development and marketing in automotive industry. Today, it is a must to have to

meet minimum safety requirements (EURO NCAP, SAE...etc.) to ensure protection

of occupants, pedestrians and other tra�c elements [123]. Within a very competitive

technology driven environment, focusing solely on minimum requirements is not a

smart way of winning a substantial reputation in the market. Companies strive to

establish strict safety standards to sustain a high safety reputation, which leads to

large market share. Since 1970’s, manufacturers, private institutions and academia

have introduced new technologies to increase the overall safety of ground transporta-

tion. Some of the well-known ways of increasing automobile safety (crash worthiness)

are applying high strength steel to the chassis, introducing multiple airbags and de-

veloping advance body structures.

State of art energy-absorbing and/or energy-dissipating techniques are well-known

for their success in reducing occupant injuries. However assisting technologies in re-
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ducing the risk of having a collision have not been successfully integrated to vehi-

cle design when compared to energy-absorbing and/or energy-dissipating techniques.

Majority of new safety technologies are focusing on minimizing the injury to the occu-

pant during accident actually occurs. It is very important to decrease the severity of

injuries and casualties through these techniques, but preventing vehicular accidents

before they even occur should be a high priority item [123]. One of the important

ways of improving safety of ground transportation is to o↵er a block-free or an opti-

mized visual field, which can increase driver’s reaction time for positive identification

of other vehicles, road alerts and pedestrians [123,124]. Literature review and current

vehicle design trends show that visual field obscuration is a major problem and pillar

geometry is a critical design element in vehicle packaging [125]. In this context, not

su�cient attention is paid for improving visual obscuration due to pillar geometry

when compared to improvements in cockpit entertainment, e�cient engines, alterna-

tive fuels, and weight reduction. Literature review shows that A-pillars (also B, CD

pillars) provide a visual block and may lead to accidents [126, 127]. However very

limited research has was done on this topic.

4.2 Literature Review on Automobile Pillars

4.2.1 Safety and product design connections to driver’s visual field

This design study focuses on methods for ensuring driver’s field of vision to reduce

obscuration related discomfort and accidents. Unobstructed field of forward, side

and rear vision is essential to see other vehicles, pedestrians, road signals, bends

and curves, road conditions, and other important information. Ability to see these

information as quick as possible without misdoubt is critical for reacting on time.

On-time-reaction (or reacting as quick as possible) is vital for increasing chances of

accident prevention through proper steering, breaking and/or maneuvering [123].

One of the vital and essential characteristics of vehicle packaging is providing a

good field of vision to the driver. Presence of any obscuration zones (steering wheel,
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mirrors, pillars, dashboard...etc.) should be minimized to increase visual quality and

comfort [124]. Design of cockpit environment as well as other parts of the vehicle that

reduces driver’s field-of-vision should be carefully evaluated before the vehicle is ever

launched to market. At this point, ignoring visual needs, abilities and limitations of

people would clearly decrease the safety and performance of the overall vehicle.

When field of vision is concerned, opaque objects near to eye provides the most

potential dangerous occlusions through generating a permanent blockage. The frame

surrounds the driver and passengers called ’pillars’ are the primary obscuration el-

ement in an automobile. Drivers mostly eliminate the occlusion generated by such

blockage elements by moving the head on lateral plane. However, this technique does

not necessarily circumvent or reduce the potential loss in visual field. The permanent

presence of pillars exerts a continues blockage and threaten safety [123,124,126,127].

4.2.2 Functionality of pillars

Safety for occupants

Pillars provide the structural frame that surrounds the occupant in a vehicle.

Glass surfaces between pillars provide a shell for outside environment and permit good

view of the road. Pillars provide a structural barrier between occupants and outside

environment, which protects the driver and passengers if involved in an accident

[124, 126]. Some luxury cars are also occupied with additional airbags hidden in A,

B and CD pillar zones to provide extra protection to occupants when involved in a

collision. Soft padding on and around pillars provide comfortable ingress and egress

of vehicles.

Structural integrity

The overall forces act on a vehicle in case of a head-on collision and a roll-over

accident directly absorbed by pillars. Pillar design has direct contributions on overall
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crash-worthiness of vehicles, especially in head-on collisions and roll-over (roof-crush).

The crumble zone in front section of a vehicle is directly related the strength absorp-

tion capability of A-pillars. Pillars also have minor impacts on handling since they

contribute the overall height of the vehicle. Di↵erences in height and chassis design

have e↵ects on inertia of the vehicle, which becomes a an important handling factor

in cornering and high-speed maneuvers [123,124,126,127].

Aerodynamics

The overall exterior design of cars are getting streamlined in past decades to reduce

aerodynamic coe�cient, noise and vibration. This is a much common practice as the

price of fuel becomes a major concern. Also, streamlined cars are becoming more

popular with the introduction of hybrid and electrical vehicles. These vehicles rely

on low drag resistance to increase performance (total distance driven with a single

charge). Pillars provide smooth surfaces for easing the air flow [123, 124, 126, 127].

Therefore, A-pillar dimensions are getting larger in lateral plane as the overall vehicle

body design gets more streamlined. In addition, shape of CD pillars are getting

smoother to minimize the drag caused by trunk geometry. This becomes more visible

in hatchback type vehicles, where engineers use wider pillars to accommodate trunk

space under the rear window.

Aesthetics and style

One of the important marketing and cultural norm of vehicle design is aesthetics

and styling. For many car enthusiast styling is the most important aspect of buying

a new car. Pillars contribute a big portion of styling cues through providing a section

formation between lower and upper part of the vehicle as well as between front and

rear doors. Shape and curvature of glass surfaces are direct factors that define location

and geometry of pillars.
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4.2.3 Types of automobile pillars

There are four major pillars (A,B,C and D) associated with today’s automobile

design. Among those A and B pillars are most important in structural integrity and

passenger safety in head-on, side and roll-over accidents. Most of the commuter cars

have A, B, C pillars (Figure 4.1). D pillars are found in station wagons, large family

cars and in Sports Utility Vehicles (SUV). Style, shape and size of pillars depends

on overall geometry of the design, crash-worthiness and aerodynamics needs of the

vehicle.

A-Pillar

B-Pillar CD-Pillar

Figure 4.1. There are three major pillars (A, B and C) found in a
family (sedan) car. The very last column found on station-wagon cars
is named D-pillar. In this study, the very last column is represented
by ’CD pillar’.

4.2.4 Review of obscuration problems caused by pillars

The major sensory input used by drivers to maneuver and control their vehicle

is the visual perception. It was estimated that vision provides 90% of the sensory

input during driving [127]. Haslegrave discusses that binocular vision can have a

considerable a↵ects on obscuration caused by objects in the near field of the view

[128, 129]. Studies show that if binocular vision is 40% or less, the risk of accidents
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increase due to loss in correct detection and identification of objects. Poor binocular

vision decreases the ability of avoiding obstacles or making correct maneuvers [127].

It was also pointed that peripheral visual field loss significantly contributes to

real-world accidents and risk of having accidents increases with severity of visual field

loss [130]. In this context, subjects with peripheral field loss show the tendency of

compensating visual looses with lateral eye movement. This may also include lateral

movement of the neck to increase the visual field, which may increases the reaction

time [129,130].

Literature review also showed that peripheral visual detection distances decrease

considerably as the peripheral visual angle away from fovea (or line of sight) increases

[130]. This is important in cases when early detection is needed, such as negotiating

a curve or detecting a vehicle in intersection point [131].

It was also observed that incorrect identification of road environment or looked-

but-failed-to-see-errors are also a common causes of accidents. The term defines that

the driver had actually looked in the direction where the other parties were (cars,

pedestrians, road signs..etc.) but failed to see or correctly identified them. Perma-

nent obstacles close to eye can cause loss of visual field or provide lapse of cognitive

expectation (failure to scan for a particular class of road user). This eventually con-

tribute to incorrect identification of information while driving [127].

A-pillars have been identified as the main obscuration to the visual field for the

driver. Body pillars on transportation vehicles propose the issue of vision obscuration

during lane changes, in city driving, parking and cornering. Recent studies show that

pillar size and pillar angle have significant e↵ects on obscuration during lane changes,

which have fatal and/or financial consequences (lawsuits, hospitalization) [125].

A study by Matthew Reed’s showed that A-pillars that are closer to the forward

line of sight result in high-obscuration regions that are close to the vehicle travel

path. This is linked to increased risk of crashes involving pedestrians during vehicle

cornering and turning maneuvers [132]. It was also noted, but not finalized, A-pillar

geometry may influence the turning trajectory, which can be a contributing factor
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for pedestrian accidents at intersections and/or curves [130, 132]. A similar study

also showed that passenger cars have blind spots on the left side due to A-pillar

and concluded that there are visibility requirements currently in place for passenger

cars [133].

It was found that A-pillars potentially restrict essential visibility of road signs,

other vehicles, and pedestrians [126]. A similar study showed that detection of distant

targets are e↵ected by pillar width greater than the observers inter-ocular distance

[133].

Also, a recent study provides some initial assessments on potential safety im-

portance of the location of B-pillars during lane-change crashes. It was found that

B-pillars located near for-aft position of the driver tend to be over-involved in lane-

change crashes [127,134].

According to the studies done by the Department of Transport of UK, look-but-

failed-to-see accidents are contributing 20% of all road accidents. Unfortunately,

contribution of A-pillar obscuration on failed-to-see accidents was not specified in

this study. However, it was suggested by experts that motorbikes were often obscured

from view by nearside A-pillar. In theory, A-pillars should be designed in a way to

allow optimum vision to avoid looked-but-failed-to-see accidents [135].

It was also found that thickness of the pillars have e↵ects on failing to see an

object. Some manufacturers o↵er slim pillar design to increase the field of vision. It

was noted that slim A-pillar can provide better field of vision in comparison to thick

A-pillars [123, 124].

In summary, one can find that pillar obscuration (especially in A-pillars) are of

potential importance in situations where the vehicle is closing in to another vehicle

in the intended line of travel and manuvering/cornering at in-city tra�c [125]. B and

CD pillars may also decrease the range of visibility during in-city driving, parking,

cornering and backing-up. In each case, increase in thickness as well as lateral pillar

angle causes obscuration zones.
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4.2.5 Types of pillar obscuration

Figure 4.2 represents the obscuration zones formed by A, B and CD pillars of

a generic passenger car [123]. D pillar obscuration zone is not presented in this

image, however the very last pillar (C-pillar) in SUVs or station-wagons propose a

D-pillar-like obscuration problem. Angles between eyelipse centroids are referenced

to industry recommendations documented in SAE J941 manikin setup. According to

the SAE J941 manikin, each pillar forms a pillar obscuration angle denoted as A✓, B✓

and C✓ [136]. It should be kept in mind that each pillar zone would have be di↵erent

angles and locations depending on overall vehicle geometry, as well as anthropometric

di↵erences of drivers and driver’s seat location (forward-backwards, height).

A-pillar obscuration

According to the EEC 77/649 (European Economic Committee), the A-pillar angle

of obstruction should not exceed 6o [137]. This regulation strictly questions the safety

of operating vehicles when obstruction angle is bigger than 6o. Studies note that only

one-third of production vehicles meet this standard [123,124].

B-pillar obscuration

Although awareness on B-pillar obscuration is relatively insignificant when com-

pared to A-pillar obscuration, manufacturers try to eliminate wide obscuration zones

by optimizing B-pillar thickness through high strength steel frame construction. Stud-

ies show that B-pillar obscuration is more common in four-door type vehicles when

comparing to two-door vehicles, due to shorter A-B pillar distance. In other words, B-

pillars of four-door cars are much closer to drivers compartment than two-door ones,

which create larger obscuration zones. This finding gets more prominent if front seat

is adjusted backwards, which is a common practice for tall drivers [125, 134].
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A� B�

C�

C0B0A0

A-Pillar

B-Pillar

CD-Pillar

SAE J941 eyellipse centroid

Side View

Top View

Figure 4.2. At Top View, shaded areas on each pillar zone represents
portions of the pillars that obscure driver’s line-of-sight. The primary
parameter that a↵ects the size of obscuration is the thickness of the
pillar. Secondarily, the angle that pillar makes with the lateral plane
has minor a↵ects on obscuration. Thus, obscuration zone is a vari-
able phenomenon, which reflects combined a↵ects of seating location,
posture of driver and overall vehicle design. SAE J941 manikin of-
fers recommended design standards and dictates pillar obscuration as
being a critical packaging parameter. In SAE J941, obscuration an-
gles associated with each pillar zone are denoted as A✓, B✓ and C✓.
Location of the head-turn associated with each pillar is referred as
A

0

, B
0

and C
0

. The size of each angle depends on the dimensions of
pillar thickness. Thus, each vehicle has di↵erent field of obscuration
associated with the vehicle packaging.

CD-pillar obscuration

The field of vision research in automobile design mostly focuses on forward vision

of the vehicles. Literature review shows that C and D pillar obscuration did not
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take much attention as safety and design concern. Few studies show that there is no

clear prediction of a relationship between the location of C-pillars and lane change

crashes. However, more data should be collected before coming up with a conclusion.

There is still a concern about the potential relevance of C-pillars and lane change

crashes in situations where the vehicle’s intended lane of travel is closing to another

vehicle [123,125,129].

When it comes to rear field of vision, C and D pillars are especially important

in parallel parking and backing up. This becomes a major concern while trying to

see small objects and pedestrians close to rear section of the vehicle. Large vehicles

(SUVs) with thicker pillars create a more prominent problem. Although rear field

cameras found in luxury vehicles assist driver while backing up, they still lack of

monitoring rear left and right sections of the vehicle. Even though a true rear view

coverage is provided through a camera system, this method can add extra cognitive

challenges to drivers. One need to look at a back up camera and need to be aware of

what is going on around vehicle perimeter, simultaneously.
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5. METHODOLOGY

5.1 Why is This Experiment Needed?

Literature review outlined in Chapter 1 and Chapter 2 showed that a systematic

consideration of human element in design system with a holistic coverage is either

ignored or only recognized with limitations. There are limitations in engineering

design literature in terms of integrating HFE design principles early into product

development process. Often, HFE design principles are not truly regarded as direct

contributors of the design process when compared to other contributors such as com-

puter science, graphics design and mechanical engineering. DHM o↵ers an extended

coverage to the problem area through introducing HFE principles early in the design

process, however utilization of DHM as a design package is not fully explored. In

contrast, most of the designers consider DHM as a post-processing method for er-

gonomics evaluation of products. One of the major limitations that extenuates the

adoption of DHM as a design package is the absence of a design framework that can

link human needs, abilities and limitations with other design contributors.

Chapter 3 provided a detailed literature review on pillar obscuration problem. It

is one of the indicators of poor HFE practice in automotive design domain. Some of

the shortcomings of the obscuration problem arise from the fact that human needs,

abilities and limitation are either neglected or not thoroughly considered in vehicle

packaging. Among all the visual field related problems in vehicle packaging, pillar

obscuration found to be the most problematic, which may lead to serious injuries

and fatal accidents. However not much attention has been paid in comparison to

recent technology improvements such as entertainment consoles, engine upgrades,

alternative fuels, weight reduction and navigation.
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This experiment focuses on visual analysis of obscuration phenomena caused by

automotive pillars. A detailed study that explores the a↵ect of pillar design on drivers

performance is conducted. Human-in-the-design framework is used a testbed to pro-

vide a high-fidelity design work-flow to incorporate form and functional aspects of

design process centered on physical and cognitive needs, abilities and limitations of

humans. Human-in-the-loop design framework is proposed as a method to link HFE

design principles early in the design process through DHM. Pillar design experiment

is conducted as a real-life design study to validate the design approach introduced in

human-in-the-loop design framework.

5.2 Design Objectives

This study provides a brief introduction to the pillar obscuration problem and

proposes an alternative design solution. The proposed design is intended to decrease

looked-but-failed-to-see errors and provides additional reaction time to drivers to

avoid possible collisions with other vehicles, tra�c objects or pedestrians. There are

three main objectives proposed in this study. Each design objective is represented

through three separate experiments. Key items to meet design objectives are:

1. Identify Obscuration Problems through Eye-tracking Experiment:

Obscuration zones associated with front field will be evaluated for current and

proposed pillar designs through an eye-tracking experiment. Improvements on

field of vision will be measured in terms of accumulated number of eye-gazes,

total duration of eye-fixations and success of detecting of tra�c objects.

2. Develop Driver’s Questionnaire:

Tra�c Object Detection form will be filled up by subjects as they go through

static driving simulation. The goal is to detect performance of subjects in

correctly detecting tra�c objects. Cooper Harper test and pillar design review

questionnaires will be distributed to subjects to measure which pillar model

gets higher (better) reviews from subjects. Results (user ratings) associated to
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proposed pillar model will be compared to ratings of current pillar model in

terms of visual, safety and aesthetic attributes.

3. Construct Finite Element Analysis to Check Structural Integrity:

A Finite Element Analysis (FEA) will be constructed to check the structural

integrity current and proposed pillar models under roof-crush loading test. Re-

sults (maximum stresses and displacements) of pillar models will be compared

with benchmark values of Federal Motor Vehicle Safety Standards (FMVSS).

5.3 Hypotheses

Design objectives in this thesis formed around four hypotheses that explore the

validity and reliability of the human-in-the-loop design framework. These hypothe-

ses also investigate e↵ects of proposed pillar model on tra�c object detection and

structural integrity of the overall vehicle. Details about hypotheses will be covered

in Chapter 5. Hypotheses associated with human-in-the-loop framework are:

1. Hypothesis #1 (H1) = For visual field analysis, correlation of visual field re-

sults (within subjects) between six trials should be at least in high correlation

(’Good’ or ’Excellent’), where Intra-Class Correlation (ICC) index falls in range

of 0.6<ICC<1.0.

2. Hypothesis #2 (H2) = For each subject, visual detection of road elements with

Proposed Pillar (New Pillar) design and with Current Pillar (Old Pillar) design

are significantly di↵erent.

3. Hypothesis #3 (H3) = Proposed Pillar (New) design is significantly better than

Current Pillar (Old) design in terms of concept design criteria; forward (A-

pillar), side (B-pillar) and rear field (CD-pillar) visibility.

4. Hypothesis #4 (H4) = Mean values of maximum forces and displacement val-

ues for front, side and rear loading on Proposed Pillar (New) design are not

significantly di↵erent than Current Pillar (Old) design.
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5.4 Overview of Experimental Setup

There were three experiments performed in this study (Figure 5.1). Experiment-I

and Experiment-II use the same simulation components with a slightly di↵erent data

collection strategy. Experiment-I is a visual detection/obscuration zone experiment,

which includes subject data collection through an eye-tracking device. In this ex-

periment, subjects performed visual detection tasks of tra�c objects in a stationary

driving simulator environment, where static images of an automobile interior (driver’s

point-of-view of windshield) and a tra�c scene were projected on a LCD monitors.

Specifically, subjects were asked to detect tra�c objects (pedestrians, bicycles and

motorcycles) on A-pillar obscuration zone for two types of pillar models: Old Pillar

and New Pillar. Old Pillar model represents solid pillars that drivers see in regular

cars. New Pillar model represents a modified version of solid pillars with see-through

gaps. In Experiment-II, same static tra�c objects and images represented the sim-

ulation environment were projected on LCD display. In contrast, subjects asked to

detect tra�c objects for A, B and CD pillars with two di↵erent pillar models (New

and Old Pillar) without an eye-tracker device. Subjective feedback and driver’s per-

formance related data were collected through three assessment methods: Object De-

tection Form, Cooper-Harper Test and User Questionnaires. Finally, Experiment-III

was conducted to evaluate structural di↵erences between Old and New Pillar model.

Finite Element Analysis (FEA) study was used as a method to validate the structural

integrity of the vehicle frame according to Federal Motor Vehicle Safety Standards

(FMVSS) of roof-crush resistance test (article No-216) [138]. Experiment-III did

not include any subject data collection. It was executed in a computer simulation

environment with digital manikins representing 95th percentile of male population.

5.5 Common Components of the Experiment

This study proposes a novel pillar design model to increase driver awareness and

reaction time for positive identification of other vehicles, pedestrians and other road
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Design of Experiment

Expriment - I
(eye-tracker)

Experiment - II
(traffic object detection)

Experiment - III
(structural integrity)

Tape Lines LCD Display

Eye-tracker
Steering Wheel

Reference Blueprints
Photo Camera

A�

B�

CD�

A�

B�

CD�

Pillar Obscuration Model  Experimental Setup

A-Pillar

B-Pillar

CD-Pillar

Figure 5.1. This study includes three types of experiments: Eye-
tracker subject-data collection, Questionnaires subject-data collec-
tion and structural integrity. Experiment-I includes human subject
data collection through a static simulator and an eye-tracker device.
Experiment-II uses various subjective data collection methods to cap-
ture subject’s perception and performance related data without the
eye-tracker device. Experiment-III is a FEA to validate the structural
integrity of New Pillar design under FMVSS roof-crush test.

elements. A see-through pillar design is conceptualized with openings that let drivers

to see pillar obscuration zone found in solid pillars. Proposed pillar model provides

visibility improvements through minimizing obscuration zones. In theory, the con-

cept idea has the potential to be a successful pro-active safety feature in modern cars,

however validation is required to assess the fidelity of the theory and implementation.

A set of objective and subjective experiments are designed to gain a thorough un-

derstanding about the pillar obscuration phenomena and its physical and cognitive

a↵ects on drivers performance. The goal is to provide a see-through-space for drivers

to improve their visual zone, which would ultimately have positive a↵ects on driving

safety.
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5.5.1 Reference vehicle, pillar models and body frame

Throughout this experiment two pillar models are used: Old Pillar and New

Pillar. Old Pillar model represents a generic solid pillar found on regular cars. New

Pillar model is a modified (reverse-engineered) version of Old Pillar with see-through

spaces providing a minimized obscuration area to driver. Each pillar has exactly same

dimensions and surface finish. The only di↵erence is the holes that were cut-out on

New Pillar model.

Reference Surface Model

Solid Body Frame

Figure 5.2. Body frame that acts as a chassis was constructed based on
referenced CAD surface geometry. Image shows inner skeletal section
(body frame) and outer surface model.

The shape of the see-through holes could be di↵erent depending on the functional

and form aspect of vehicle packaging. In this experiment a four-door family sedan is

used as a reference vehicle. CAD model of the car was based on a Volkswagen family

sedan named ’Phaeton’. Pillar models were constructed with referenced to geometry

and dimensions of Phaeton model provided in open-source blueprint and surface mod-

els (Appendix C) [139–142]. These models were used as wire-frame references and

means of representing overall vehicle dimensions. Based on these reference geometry,
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modifications were made to create surface and solid CAD designs associated to new

and old pillar models as well as the body-frame.

Although each vehicle has di↵erent pillar dimensions, the CAD model used in

this study carries very similar pillar dimensions with some popular four door family

sedans (Honda Accord, Nissan Altima, Mazda 6, etc.). Thus, similar pillar dimen-

sions provide a more comprehensive understanding on pillar-obscuration phenomena.

CAD model was used as the reference vehicle geometry throughout this study. In

Experiment-III, a solid inner frame (chassis) was constructed based on the reference

surface model. Figure 5.2 shows CAD models associated with A, B and CD pillars.

Elliptical see-though shapes were cut-out to construct New Pillar model, which is a

one-to-one replica of a regular solid pillar model (Figure 5.3).

SolidCurrent A-Pillar model 

New A-Pillar model See-through

Figure 5.3. Two types of pillar models associated with A, B and CD
pillars. Current Pillars are composed of solid bodies, whereas New
Pillars are composed of see-through spaces.
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5.5.2 Pillar obscuration and driver posture setup

Providing see-through pillars on vehicle packaging could help drivers to anticipate

hard-to-see points that fall within angle of obscuration (A✓, B✓ and CD✓). This design

challenge was tested through a group of obscuration scenarios that represented a real

tra�c condition. Three types of pillar obscuration scenarios were conducted in this

study. To address each pillar obscuration scenario, three digital manikins coming

from 95th percentile male population were created through CATIA’s anthropometric

library. Each manikin was assigned to the associated A, B and CD pillar obscuration

scenario. These scenarios are covered in details throughout next section.

Orientation of driver’s seating location and postures associated with A, B and CD

pillar obscuration were generated according to actual vehicle packaging dimensions,

which were based on blueprints [139]. Posture assignment incorporates some of the

vehicle packaging elements including seat section, steering wheel, accelerator and foot-

rest. Thus, a realistic CAD model with high-fidelity postures were incorporated to

represent obscuration problem in a realistic tra�c situation. Figure 5.4 demonstrates

steps taken for generating a manikin with referenced packaging dimensions.

5.6 Overall Procedure and Summary of Data Collection

Throughout this experiment subjects were asked, with the help of the experi-

menter, to take a comfortable driving posture in front of a static driving simulator,

and complete a series of short tra�c object detection experiments. Before the exper-

iment started, subjects were asked to work on an eye-tracker calibration task. This

task included making a normal eye contact with an eye-tracker device in front of

the front-facing LCD monitor. Tra�c object detection experiments were based on

visual detection tasks, where subjects worked on detecting tra�c objects that were

projected to LCD monitors. There were three di↵erent pillar types (A, B and CD

pillars) associated with two di↵erent pillar models (Old and New pillar models). Sub-

jects were asked to detect tra�c objects that were located behind the pillar area - or
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Steering Wheel

Seating

Accelerator Pedal

Foot Rest

Figure 5.4. Driving posture associated with actual vehicle packag-
ing takes into account some of the cockpit elements such as seating,
steering wheel, accelerator pedal and foot-rest.
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within the obscuration angle. Static tra�c objects were projected in randomized or-

der. After each subject completed Experiment-I, he/she proceeded to Experiment-II

with a short break. Experiment-II included filling up Object Detection form and a

Cooper-Harper Test associated with each pillar type (A, B and CD). Finally, subjects

were asked to complete a two user experience questionnaires. First questionnaire was

composed of two sets of sub-questionnaires, which are designed to assess pillar models

used in this experiment. The last questionnaire was intended to collect data about

subject’ pillar obscuration related daily driving experiences. Experimental proce-

dures and equipment used in this experiment were approved by Purdue Institutional

Review Board (IRB) (Appendix-A). Procedures followed during the experiment were:

1. Subjects were asked to provide height and weight related data on human sub-

ject log. This step was intended for screening for exclusion and constructing

referenced DHM manikin. This manikin was used in generating driving posture

(Figure 5.4) and FEA analysis.

2. Subjects were asked to take a comfortable driving posture according to their

seat adjustments. This included raising-lowering and tilting the seat.

3. Experiment started with eye-tracker calibration. This included a step-by-step

eye-gazing to gather subject’s eye motion behavior. Eye tracker was only used

for A-pillar tra�c object detection tasks.

4. After eye tracker calibration was completed, subjects worked on various visual

detection tasks. As the computer simulator turned on, subjects were asked to

make field-of-sight observations on static images projected to the LCD mon-

itor. During simulator experiment, there were three di↵erent types of pillars

corresponding to two di↵erent pillar models. There were two di↵erent tra�c

objects projected behind the pillars. Tra�c objects were composed of what a

driver could normally see on public road (vehicles, pedestrians, bicycles). Pillar

model, pillar type and tra�c objects were randomized. Each task was repeated

six times.
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5. Each simulator task took around three seconds. Subjects were asked to fol-

low automated simulation with each tra�c scenario shu✏es automatically after

three seconds. Subjects take a short break after completing Experiment-I.

6. In Experiment-II, subjects filled up Tra�c Object Detection Forms as static

simulation images shu✏e randomly with three seconds between each other.

7. For each pillar model (Old and New), subjects were asked to fill up a modified

Cooper-Harper test after completing each A, B and CD pillar Object Detection

Form experiment, sequentially.

8. After simulator tasks, subjects were asked to fill up three short questionnaires.

9. After all simulator tasks and questionnaires were completed, subjects were re-

quired to sign o↵ human subject log, and exited the experiment.

Table 5.2 shows estimated duration associated to each task. In this experiment,

there were a total of 72 Object Detection Forms, 6 Modified Cooper-Harper Tests and

3 user questionnaires were used. Each subject was required to go-through all phases

demonstrated in Figure 5.5 to successfully complete the experiment.

In this experiment, each subject was asked to finish a calibration task (takes

around 5 minutes) and worked on object detection (obscuration test) experiments for

2 tra�c objects for 3 pillar types (A, B and CD) and 2 pillar models (Old and New

Pillar). Each task was replicated six times. Thus, each subject went through 72 (2 x 3

x 2 x 6) tasks, corresponding to: pillar model x pillar type x tra�c object x replication.

Obscuration tasks took around 1.5 minutes (3 seconds per task). There were a total

of 72 Object Detection Forms (each takes 15 seconds), 6 Modified Cooper-Harper

Tests (each takes 1-2 minutes) and 3 questionnaires (each takes 3-5 minutes) given

to each subject.
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Driving Posture

1.1

Eye-tracker Setup

1.2

Calibration

1.3

Data Collection

1.4

Experiment-I
1

Experiment-II
2

Traffic Object Detection 
Form

2.1

Cooper-Harper Test

2.2

User Questionnaires

2.3

A-Pillar B-Pillar CD-Pillar

Old A-Pillar
&

New A-Pillar

Old B-Pillar
&

New B-Pillar

Old CD-Pillar
&

New CD-Pillar

Figure 5.5. Subject-data collection flow associated with Experiment-I
and Experiment-II. Experiment-III did not involve any data collection
from subjects.
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Table 5.1
Estimated specific times and total time associated with each task

Task Breakdown Individual Times Replications Total Time

Calibration 5 minutes 1 5 minutes

Eye-tracking 3 seconds 24 1.5 minute

Obscuration Task 3 seconds 72 4.5 minutes

Object Detection Form 15 seconds 72 20 minutes

Cooper Harper Test 2 minutes 6 12 minutes

Questionnaire 5 minutes 3 15 minutes

⇡60 minutes

5.7 Overview of Variables and Data Types

There were three experiments conducted in this study. Each experiment was

composed of multiple variables. Experiment-I and Experiment-II involved human-

subject data collection. In Experiment-I, subjects’ eye-movements were collected

through an eye-tracker device. Eye-movements data had three variables: Fixation

Duration, Coordinates-X and Coordinates-Y. Experiment-II composed of three sub-

experiments: Tra�c Object Detection form, Cooper-Harper tests and user question-

naires. Variables associated with Experiment-II were: Object Detection, Perfor-

mance, Ease of Detection, Design Review and User Feedback. In Experiment-III,

Finite Element Analysis (FEA) was conducted to assess the structural integrity of

pillar designs under FMVSS roof-crush test. FEA analysis was evaluated by Dis-

placement and Stresses. Table 5.2 summarizes types of data, variables, units, and

hypotheses associated with experiments conducted.
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Table 5.2
Types of data, variables, units, and hypotheses associated with ex-
periments conducted in this study

Variables Units Expt.-1 Expt.-2 Expt.-3 Hypotheses

Fixation Duration Milliseconds • H1, H2, H3

Coordinates-X Pixels • H1, H2, H3

Coordinates-Y Pixels • H1, H2, H3

Object Detection Binary • H1, H2, H3

Performance Binary • H1, H2, H3

Ease of Detection Rating/Score • H1, H2, H3

Design Review Rating/Score • H1, H2, H3

User Feedback Rating/Score • H1, H2, H3

Displacement Millimeters • H4

Stresses Newtons • H4

5.8 Random Error and Systematic Error

Every experiment that involves data collection through a measurement device is

subject to produce unintentional errors, which generate statistical fluctuations in col-

lected data. Often, these errors result from experimenters inability to replicate the

identical conditions during data collection. The degree of presence and frequency of

such errors can predict the success of the measurement. These errors occur through-

out the experiment, and allocate all chance factors that are associated with the mea-

surement. We can classify measurement error in two major categories: random and

systematic errors [143, 144].

Random errors are caused by unknown, uncontrolled and unpredictable changes

in the data collection process. Any unknown variation in the measuring device (e.g.,

electronic noise) can a↵ect the precision of collected data.
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movements in front of 

eye-tracker 

1

Captured eye-
movements 

2

Eye-tracking data 
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3
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tracking data
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(e.g., pixel translation)  

Figure 5.6. Potential random and systematic error pathways associ-
ated with eye-tracking experiment.

Systematic errors, similar to random errors, are also generated without intention.

However, they often happen due to erroneous use of instruments and/or uncontrolled

environmental conditions, which a↵ect the accuracy of data collection.

It is practically not feasible to eliminate all random and systematic errors gener-

ated during data collection. In this experiment, the eye-tracker device (e.g., calibra-

tion and noise) and human subjects (e.g., positioning and posture) can be considered

as potential contributors of such errors (Figure 5.6), which might have a systematic bi-

asing e↵ects on data collection. In order to minimize the biasing e↵ect of uncontrolled

errors, every experiment step and equipment calibration were carefully examined and

executed systematically throughout each experiment.
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Validity and reliability of data collection depend on the amount of random and

systematic errors occur in an experiment. A measure that generates low random

error and low systematic error should be considered acceptable, as it is both valid

and reliable [77, 145]. Starting by the following section, methods and assumptions

that examine validity and reliability of the data are covered in details.

5.9 Summary of Statistical Techniques

A summary of independent variables and dependent variables in as well as random

and standard error were summarized in previous sections. A detailed information

about (M)ANOVA and ICC were documented. This section summarizes statistical

techniques used for analyzing data, as well as methods and goal of measurement

(Table 5.4). Starting by Chapter 6, each experiment is analyzed in details through

utilizing statistical methods described in this section.

Table 5.3: Summary of methods of measurement, goal of

measurement, statistical, numerical and visual methods

associated with hypotheses

Experiments
Method of

Measurement

Goal of

Measurement

Statistical, Numerical

and Visual Methods

Experiment-I Eye-tracker Areas of Interest Descriptive Statistics

Bar Graphs

Heat-maps

Burnout Images

Validity ANOVA

MANOVA

Reliability ICC

Cronbach’s Alpha

continued on next page
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Table 5.3: continued

Experiments
Method of

Measurement

Goal of

Measurement

Statistical, Numerical

and Visual Methods

Experiment-II Detection Form Detection Performance Descriptive Statistics

Bar Graphs

Cooper-Harper Design Improvement Descriptive Statistics

Line Graphs

Questionnaire User Preference Descriptive Statistics

Bar Graphs

Internal Consistency Cronbach’s Alpha

Experiment-III FEA Structural Integrity Descriptive Statistics

Stress & Displmnt.

Bar Graphs

Correlation ICC

Pearson
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6. EXPERIMENT - I

6.1 Introduction

6.1.1 Overview

Experiment-I involves a human data collection in a static driving simulator (Figure

6.1). Simulation setup was composed of a large monitor, steering wheel, pedals and

adjustable seat. Subjects were asked to take a driving position in front of a large

monitor, which represents the driver’s side of the windshield and dashboard area.

Driver’s point-of-view of a tra�c scenario was projected as still images. Subjects

worked on visual detection tasks to identify tra�c objects found behind A-pillar

area through eye-gazing on the monitor. Purpose of this experiment was to collect

eye-gazing data of drivers through a eye-tracking device. Research question posed

whether pillar models and/or tra�c objects have e↵ects on eye-tracking data.

Design of Experiment

Expriment - I
(eye-tracker)

Experiment - II
(traffic object detection)

Experiment - III
(structural integrity)

Tape Lines LCD Display

Eye-tracker
Steering Wheel

Reference Blueprints
Photo Camera

A�

B�

CD�

A�

B�

CD�

Pillar Obscuration Model  Experimental Setup

A-Pillar

B-Pillar

CD-Pillar

Figure 6.1. Experiment-I is a human subject data collection experi-
ment through an eye-tracker device and a static simulator setup.



98

6.1.2 Connections to human-in-the-loop design framework

Experiment-I demonstrates how human related data could be connected into

human-in-the-loop design framework. In this specific design study eye-tracker de-

vice with a static simulator setup was used as means of collecting human subject

data. Shaded area in red Figure 7.2 shows how data collected through eye-tracker

and simulator setup was integrated to DHM. Similarly, Figure 7.3 demonstrates a vi-

sual synopsis of how Experiment-I was integrated to DHM within human-in-the-loop

framework.

Method of Human Data Input

Method of Environment Input

Vehicle & Pillar
CAD Model

Motion & Ergonomics
 Analysis

1. Clash Detection
2. Coverage Zones
3. Kinematics
4. …

1. Reach Envelope
2. Discomfort
3. Vision Analysis
4. …

1. Posture
2. Virtual Reality
3. Rendering
4. …

Visualization

Eye-Tracking

Digital Human Modeling 
Environment Motion Output

Ergonomics Output

Rendering Output

Static 
Simulator Env.

Traffic Object 
Detection

Simulator

DHM 

Figure 6.2. Shaded area in red (with dashed lines) represents how
Experiment-I was integrated to data flow process within human-in-
the-loop framework. Experiment-I gathered human subject related
data through an eye-tracker device and a static simulator.



99

DIGITAL HUMAN
 MODELING

MODELING
> Ideation
> Concept Sketching
> Surface Modeling

STRUCTURAL
ANALYSIS

> Fluid Dynamics

> Digital Prototyping
> Photorealistic Render

PROTOTYPING

CONCEPTUALIZE

UNDERSTAND CREATE

DESIGN 
REQUIREMENTS

DESIGN 
REALIZATION

DESIGN
HUMAN 

FACTORS
SYSTEMS

2D/3D Pillar Model Vehicle Prototype

Eye-Tracking Traffic Object Detection
EXPERIMENT-I EXPERIMENT-II

DESIGN PROPOSAL

Tape Lines LCD Display

Eye-tracker
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A�
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Pillar Obscuration Model  Experimental Setup
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Figure 6.3. Shaded area in red (with dashed lines) represents whic
portion of the human-in-the-loop design framework was used to inte-
grate human aspects of data during design process.

6.2 Experimental Setup

6.2.1 Eye-tracker and simulator setup

An eye-tracker device from EyeTribe (The EyeTribe Tracker) was used as a method

to capture pixel correspondences of eye movements of subjects on a large monitor

[146]. Static images that represent what a driver would be seeing when driving an

automobile were projected to LCD monitor as static images (Figure 6.4).
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Eye-tracker device has a sampling rate of 60Hz and can capture eye movements

with accuracy of 0.5 to 1 degrees. It uses a super-speed USB 3.0 port for power and

data transfer. Throughout this experiment a 9-point calibration template was used

for calibrating a 24 inches LCD monitor.

Tape Lines LCD Display

Eye-tracker
Steering Wheel

Reference Blueprints
Photo Camera

Figure 6.4. Simulation setup in Experiment-I consisted of an eye-
tracker, an LCD display, a Logitech gaming steering wheel with ped-
als, a generic adjustable o�ce seat and a photo camera. Eye-tracking
device was used for capturing subject’s eye-movements. Static im-
ages that represented driver’s point-of–view of the windshield were
projected on a LCD display. A Logitech steering wheel with pedals,
and a generic adjustable chair were provided to subjects. Location
of experimental components and seating position of the subjects were
based on actual blueprints. Subjects had the flexibility of adjusting
seat position (back-and-forth, incline) within the boundaries shown
on blueprints.
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During data collection, subjects sat on an adjustable seat roughly 50cm away from

the eye-tracker device. Subjects were able adjust seat location (back and forth, up

and down, recline). Seat location was bounded by the referenced interior layout taken

from CAD vehicle model (blueprint) (Figure 6.4).

In addition, a photo camera on a tripod setup was used for capturing head and

upper body position of subjects in reference to tapelines that were stuck on a front-

facing wall. These images were solely used for gaining understanding about driver’s

posture.

6.2.2 Tra�c objects

There were a total number of 24 (2 x 2 x 6) static images representing 2 tra�c

objects (either a bicycle or a pedestrian) located behind the A-pillar zone for 2 pillar

models (Old and New) with 6 replications. Each image stayed on the monitor for

three seconds. After three seconds, simulation setup proceeded to the next image.

Images were randomly shu✏ed.

Total number of images shown in driving simulator split between Old Pillar and

New Pillar model, where subject either saw a solid pillar (Old Pillar) or a see-through

pillar (New Pillar), accordingly.

Table 6.1: Tra�c scenarios for A-pillar obscuration for

two pillar types with trials

Pillar Model Pillar Type Tra�c Objects Trials

Current Pillar A Pedestrian 6

Bicycle 6

New Pillar A Pedestrian 6

Bicycle 6
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A�

Biker

A�

Pedestrian

Figure 6.5. Two tra�c objects were used interchangeably. Images
represented a pedestrian or a biker were projected in a randomized
order during static driving simulation. Each tra�c object was located
within the A-pillar obscuration angle (A✓).



103

Figure 6.5 shows visual setup of tra�c objects according to the vehicle’s location.

Each tra�c object falls within obscuration angle of A✓. Either a biker or a pedestrian

was placed within obscuration angle. Static images on the lower-right corner for each

tra�c object demonstrates the street view of what driver’s would be seeing during

simulation. These images were based on the Google Map street view images explained

in previous chapter. Figure 6.5 only demonstrates how a biker and a pedestrian were

situated at the pillar obscuration zone for New Pillar design. During Experiment-

I, the exact tra�c objects but for solid pillar were also presented to subjects in

conjunction to see-through pillar.

6.3 Procedure

Throughout Experiment-I static driving simulator setup presented in Figure 6.4

was used and eye-tracker device was utilized for capturing subject’s eye-movements

through static images projected on a LCD monitor. Each image represented a tra�c

scenario associated with two di↵erent tra�c objects for two pillar models. This

experiment solely focused on A-pillar obscuration. Data flow is summarized in Figure

6.6. Specific procedures to follow in Experiment-I were:

1. Subjects were asked to take a comfortable driving posture according to their

seat adjustments. This includes raising-lowering and tilting the seat.

2. Eye-tracker device was adjusted to accommodate subject’s seating preference

and checked if it was able to capture eye-movements. (Subjects binocular field-

of-vied should be inside the active green zone, which represents active area of

eye-tracking.)

3. Experiment started with eye-tracker calibration. This includes a step-by-step

setup to gather individual eye motion behavior. Subjects were asked to follow

a moving red dot between 9 points shown on the screen.
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Driving Posture

Eye-tracker Setup

Calibration

Data Collection

1

2

3

4

Figure 6.6. Experiment-I involves a static driving simulator to capture
eye-movements of subjects. It starts with subjects taking a driving
posture, orienting eye-tracker device according binocular field, fol-
lowed by calibration and finally with data collection.
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4. After eye-tracker calibration was completed, subject worked on various visual

detection tasks. As the computer simulator turned on, subjects were asked to

make field-of-sight observations of tra�c objects projected to the LCD monitor.

During simulator experiment, there were two types tra�c objects (biker or

pedestrian) corresponding to two di↵erent pillar models (Old of New Pillar

model). Tra�c environment was composed of what a subject could normally

see when he/she is driving on a public road (Figure 6.5). Pillar model, pillar

type and tra�c objects were projected in randomized order. A total of 24

images were used throughout this experiment. Each image only stays on LCD

monitor for three seconds and shu✏es randomly. Each task was repeated six

times.

6.4 Variables

In Experiment-I, subjects’ eye-movements were collected through an eye-tracker

device. Primarily, there were three independent variables of interest, encompass-

ing: 1. Types of Pillars, 2. Tra�c Objects and 3. Trials. These variables were

used for generating a 3-way ANOVA/MANOVA analysis. On top of primary inde-

pendent variables, three more independent variables were included to extend this

study. Additional independent variables were: Gender, Driving Experience and Use

of Glassess. Through the introduction of 3 more independent variables, a 6-way

ANOVA/MANOVA study was conducted. Three dependent variables of interest in

this study, includes: 1. Fixation Duration, Coordinates-X and Coordinates-Y.

Coordinates-X and Coordinates-Y data represents pixel-correspondences of each

subjects’ eye-movements superimposed on the monitor. Fixation Duration represents

the intensity (or duration of eye-movement) fixated on a single point of observation

(X,Y). Table 6.2 and Table 6.3 summarizes types of data, variables, units, and hy-

potheses associated with experiments conducted.
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Table 6.2
Types of data, variables, units, and hypotheses associated with ex-
periments conducted in this study

Independent Variables Levels Hypotheses

P
ri
m
ar
y Types of Pillar Old,New H1, H2, H3

Tra�c Objects Pedestrian,Bicycle H1, H2, H3

Trials 1,...,6 H1, H2, H3

A
d
d
it
io
n
al Gender Male,Female H1, H2, H3

Driving Experience Low,Medium,High H1, H2, H3

Use of Glasses Glasses,No Glasses H1, H2, H3

Table 6.3
Types of data, variables, units, and hypotheses associated with ex-
periments conducted in this study

Dependent Variables Units Hypotheses

Fixation Duration Milliseconds H1, H2, H3

Coordinates-X Pixels H1, H2, H3

Coordinates-Y Pixels H1, H2, H3

6.5 Experimental Design

There were two di↵erent ANOVA/MANOVA studies performed in this study.

First study was a 3-way ANOVA/MANOVA model, which was composed of three

(primary) independent variables (Types of Pillars, Tra�c Objects and Trials). An

additional 6-way ANOVA/MANOVA study was conducted to further expand the

primary 3-way model. Each model used same dependent variables summarized in

Table 6.3. Besides these studies, several statistical studies were performed to analyze

eye-tracking data. Statistical techniques used in this study are covered in Section 6.7.
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6.5.1 Hypotheses and linear model for a three-way factorial analysis

The primary interest in ANOVA/MANOVA study was to explore whether pillar

types, tra�c objects or trials have e↵ect on the eye-tracking data. Hypotheses to

setting up factorial analysis and mathematical equation with associated factors are

summarized below.

• H 0: µOLD = µNEW (no e↵ect of pillar models)

H 1: H 0 is rejected

• H 0: µPedestrian = µBicycle (no e↵ect of tra�c objects)

H 1: H 0 is rejected

• H 0: µT1

= µT2

... µT6

(no e↵ect of trials)

H 1: H 0 is rejected

The basic mathematical model can be expressed in terms of the parameters of a

linear model as:

Yijkt = µ+ ↵i + �j + �k +

2�wayz }| {
(↵�)ij + (↵�)ik + (��)jk +(↵��)ijk + "ijkt (6.1)

Yijkt: dependent variable

µ: overall mean

↵i : pillar type (i = OLD, NEW)

�j : tra�c objects (j = Pedestrian, Bicycle)

�k : number of trials (k = 1,...,6)

(↵�)ij,(↵�)ik,(��)jk: two-way interactions

(↵��)ijk : three-way interaction

"ijkt : error term
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6.5.2 Hypotheses and linear model for a six-way factorial analysis

This study was performed on top of the 3-way model with consideration of 3 addi-

tional independent variables, encompassing: 1. Gender, 2. Driving Experience and 3.

Use of Glasses. In this study interaction e↵ects were ignored since more than 3 inter-

actions are hard to interpret for statistical significance on a large ANOVA/MANOVA

study with varying levels. The purpose of this study to gain an additional under-

standing on top of the 3-way ANOVA/MANOVA conducted previously, especially

exploring e↵ects of additional independent variables on Types of Pillar, Tra�c Ob-

jects and Trials. The basic mathematical model can be expressed in terms of the

parameters of a linear model as:

Yijkmnpt = µ+ ↵i + �j + �k + �m + 'n + �p +

2�wayz }| {
(↵....�)ijkmnp +

3�wayz }| {
(↵....�)ijkmnp

+

4�wayz }| {
(↵....�)ijkmnp +

5�wayz }| {
(↵....�)ijkmnp +(↵���'�)ijkmnp + "ijkmnp

(6.2)

Yijkmnpt: dependent variable

µ: overall mean

↵i : pillar type (i = OLD, NEW)

�j : tra�c objects (j = Pedestrian, Bicycle)

�k : number of trials (k = 1,...,6)

�m : gender (m = Male, Female)

'n : driving experience (n = low, medium, higih)

�p : use of glasses (p = glasses, no glasses)

(↵....�)ijkmnp: two-way interactions

(↵....�)ijkmnp: three-way interactions

(↵....�)ijkmnp: four-way interactions

(↵....�)ijkmnp: five-way interactions

(↵���'�)ijkmnp: six-way interactions

"ijkmnpt : error term
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Equation 6.2 can be expanded with including every 2, 3, 4 and 5 way interactions:

Yijkmnpt : µ+ ↵i + �j + �k + �m + 'n + �p

+

2

6664

(↵i�j) + (↵i�k) + (↵i�m) + (↵i'n) + (↵i�p)

+(�j�k) + (�j�m) + (�j'n) + (�j�p) + (�k�m)

+(�k'n) + (�k�p) + (�m'n) + (�m�p) + ('n�p)

3

7775

+

2

6666666664

(↵i�j�k) + (↵i�j�m) + (↵i�j'n) + (↵i�j�p)

+(↵i�k�m) + (↵i�k'n) + (↵i�k�p) + (↵i�m'n)

+(↵i�m�p) + (↵i'n�p) + (�j�k�m) + (�j�k'n)

+(�j�k�p) + (�j�m'n) + (�j�m�p) + (�j'n�p)

+(�k�m'n) + (�k�m�p) + (�k'n�p) + (�m'n�p)

3

7777777775

+

2

6666664

(↵i�j�k�m) + (↵i�j�k'n) + (↵i�j�k�p) + (↵i�j�m'n)

+(↵i�j�m�p) + (↵i�j'n�p) + (↵i�k�m'n) + (↵i�k�m�p)

+(↵i�k'n�p) + (↵i�m'n�p) + (�j�k�m'n) + (�j�k�m�p)

+(�j�k'n�p) + (�j�m'n�p) + (�k�m'n�p)

3

7777775

+

2

4 (↵i�j�k�m'n) + (↵i�j�k�m�p) + (↵i�j�k'n�p)

+(↵i�j�m'n�)p + (↵i�k�m'n�p) + (�j�k�m'n�p)

3

5

+(↵i�j�k�m'n�p) + "ijkmnp

(6.3)

6.6 Participants

6.6.1 Population estimates

Before starting to any experimental analysis that involves human subjects, the

very first statistical step to be performed is to make estimates about the population
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(i.e., pilot study). The main goal of the pilot study is to estimate the number of

subjects required to gain a statistical power. Pilot study also provides an additional

insight about the total time required for conducting experiment as well as procedures

to accommodate subjects during data collection [147].

There are various methods to estimate sample size. One of the most common ways

is to use a sample size estimation based on the mean and standard deviations from

pilot studies. In this method, one can assume that the collected sample mean di↵ers

from the population mean (µ), where the di↵erence between sample and population

mean can be treated as an error factor. Therefore, through the di↵erences of means,

a sample size with desired margin of error is measured [148,149].

Based on the means and standard deviation retrieved from a pilot study, the

sample size can be calculated to estimate the total number of subjects required for

human data collection. In this study, Equation 6.5 is used for estimating the sample

size with a confidence of 1 � ↵, where the mean value of µ to be within ± E.

E = Z↵/2 ⇥


�p
n

�
(6.4)

n =


Z↵/2 ⇥ �

E

�
2

(6.5)

where,

E: is maximum di↵erence between the pilot and the population mean

Z↵/2: critical value, the positive Z value that is wihtin the area of ↵/2 at

the right tail of the standard normal distribution

�: population standard deviation

n: sample size

6.6.2 Pilot study

A sample size calculation to estimate the population mean was performed through

using Equation 6.5. Data collected from four di↵erent pilot studies (on Fixation Du-
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ration) resulted with average standard deviation of ⇡400 and the maximum allowable

di↵erence (± E) of ⇡150. From pilot study results, one can calculate the ↵/2 value

(0.05 - 0.025 = 0.475), which equals to Z(0.475) = 1.96.

n =


Z↵/2 ⇥ �

E

�
2

=


1.96 ⇥ 400

150

�
2

⇡ 27 (6.6)

Above sample size calculation assumes the normality of the data and suggests

that around ⇡27 subjects would be su�cient to achieve a 95% confidence. However,

the pilot study resulted with a slightly skewed data. Number of replications were

increased to six - to gain a thorough understanding of pillar-obscuration problems

and to reach a desired statistical power. Therefore, each task was replicated six times

(instead of twice) to lessen the biasing e↵ects of violations from normality and to

reduce the potential measurement errors (i.e. random and systematic errors).

6.6.3 Summary of subjects

A total of 48 subjects, 28 male and 20 female, participated in this study. The

overall mean of the standing height was ⇡174cm and mean weight was ⇡70kg. The

mean standing heights and weights were 179cm and 78kg for males, and 167cm and

59kg for females. The average height and weight values are close to the 50th percentile

standing height of North American population - 179cm and 165cm for female and

male subjects respectively (Table 6.4). The range of standing height was between

157cm and 194cm, which covers 35th percentile female (160cm) to 95th percentile

male (194cm) according to CATIA anthropometrics data base [150].

Around 4% of the subjects rated their driving experience as ’High’, which indicates

a person who drives relatively longer distances than a daily driver. Majority of

subjects (65%) identified themselves as daily drivers (Medium). Around 30% of the

subjects rated their driving experience as ’Low’, which refers to a very minimal driving

or not driving at all (Table 6.5). The use of glasses (including contact lenses) was

evenly distributed within the population (Table 6.6).
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Table 6.4
Descriptive statistics - Weight (kg) and Height (cm)

Gender N Minimum Maximum Mean Std. Dev.

Male Height 28 165 194 178.61 6.91

Weight 28 64 106 77.79 11.66

Female Height 20 157 180 166.70 5.15

Weight 20 48 77 59.25 8.45

Total Height 48 157 194 173.65 8.57

Weight 48 48 106 70.06 13.86

Table 6.5
Descriptive statistics - Driving Experience

Frequency Percent

High 2 4.2

Medium 31 64.6

Low 15 31.3

Total 48 100.0

Table 6.6
Descriptive statistics - Use of Glasses

Frequency Percent

No Glasses 24 50.0

Use Glasses 24 50.0

Total 48 100.0

6.7 Data Analysis and Statistical Techniques

In this section an in-depth analysis was provided on eye-tracking data, which

is composed of Fixation Duration, Coordinates-X and Coordinates-Y. Based on the
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hypotheses summarized in Table 8.2, statistical analyses were performed and results

were categorized. First of all, raw data was transformed into a compound data by

Weighted Moving Averages technique discussed in Equation 6.7. Later, descriptive

analysis was performed on independent and dependent variables. Starting by next

section comparison between ’Pillar Models’, ’Tra�c Objects’, ’Driving Experience’,

’Use of Glasses’ and ’Trials’ were tabulated. Normality assumptions were checked.

Logarithmic transformation was applied to data that showed weak normality, so that

data more closely meet normality assumptions. A combination of Analysis of Variance

(ANOVA) and Multivariate Analysis of Variance (MANOVA) studies were conducted

to assess whether or not results are significant. Finally, areas of interest analyses were

performed to interpret statistical and visual di↵erences between Current Pillar and

New Pillar design.

6.7.1 Transformation of raw data to compound data

Weighted moving average

Eye-tracker data provides information related three types dependent variables:

Fixation Duration (in milliseconds), Coordinates-X (pixels) and Coordinates-Y (pix-

els). Fixation Duration represents a time dependent variable, which refers to how

long subject’s pupils get fixated to a specific point (X and Y coordinate). Fixations

are associated with areas of interest, where a subject pays significant attention to a

specific point (X,Y). The duration of fixations are relatively longer than eye-gazing

(random eye-movements without fixation).

It was seen in raw data that each subject had an average of four major fixations per

image presented on simulation display. Weighted Moving Average (MWA) method

was used for creating a compound data set (Equation 6.7), which aggregated four

fixations into a single fixation reading [151, 152]. Within WMA approach, Fixation

Duration was considered as the weighting factor for each X and Y coordinate. Higher
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the Fixation Duration (intensity), more time that subjects spend on associated point

(X and Y coordinates).

WMA =

nP
i=1

Wi ⇥ Vi

nP
i=1

Wi

(6.7)

where,

WMA: Weighted Moving Average

W: weights (Fixation Duration)

V: actual X and Y coordinates associated with each Fixation Duration

n: number of data points

Fixation coordinates and fixation duration

Throughout Experiment-I, moving weighted average technique was used and com-

pound data was formed after applying equation 6.7 to raw data. The bubble graph on

Figure 6.7 demonstrates distribution of X and Y coordinates, and relative size of the

Fixation Duration associated with each point (X,Y). Coordinates-X and Coordinates-

Y (pixel-by-pixel correspondences of eye movements) were superimposed on simula-

tion display. At any specific point, larger the diameter of a bubble, longer the fixation

duration.

6.7.2 Descriptive statistics

A total of 1152 (48 subjects x 2 pillar models x 2 tra�c objects x 6 trials) data

set were collected during Experiment-I. Each data set was was composed of Fixation

Duration, Coordinates-X and Coordinate-Y outputs.

Starting from next page a series of tables provided to summarize compound data.

Table 6.7 represents overall descriptive statistics for Fixation Duration and Fixation

Coordinates (X,Y). Tables from 6.8 to 6.12 summarize distribution of the eye-tracking
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Fixation Duration / Intensity -  (X,Y)

(Coordinates X, Coordinates Y)
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Figure 6.7. Fixation duration and coordinates data superimposed on
simulation display. Area of the bubbles represent the duration of
fixations.

data over independent variables of Gender (Male vs. Female), Pillar Types (Old vs.

New pillar), Tra�c Objects (Bicycle vs. Pedestrian), Use of Glasses (Glasses vs. No

Glasses), and Driving Experience (Low, Medium and High).

Table 6.7
Summary of Fixation Duration and Coordinates (X,Y)

Variables N Min. Max. Mean Std. Dev.

Fixation Duration 1152 10 1988 373.50 194.34

Coordinates X 1152 10 1686 503.67 350.15

Coordinates Y 1152 106 880 602.16 82.88



116

Table 6.8: Descriptive statistics for Subjects

Gender Dependent Var. N Min. Max. Mean Std. Dev.

Male Fix Duration 672 10 1988 381.05 217.43

Coordinates X 672 10 1686 502.17 360.25

Coordinates Y 672 106 880 600.81 88.56

Female Fix Duration 480 104 1969 362.94 156.00

Coordinates X 480 28 1558 505.78 335.85

Coordinates Y 480 341 836 604.05 74.23

Table 6.9: Descriptive statistics for Pillar Types

Pillar Types Dependent Var. N Min. Max. Mean Std. Dev.

Old Pillar Fix Duration 576 89 1969 347.63 157.77

Coordinates X 576 33 1686 663.02 361.23

Coordinates Y 576 252 858 601.89 91.71

New Pillar Fix Duration 576 10 1988 399.38 222.19

Coordinates X 576 10 1659 344.33 253.10

Coordinates Y 576 106 880 602.43 73.06

Table 6.10: Descriptive statistics for Tra�c Objects

Tra�c Objects Dependent Var. N Min. Max. Mean Std. Dev.

Bicycle Fix Duration 576 10 1988 367.38 216.93

Coordinates X 576 10 1659 512.84 347.56

Coordinates Y 576 332 856 612.96 79.56

Pedestrian Fix Duration 576 89 1854 379.63 168.72

Coordinates X 576 16 1686 494.51 352.77

continued on next page
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Table 6.10: continued

Tra�c Objects Dependent Var. N Min. Max. Mean Std. Dev.

Coordinates Y 576 106 880 591.36 84.76

Table 6.11: Descriptive statistics for Use of Glasses

Glasses Dependent Var. N Min. Max. Mean Std. Dev.

No Glasses Fix Duration 576 103 1988 383.45 183.85

Coordinates X 576 58 1686 524.38 337.54

Coordinates Y 576 363 858 608.15 78.13

Use Glasses Fix Duration 576 10 1963 363.56 203.97

Coordinates X 576 10 1650 482.97 361.42

Coordinates Y 576 106 880 596.17 87.02

Table 6.12: Descriptive statistics for Driving Experience

Experience Dependent Var. N Min. Max. Mean Std. Dev.

Low Fix Duration 360 89 1988 390.85 219.03

Coordinates X 360 28 1686 542.01 410.86

Coordinates Y 360 106 858 596.72 92.41

Medium Fix Duration 744 10 1969 364.09 184.09

Coordinates X 744 10 1650 491.54 323.52

Coordinates Y 744 252 880 609.13 77.25

High Fix Duration 48 136 642 389.31 136.88

Coordinates X 48 135 1148 404.23 186.46

Coordinates Y 48 349 699 534.98 54.89
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Table 6.13: Descriptive statistics for Trials

Trials Dependent Var. N Min. Max. Mean Std. Dev.

Trial 1 Fixation Duration 192 10 1892 376.05 224.75

Coordinates X 192 10 1659 527.63 386.30

Coordinates Y 192 318 858 601.74 86.17

Trial 2 Fixation Duration 192 125 1969 378.57 206.79

Coordinates X 192 50 1539 483.16 339.99

Coordinates Y 192 106 858 592.88 93.50

Trial 3 Fixation Duration 192 113 684 357.90 115.71

Coordinates X 192 22 1686 491.51 339.91

Coordinates Y 192 351 880 609.05 80.77

Trial 4 Fixation Duration 192 111 738 354.66 113.68

Coordinates X 192 33 1543 521.77 345.69

Coordinates Y 192 260 787 604.86 77.57

Trial 5 Fixation Duration 192 89 1988 414.83 295.10

Coordinates X 192 16 1643 487.70 342.81

Coordinates Y 192 332 787 605.67 78.18

Trial 6 Fixation Duration 192 90 940 359.02 135.49

Coordinates X 192 46 1558 510.29 345.93

Coordinates Y 192 367 836 598.76 80.01

6.7.3 Intra-class correlation

Background on intra-class correlation

In Experiment-I, test-retest reliability method involved subjects replicating the

identical test conditions in six di↵erent trials. All subjects were required to repeat
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same object detection task in exact conditions for six times. Results between six

trials for each task per subject were compared to assess test-retest reliability.

Literature review shows that Intra-Class Correlation (ICC) is a preferred method

when there are more than two replications (test-retest) to be correlated. ICC defines

the correlation of between-subject variance divided by the total variance [153, 154].

Wu [114] and Tian [113] studied the use of ICC two-way random single rater model

with absolute agreement for testing-retesting reliability of human motion data. Equa-

tion 6.8 was used for ICC(2,1) analysis:

ICC(2, 1) =
BMS

BMS + (k � 1)EMS + k[(TMS � EMS)/n]
(6.8)

where,

BMS: Between-subject mean square

EMS: Error mean square

TMS: Trial mean square

k: number of trials

n: number of objects

Interpretation of the ICC index depends on the nature of the experiment and

the domain of interest. Under di↵erent circumstances, such as application domain

(e.g., applied psychology vs. engineering) and experimental conditions (e.g.,sensitivity

of the data), strong and weak correlations are classified in di↵erent ranges. Most

of the literature shows that magnitudes of relationship are categorized as strong,

moderate and weak. Some studies show that ICC ranging from 0.7 to 1 is considered

as good/high/excellent correlation between classes [155–157], while other studies [158,

159] define the perfect correlation as between 0.8 and 1.0. Substantial correlation was

considered between 0.6 and 0.8, the moderate correlation between 0.4 and 0.6, and

the poor correlation between 0 and 0.4. Due to the similarities of experimental setup

and application domain, Wu’s (2005) [114] and Tian’s (2007) [113] ICC method was

followed to assess the reliability of collected data. The correlation coe�cient range

was defined in the following table:
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Table 6.14
Classification of Intra Class Correlation Index (ICC)

ICC Range Meaning Notes

(0.80, 1.00] Excellent Perfect match

(0.60, 0.80] Good Relative high agreement

(0.40, 0.60] Moderate Though reliability not high, but possible being improved

(0.00, 0.40] Poor No or few correlation

For ’Excellent’ and ’Good’ reliability, two test scores should correlate with each

other very well. This level of correlation is expected for the ideal reliability test. If

ICC index value reaches to score of 1.0, it is called the ’Perfect Match’, which shows

the highest correlation possible. For the ’Moderate’ reliability, it is still possible to

improve the correlation level by changing design variables. ’Poor’ reliability proposes

that reliability is low, which does not provide any useful information to interpret

significant relations about variables. A high correlation (’Good’ or ’Excellent’) level

is expected in this study, where ICC magnitude falls in the range of 0.6<ICC<1.0.

Results on intra-class correlation

One of the objectives of this study is to demonstrate that the correlation mea-

surements between trials (the test-retest reliability of outcomes) should be in high

correlation (’Good’ or ’Excellent’ correlation) range, where Intra Class Correlation

(ICC) index magnitude falls in range of 0.6 <ICC index <1.0. ICC indexes for Fix-

ation Duration, Coordinates-X and Coordinates-Y are listed in the following table:

Comparison of outcomes between six trials resulted in larger than 0.60, which

demonstrate a ’good’ test-retest reliability. ICC results in Table 6.15 shows that

Coordinates-X provide ’excellent’ test-retest reliability. Similarly, Coordinates-Y in-
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Table 6.15
Intra-Class Correlation (ICC) of test-retest reliability of Trials

ICC 95% Confidence Interval F Test

Lower Upper Value df1 df2 Sig.

Fixation Duration .618 .441 .640 2.224 191 955 0.000

Coordinates X .862 .342 .627 7.122 191 955 0.000

Coordinates Y .794 .746 .836 4.869 191 955 0.000

dicates a very-close to ”excellent” ICC score. The lowest agreement among all re-

sponses is Fixation Duration, which resulted in ’good’ reliability.

6.7.4 Multivariable Analysis of Variance

Validity hypothesis in this study focuses on assessing the significance e↵ects and

interactions of independent variables: Gender, Pillar Type, Use of Glasses, Tra�c

Objects, Driving Experience, and Trials. Eye-tracking data collected in Experiment-I

was also compared with user feedback on Experiment-II to check whether outcomes of

Experiment-I (objective measurements - eye-tracker device) overlaps with outcomes

of Experiment-II (subjective measurements - design questionnaire/review).

Background on ANOVA and MANOVA studies

Hypotheses proposed in this study targeted to detect ergonomics di↵erences be-

tween pillar designs. In other words, one should experience a bias generated by the

subjects di↵erent performance in detecting objects between Old Pillar and New Pil-

lar. Ideally, the response generated by subjects should be overlapping even with

the presence of bias. Thus, results on Objective Measurements (Experiment-I) and

Subjective Measurements (Experiment-II) should reflect similar outcomes.
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To measure validity, a standard criterion that can be believed as valid measure-

ment is compared with collected data (e.g., subject feedback). Tra�c Objects pre-

sented in static simulation experiment were known in advance by the experimenter.

Thus, they can be defined as standard data. Collected data (both eye-tracking and

object detection data) were compared with standard data to assess the validity in

this study. Main e↵ects and interaction e↵ects were compared by multiple ANOVA

and MANOVA studies. A quick overview on ANOVA/MANOVA basics are covered

in this section [160–163].

A one-way ANOVA can be represented by a linear model equation:

yij = m+ ai + eij (6.9)

In general, ANOVA table for the same case (one-way) can be constructed as:

Table 6.16
Descriptive Statistics of logarithmic transformed data - Skewness and Kurtosis

Source Sum of Squares DoF Mean Squares Fo

Factors SSF = J
P

(ȳi. � ȳ..)
2 I-1 MSF = SSF

(I�1) MSF = MSF
MSE

Residual SSE =
P P

(yi. � ȳi.)
2 I(J-1) MSE = SSE

I(J�1)

Corr. Total SST =
P P

(yij � ȳ..)
2 IJ-1

MANOVA is the generalized case of ANOVA with multiple dependent variables.

Therefore, there are analogous parts to the ANOVA equation. Often, number of

di↵erent statistical tests are used to check the significance of MANOVA results [164].

In this study, Wilk’s Lamda was used to interpret results. Pillai’s Trace, Hotelling’s

Trace and Roy’s Largest Root analysis were also provided with MANOVA tables.

Underlying assumptions of MANOVA analysis are provided in details from Equation

6.10 to Equation 6.24 [162,165].

First, the total sum-of-squares is split into sum-of-squares between sum-of-squares

(SSbg(y)) and within sum-of-squares (SSwg(y)) groups.
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SSTotal(y) = SSbg(y) + SSwg(y) (6.10)

Above equation can be expressed as:
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(6.11)

One can partition sum-of-squares between (SSbg(y)) two Independent Variables.

Lets assume SSD and SST represent sum-of-squares of variables D and T. Accordingly,

SSDT represent the interaction term.

SSbg = SSD + SST + SSDT (6.12)

Then equation can be expressed as:
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Then the full-factorial design looks like this:
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(6.14)

Because there are multiple dependent variables in MANOVA, a column matrix

could be used for each dependent variable. Then, vector matrix for two dependent

variables (a and b) with n samples is:

Yi···n =

2

4 a
1

b
1

3

5

2

4 a
2

b
2

3

5

2

4 a
3

b
3

3

5 · · ·

2

4 an

bn

3

5 (6.15)
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Similarly, there are column matrices associated with each Independent Variable.

For ’n’ many dependent variable and ’m’ levels of independent variables, the column

matrices like:

DTi···k,j···m =

2

6666664

X̄
1

X̄
2

...

X̄n

3

7777775
(6.16)

D
1
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1
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2

...

X̄n

3

7777775
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2
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X̄n

3

7777775
· · ·Dm =

2

6666664
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1

X̄
2

...

X̄n

3

7777775
(6.17)

In addition, a single matrix of grand means are calculated for each dependent

variable averaged across all individuals in matrix.

GM =

2

6666664

X
1

X
2

...

Xn

3

7777775
(6.18)

Di↵erences are found by subtracting matrices. The error term is calculated by

subtracting the grand mean matrix from each of dependent variable score. Then,

each column matrix is multiplied by its transpose.

Finally, sum-of-total-squares can be expressed by partitioning sum-of-squares for

independent variables, interactions and within-group error. A study with two inde-

pendent variables and two dependent variables can be expressed as:

Step1 ! (Yikm � GM)

Step2 ! (Yikm � GM)(Yikm � GM)0
(6.19)
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One can see that final results yield four di↵erent S matrices for a study with two

dependent and two independent variables. Determinant of each matrix represents

generalized variance of the associated terms (Equation 5.12).

SSTotal = SS
IndependentVariables

+ SS
Interaction

+ SS
Within�GroupError

(6.21)

One of the most popular methods of analyzing significance of MANOVA results

is Wilk’s Lambda test. Using the determinants of each matrix (5.12), we can assess

the significance of MANOVA results through ratios of determinants used for Wilk’s

Labmda (�) calculation.

� =
|Serror|

|Seffect + Serror|
(6.22)

An estimate for F for Wilk’s Lambda test can be calculated from below equation:

F (df
1
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2
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1

◆
(6.23)

where,

y = �1/s
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Normality assumption

One of the prerequisites of any parametric study is to check normality of the

data. In this section, Skewness and Kurtosis investigations were performed on eye-

tracker data to assess normality assumptions. One can see at Table 6.17 that Fixation

Duration and Coordinates-X data resulted in a highly positive skewness. In contrast,

Coordinates-Y data resulted with a slight negative skewness (-0.33) and moderate

kurtosis (2.14).

Table 6.17
Descriptive statistics of raw data - Skewness and Kurtosis

Fixation Duration Coordinates X Coordinates Y

N 1152 1152 1152

Mean 373.50 503.67 602.16

Median 344.00 390.00 600.00

Std. Deviation 194.34 350.15 82.88

Skewness 4.29 .97 -.33

Std. Error of Skewness .07 .07 .07

Kurtosis 29.12 .25 2.14

Std. Error of Kurtosis .14 .14 .14

Some may argue that these values are relatively acceptable to satisfy normality as-

sumptions [166], however, on a di↵erent normality evaluation approach, Kolmogorov-

Smirnov and Shapiro-Wilk tests showed that all dependent variables violated normal-

ity assumptions. Each test had ’p’ value smaller than zero, which indicated that the

data is not normally distributed (Table 6.18).

Since Fixation Duration, Coordinates-X and Coordinates-Y violated normality

assumption, each data set was normalized by applying logarithmic transformation.

There are two major assumptions for logarithmic transformation; 1) positive skewness
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and 2) Non-negative values. Each dependent variable satisfied these assumptions.

Table 6.13 shows variables with smaller skewness after logarithmic transformation

was performed. A similar observation can be gathered from the ’Logarithmic Trans-

formed’ column on Figure 6.3, which also illustrates a close association to normality

assumption with improved skewness and kurtosis.

Table 6.18
Kolmogorov-Smirnov and Shapiro-Wilk normality tests

Kolmogorov-Smirnov Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

Fix Duration .16 1152 .000 .68 1152 .000

Coordinates X .13 1152 .000 .91 1152 .000

Coordinates Y .04 1152 .000 .98 1152 .000

Table 6.19
Descriptive Statistics of logarithmic transformed data - Skewness and Kurtosis

Fixation Duration Coordinates X Coorrdinates Y

N 1152 1152 1152

Mean 2.53 2.59 602.16

Median 2.54 2.59 600.00

Std. Deviation .18 .33 82.88

Skewness -.15 -.47 -.33

Std. Error of Skewness .07 .072 .07

Kurtosis 6.55 .30 2.14

Std. Error of Kurtosis .14 .14 .14
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Figure 6.8. Histogram plots show di↵erences in skewness and kurtosis
associated with Raw Data and Logarithmic Transformed data. One
can see that Logarithmic Transformed plots appear to meet normal
distribution better than Raw Data plots.
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Figure 6.9. Quantile-Quantile plot shows distribution of Raw and
Logarithmic Transformed data. One can see that Logarithmic Trans-
formed data has better linear fit compared to Raw Data.
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6.7.5 Three-way ANOVA/MANOVA - main e↵ects and interaction

Even though logarithmic transformation performed previously smoothed out some

of the outliers and scattered points in raw data, the normalization process caused a

slight loss of fidelity. A blend of Analysis of Variance (ANOVA) and Multivariate

Analysis of Variance (MANOVA) were conducted on three independent variables

(Type of Pillars, Tra�c Objects and Trials) and three dependent variables (Fixa-

tion Duration, Coordinates-X and Coordinates-Y). Each analysis covered raw and

compound (logarithmic transformed) data in combinations to explore whether or not

independent variables are significantly a↵ect experimental results. In addition, inter-

action e↵ects were also explored. A total of twelve analysis of variance studies (six

ANOVAs and six MANOVAs) were conducted.

Prior to conducting MANOVA investigations, a series of Pearson correlation anal-

ysis were performed between all dependent variables to check whether dependent

variables correlated to each other in small or moderate range [167]. Although cor-

relation values were small in some cases, a meaningful pattern of correlations were

observed for most of the dependent values, suggesting appropriateness of a MANOVA

(Table 6.20).

Table 6.20
Pearson correlations of raw and logarithmic transformed dependent variables

Dependent Variables Fixation Duration Coordinates-X Coordinates-Y

(Raw/Log) (Raw/Log) (Raw/Log)

Fixation Dur. (Raw/Log) 1 / 1 -.119 / -.126 .020 / .008

Coordinates-X (Raw/Log) -.119 / -.0.126 1 / 1 -.209 / -.165

Coordinates-Y (Raw/Log) .020 / .008 .-209 / -.165 1 / 1
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Analysis of variance - I (ANOVA-I)

ANOVA-I study sought to determine whether Fixation Duration di↵ered across

the factors of: Pillar Models, Tra�c Objects, and Trials. A 2 x 2 x 6 (24) mixed

design ANOVA was performed on multi-levels. Pillar Models are within two levels

(New and Old), Tra�c Objects are within two (Bicycle and Pedestrian) and Trials

are within six levels (T1 to T6).

Table 6.21: Three-way ANOVA-I results on Fixation Du-

ration

Source
Sum of

Squares
df

Mean

Square
F Sig.

Corrected Model 1930775.041a 23 83946.741 2.280 .001

Intercept 160710327.022 1 160710327.022 4363.952 .000

Pillar Types 771023.272 1 771023.272 20.936 .000

Tra�c Objects 43230.251 1 43230.251 1.174 .279

Trials 489345.265 5 97869.053 2.658 .021

Pillar Types *

Tra�c Objects
51133.355 1 51133.355 1.388 .239

Pillar Types * Trials 137348.661 5 27469.732 .746 .589

Tra�c Objects * Trials 157031.098 5 31406.220 .853 .512

Pillar Types *

Tra�c Objects * Trials
281663.140 5 56332.628 1.530 .178

Error 41540616.938 1128 36826.788

Total 204181719.000 1152

Corrected Total 43471391.978 1151

a R Squared = .044 (Adjusted R Squared = .025)
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The ANOVA-I analysis revealed that there is a significant main e↵ect of Pillar

Types (F = 20.396, p <.000) and Trials (F = 2.658, p = .021) on Fixation Duration.

Tra�c Objects (F = 1.174, p = .279) has no significant e↵ect on Fixation Duration,

suggesting that Pillar Types and Trials e↵ect the eye-fixation intensity during the

simulation. There is no significant interaction found between independent variables.

Analysis of variance - II (ANOVA-II)

ANOVA-II study sought to determine whether Coordinates-X di↵ered across the

factors of: Pillar Models, Tra�c Objects, and Trials. A 2 x 2 x 6 (24) mixed design

ANOVA was performed on multi-levels. Pillar Models are within two levels (New and

Old), Tra�c Objects are within two (Bicycle and Pedestrian) and Trials are within

six levels (T1 to T6).

Table 6.22: Three-way ANOVA-II results on

Coordinates-X

Source
Sum of

Squares
df

Mean

Square
F Sig.

Corrected Model 30523655.492a 23 1327115.456 13.536 .000

Intercept 292248554.070 1 292248554.070 2980.765 .000

Pillar Types 29251369.584 1 29251369.584 298.347 .000

Tra�c Objects 96671.709 1 96671.709 .986 .321

Trials 339650.018 5 67930.004 .693 .629

Pillar Types *

Tra�c Objects
13495.876 1 13495.876 .138 .711

Pillar Types * Trials 297302.734 5 59460.547 .606 .695

Tra�c Objects * Trials 175259.879 5 35051.976 .358 .878

Pillar Types *

Tra�c Objects * Trials
349905.692 5 69981.138 .714 .613

continued on next page



133

Table 6.22: continued

Source
Sum of

Squares
df

Mean

Square
F Sig.

Error 110594533.437 1128 98044.799

Total 433366743.000 1152

Corrected Total 141118188.930 1151

a R Squared = .216 (Adjusted R Squared = .200)

The ANOVA-II analysis revealed that there is a significant main e↵ect of Pillar

Types (F = 298.347, p <.000) on Coordinates-X. Tra�c Objects (F = .986, p = .321)

and Trials (F = .693, p = .629) has no significant e↵ect on Coordinates-X, suggesting

that only Pillar Types e↵ect the pixel correspondence of eye movements on X axis.

No significant interaction was found between independent variables.

Analysis of variance - III (ANOVA-III)

ANOVA-III study sought to determine whether Coordinates-Y di↵ered across the

factors of: Pillar Models, Tra�c Objects, and Trials. A 2 x 2 x 6 (24) mixed design

ANOVA was performed on multi-levels. Pillar Models are within two levels (New and

Old), Tra�c Objects are within two (Bicycle and Pedestrian) and Trials are within

six levels (T1 to T6).

Table 6.23: Three-way ANOVA-II results on

Coordinates-Y

Source
Sum of

Squares
df

Mean

Square
F Sig.

Corrected Model 359169.770a 23 15616.077 2.334 .000

Intercept 417712177.709 1 417712177.709 62436.079 .000

continued on next page
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Table 6.23: continued

Source
Sum of

Squares
df

Mean

Square
F Sig.

Pillar Types 83.959 1 83.959 .013 .911

Tra�c Objects 134269.938 1 134269.938 20.070 .000

Trials 31671.671 5 6334.334 .947 .450

Pillar Types *

Tra�c Objects
130454.063 1 130454.063 19.499 .000

Pillar Types * Trials 22117.525 5 4423.505 .661 .653

Tra�c Objects * Trials 20999.671 5 4199.934 .628 .679

Pillar Types *

Tra�c Objects * Trials
19572.942 5 3914.588 .585 .711

Error 7546587.521 1128 6690.237

Total 425617935.000 1152

Corrected Total 7905757.291 1151

a R Squared = .45 (Adjusted R Squared = .26)

The ANOVA-III analysis revealed that there is a significant main e↵ect of Tra�c

Objects (F = 20.070, p <.000) on Coordinates-Y. Pillar Types (F = .013, p = .911)

and Trials (F = .947, p = .450) found to generate no significant e↵ect on Coordinates-

Y. A two-way interaction e↵ect between Pillar Types * Tra�c Objects was found on

Coordinates-Y outcomes.

Analysis of variance - IV (ANOVA-IV)

ANOVA-IV study sought to determine whether log-transformed Fixation Duration

di↵ered across the factors of: Pillar Models, Tra�c Objects, and Trials. A 2 x 2 x 6

(24) mixed design ANOVA was performed on multi-levels. Pillar Models are within
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two levels (New and Old), Tra�c Objects are within two (Bicycle and Pedestrian)

and Trials are within six levels (T1 to T6).

Table 6.24: Three-way ANOVA-IV results on Log-

Transformed Fixation Duration

Source
Sum of

Squares
df

Mean

Square
F Sig.

Corrected Model 1.710a 23 .074 2.386 .000

Intercept 7394.396 1 7394.396 237288.457 .000

Pillar Types .461 1 .461 14.805 .000

Tra�c Objects .310 1 .310 9.933 .002

Trials .244 5 .049 1.567 .166

Pillar Types *

Tra�c Objects
.222 1 .222 7.130 .008

Pillar Types * Trials .157 5 .031 1.005 .413

Tra�c Objects * Trials .186 5 .037 1.192 .311

Pillar Types *

Tra�c Objects * Trials
.131 5 .026 .838 .522

Error 35.151 1128 .031

Total 7431.257 1152

Corrected Total 36.861 1151

a R Squared = .046 (Adjusted R Squared = .027)

The ANOVA-IV analysis revealed that there is a significant main e↵ect of Pillar

Types (F = 14.805, p <.000) and Tra�c Objects (F = 9.933, p = .002) on log-

transformed Fixation Duration. Trials (F = 1.567, p = .166) has no significant

e↵ect on log-transformed Fixation Duration, suggesting that Pillar Types and Tra�c

Objects e↵ect the eye-fixation intensity during the simulation. A two-way interaction



136

e↵ect between Pillar Types * Tra�c Objects was found on log-transformed fixation

outcomes.

Analysis of variance - V (ANOVA-V)

ANOVA-V study sought to determine whether log-transformed Coordinates-X

data di↵ered across the factors of: Pillar Models, Tra�c Objects, and Trials. A 2

x 2 x 6 (24) mixed design ANOVA was performed on multi-levels. Pillar Models

are within two levels (New and Old), Tra�c Objects are within two (Bicycle and

Pedestrian) and Trials are within six levels (T1 to T6).

Table 6.25: Three-way ANOVA-V results on Log-

Transformed Coordinates-X

Source
Sum of

Squares
df

Mean

Square
F Sig.

Corrected Model 27.178a 23 1.182 13.147 .000

Intercept 7717.701 1 7717.701 85867.011 .000

Pillar Types 26.041 1 26.041 289.734 .000

Tra�c Objects .170 1 .170 1.889 .170

Trials .296 5 .059 .660 .654

Pillar Types * Tra�c Objects .034 1 .034 .376 .540

Pillar Types * Trials .142 5 .028 .316 .904

Tra�c Objects * Trials .074 5 .015 .164 .976

Pillar Types *

Tra�c Objects * Trials
.421 5 .084 .937 .456

Error 101.384 1128 .090

Total 7846.264 1152

Corrected Total 128.562 1151

continued on next page
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Table 6.25: continued

Source
Sum of

Squares
df

Mean

Square
F Sig.

a R Squared = .211 (Adjusted R Squared = .195)

The ANOVA-V analysis revealed that there is a significant main e↵ect of Pillar

Types (F = 289.734, p <.000) on log-transformed Coordinates-X. Tra�c Objects (F

= 1.889, p = .170) and Trials (F = .660, p = .654) have no significant e↵ect on

log-transformed Coordinates-X, suggesting that only Pillar Types e↵ect pixel corre-

spondence of eye movements on X axis. A two-way interaction e↵ect between Pillar

Types * Tra�c Objects was found on log-transformed Coordinates-X outcomes.

Analysis of variance - VI (ANOVA-VI)

ANOVA-VI study sought to determine whether log-transformed Coordinates-Y

data di↵ered across the factors of: Pillar Models, Tra�c Objects, and Trials. A 2

x 2 x 6 (24) mixed design ANOVA was performed on multi-levels. Pillar Models

are within two levels (New and Old), Tra�c Objects are within two (Bicycle and

Pedestrian) and Trials are within six levels (T1 to T6).

Table 6.26: Three-way ANOVA-VI results on Log-

Transformed Coordinates-Y

Source
Sum of

Squares
df

Mean

Square
F Sig.

Corrected Model .210a 23 .009 2.155 .001

Intercept 8872.016 1 8872.016 2098020.359 .000

Pillar Types .002 1 .002 .365 .546

Tra�c Objects .081 1 .081 19.198 .000

continued on next page
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Table 6.26: continued

Source
Sum of

Squares
df

Mean

Square
F Sig.

Trials .026 5 .005 1.246 .285

Pillar Types * Tra�c Objects .065 1 .065 15.324 .000

Pillar Types * Trials .012 5 .002 .550 .738

Tra�c Objects * Trials .016 5 .003 .778 .565

Pillar Types *

Tra�c Objects * Trials
.008 5 .002 .361 .875

Error 4.770 1128 .004

Total 8876.996 1152

Corrected Total 4.980 1151

a R Squared = .042 (Adjusted R Squared = .023)

The ANOVA-VI analysis revealed that there is a significant main e↵ect of Tra�c

Objects (F = 19.198, p <.546) on log-transformed Coordinates-Y. Pillar Types (F

= .365, p = .546) and Trials (F = 1.246, p = .285) have no significant e↵ect on

log-transformed Coordinates-Y, suggesting that only Tra�c Objects e↵ect pixel cor-

respondence of eye movements on Y axis. A two-way interaction e↵ect between Pillar

Types * Tra�c Objects was found on log-transformed Coordinates-Y outcomes.

Multivariable analysis of variance - I (MANOVA-I)

MANOVA-I analysis was performed to identify whether each independent variable

has significant e↵ect on three dependent variables accordingly; Fixation Duration,

Coordinates-X and Coordinates-Y. A 2 x 2 x 6 (24) mixed design MANOVA analysis

was conducted. Pillar Type is the within subjects variable with two levels (Old and

New), Tra�c Objects within two levels (Bicycle and Pedestrian) and Trials are with

six levels (T1 to T6).
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Table 6.27: Multivariable Analysis of Variance on Fixa-

tion Duration, Coordinates X and Coordinates Y

E↵ect Test Value F Sig.

Intercept Pillai’s Trace .986 27021.910b .000

Wilks’ Lambda .014 27021.910b .000

Hotelling’s Trace 71.994 27021.910b .000

Roy’s Largest Root 71.994 27021.910b .000

Pillar Types Pillai’s Trace .226 109.565b .000

Wilks’ Lambda .774 109.565b .000

Hotelling’s Trace .292 109.565b .000

Roy’s Largest Root .292 109.565b .000

Tra�c Objects Pillai’s Trace .023 8.651b .000

Wilks’ Lambda .977 8.651b .000

Hotelling’s Trace .023 8.651b .000

Roy’s Largest Root .023 8.651b .000

Trials Pillai’s Trace .019 1.462 .110

Wilks’ Lambda .981 1.462 .110

Hotelling’s Trace .019 1.462 .110

Roy’s Largest Root .012 2.793c .016

Pillar Types *

Tra�c Objects
Pillai’s Trace .020 7.756b .000

Wilks’ Lambda .980 7.756b .000

Hotelling’s Trace .021 7.756b .000

Roy’s Largest Root .021 7.756b .000

Pillar Types * Trials Pillai’s Trace .010 .765 .718

Wilks’ Lambda .990 .765 .718

Hotelling’s Trace .010 .764 .719

continued on next page
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Table 6.27: continued

E↵ect Test Value F Sig.

Roy’s Largest Root .006 1.325c .251

Tra�c Objects * Trials Pillai’s Trace .008 .639 .845

Wilks’ Lambda .992 .638 .845

Hotelling’s Trace .009 .638 .845

Roy’s Largest Root .006 1.427c .212

Pillar Types *

Tra�c Objects * Trials
Pillai’s Trace .014 1.028 .422

Wilks’ Lambda .986 1.027 .423

Hotelling’s Trace .014 1.026 .424

Roy’s Largest Root .008 1.799c .110

MANOVA-I results showed that Pillar Types (F = 109.565, p <.000) and Traf-

fic Objects (F = 8.651, p <.000) do have significant e↵ect on Fixation Duration,

Coordinates-X and Coordinates-Y. Trials (F = 1.462, p = .110) has no e↵ect on col-

lected data, which suggests that Pillar Types and Tra�c Objects e↵ect the pixel corre-

spondence of eye movements on Fixation Duration, Coordinates-X and Coordinates-

Y during the simulation. A two-way interaction was found between Pillar Types *

Tra�c Objects (F = 7.756, p <.000).

Multivariable analysis of variance - II (MANOVA-II)

MANOVA-II analysis was performed to identify whether each independent vari-

able has significant e↵ect on three dependent variables accordingly; logarithmic trans-

formed Fixation Duration, Coordinates-X and Coordinates-Y. A 2 x 2 x 6 (24) mixed

design MANOVA analysis was conducted. Pillar Type is the within subjects vari-

able with two levels (Old and New), Tra�c Objects within two levels (Bicycle and

Pedestrian) and Trials are with six levels (T1 to T6).
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Table 6.28: Multivariable Analysis of Variance on log-

arithmic transformed Fixation Duration, Coordinates-X

and Coordinates-Y

E↵ect Test Value F Sig.

Intercept Pillai’s Trace .996 104292.423b .000

Wilks’ Lambda .004 104292.423b .000

Hotelling’s Trace 277.866 104292.423b .000

Roy’s Largest Root 277.866 104292.423b .000

Pillar Types Pillai’s Trace .223 107.718b .000

Wilks’ Lambda .777 107.718b .000

Hotelling’s Trace .287 107.718b .000

Roy’s Largest Root .287 107.718b .000

Tra�c Objects Pillai’s Trace .030 11.668b .000

Wilks’ Lambda .970 11.668b .000

Hotelling’s Trace .031 11.668b .000

Roy’s Largest Root .031 11.668b .000

Trials Pillai’s Trace .014 1.085 .364

Wilks’ Lambda .986 1.085 .365

Hotelling’s Trace .014 1.084 .365

Roy’s Largest Root .009 1.987c .078

Pillar Types *

Tra�c Objects
Pillai’s Trace .025 9.797b .000

Wilks’ Lambda .975 9.797b .000

Hotelling’s Trace .026 9.797b .000

Roy’s Largest Root .026 9.797b .000

Pillar Types * Trials Pillai’s Trace .011 .845 .627

Wilks’ Lambda .989 .844 .628

continued on next page
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Table 6.28: continued

E↵ect Test Value F Sig.

Hotelling’s Trace .011 .844 .629

Roy’s Largest Root .006 1.255c .281

Tra�c Objects * Trials Pillai’s Trace .010 .759 .725

Wilks’ Lambda .990 .759 .725

Hotelling’s Trace .010 .759 .725

Roy’s Largest Root .008 1.722c .127

Pillar Types *

Tra�c Objects * Trials
Pillai’s Trace .010 .789 .691

Wilks’ Lambda .990 .788 .692

Hotelling’s Trace .011 .788 .693

Roy’s Largest Root .006 1.318c .254

MANOVA-II results showed that Pillar Types (F = 107.781, p <.000) and Tra�c

Objects (F = 11.668, p <.000) do have significant e↵ect on logarithmic transformed

Fixation Duration, Coordinates-X and Coordinates-Y. Trials (F = 1.085, p = .364)

has no e↵ect on collected data, suggesting that Pillar Types and Tra�c Objects

e↵ect the pixel correspondence of eye movements on logarithmic transformed Fixa-

tion Duration, Coordinates-X and Coordinates-Y during the simulation. A two-way

interaction was found between Pillar Types * Tra�c Objects (F = 9.797, p <.000).

Multivariable analysis of variance - III (MANOVA-III)

MANOVA-III analysis was performed to identify whether each independent vari-

able has significant e↵ect on three dependent variables accordingly; logarithmic trans-

formed Fixation Duration, logarithmic transformed Coordinates-X and Coordinates-

Y. A 2 x 2 x 6 (24) mixed design MANOVA analysis was conducted. Pillar Type is
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the within subjects variable with two levels (Old and New), Tra�c Objects within

two levels (Bicycle and Pedestrian) and Trials are with six levels (T1 to T6).

Table 6.29: Multivariable Analysis of Variance on log-

arithmic transformed Fixation Duration, logarithmic

transformed Coordinates-X and Coordinates-Y

E↵ect Test Value F Sig.

Intercept Pillai’s Trace .997 146768.323b .000

Wilks’ Lambda .003 146768.323b .000

Hotelling’s Trace 391.035 146768.323b .000

Roy’s Largest Root 391.035 146768.323b .000

Pillar Types Pillai’s Trace .215 103.020b .000

Wilks’ Lambda .785 103.020b .000

Hotelling’s Trace .274 103.020b .000

Roy’s Largest Root .274 103.020b .000

Tra�c Objects Pillai’s Trace .031 11.956b .000

Wilks’ Lambda .969 11.956b .000

Hotelling’s Trace .032 11.956b .000

Roy’s Largest Root .032 11.956b .000

Trials Pillai’s Trace .014 1.038 .411

Wilks’ Lambda .986 1.038 .412

Hotelling’s Trace .014 1.038 .412

Roy’s Largest Root .009 1.977c .079

Pillar Types * Tra�c Objects Pillai’s Trace .026 9.865b .000

Wilks’ Lambda .974 9.865b .000

Hotelling’s Trace .026 9.865b .000

Roy’s Largest Root .026 9.865b .000

Pillar Types * Trials Pillai’s Trace .009 .712 .775

continued on next page
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Table 6.29: continued

E↵ect Test Value F Sig.

Wilks’ Lambda .991 .711 .776

Hotelling’s Trace .009 .710 .776

Roy’s Largest Root .005 1.100c .359

Tra�c Objects * Trials Pillai’s Trace .009 .684 .803

Wilks’ Lambda .991 .684 .803

Hotelling’s Trace .009 .684 .803

Roy’s Largest Root .007 1.657c .142

Pillar Types *

Tra�c Objects * Trials
Pillai’s Trace .011 .833 .642

Wilks’ Lambda .989 .832 .643

Hotelling’s Trace .011 .831 .644

Roy’s Largest Root .006 1.273c .273

MANOVA-III results showed that Pillar Types (F = 103.020, p <.000) and Tra�c

Objects (F = 11.956, p <.000) do have significant e↵ect on logarithmic transformed

Fixation Duration, logarithmic transformed Coordinates-X and Coordinates-Y. Tri-

als (F = 1.038, p = .412) has no e↵ect on collected data, suggesting that Pillar

Types and Tra�c Objects e↵ect the pixel correspondence of eye movements on loga-

rithmic transformed Fixation Duration, logarithmic transformed Coordinates-X and

Coordinates-Y during the simulation. A two-way interaction was found between Pillar

Types * Tra�c Objects (F = 9.865, p <.000).

Multivariable analysis of variance - IV (MANOVA-IV)

MANOVA-IV analysis was performed to identify whether each independent vari-

able has significant e↵ect on three dependent variables accordingly; logarithmic trans-

formed Fixation Duration, Coordinates-X and logarithmic transformed Coordinates-
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Y. A 2 x 2 x 6 (24) mixed design MANOVA analysis was conducted. Pillar Type is

the within subjects variable with two levels (Old and New), Tra�c Objects within

two levels (Bicycle and Pedestrian) and Trials are with six levels (T1 to T6).

Table 6.30: Multivariable Analysis of Variance on log-

arithmic transformed Fixation Duration, Coordinates-X

and logarithmic transformed Coordinates-Y

E↵ect Test Value F Sig.

Intercept Pillai’s Trace 1.000 826851.860b .000

Wilks’ Lambda .000 826851.860b .000

Hotelling’s Trace 2202.980 826851.860b .000

Roy’s Largest Root 2202.980 826851.860b .000

Pillar Types Pillai’s Trace .219 105.511b .000

Wilks’ Lambda .781 105.511b .000

Hotelling’s Trace .281 105.511b .000

Roy’s Largest Root .281 105.511b .000

Tra�c Objects Pillai’s Trace .029 11.094b .000

Wilks’ Lambda .971 11.094b .000

Hotelling’s Trace .030 11.094b .000

Roy’s Largest Root .030 11.094b .000

Trials Pillai’s Trace .016 1.195 .267

Wilks’ Lambda .984 1.195 .267

Hotelling’s Trace .016 1.194 .268

Roy’s Largest Root .009 2.044c .070

Pillar Types *

Tra�c Objects
Pillai’s Trace .021 8.101b .000

Wilks’ Lambda .979 8.101b .000

Hotelling’s Trace .022 8.101b .000

continued on next page
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Table 6.30: continued

E↵ect Test Value F Sig.

Roy’s Largest Root .022 8.101b .000

Pillar Types * Trials Pillai’s Trace .010 .785 .696

Wilks’ Lambda .990 .784 .697

Hotelling’s Trace .010 .783 .698

Roy’s Largest Root .005 1.079c .370

Tra�c Objects * Trials Pillai’s Trace .011 .816 .660

Wilks’ Lambda .989 .816 .661

Hotelling’s Trace .011 .816 .661

Roy’s Largest Root .007 1.619c .152

Pillar Types *

Tra�c Objects * Trials
Pillai’s Trace .009 .693 .794

Wilks’ Lambda .991 .692 .795

Hotelling’s Trace .009 .692 .795

Roy’s Largest Root .005 1.070c .375

MANOVA-IV results showed that Pillar Types (F = 105.511, p <.000) and Tra�c

Objects (F = 11.094, p <.000) do have significant e↵ect on logarithmic transformed

Fixation Duration, Coordinates-X and logarithmic transformed Coordinates-Y. Tri-

als (F = 1.195, p = .267) has no e↵ect on collected data, suggesting that Pillar

Types and Tra�c Objects e↵ect the pixel correspondence of eye movements on loga-

rithmic transformed Fixation Duration, Coordinates-X and logarithmic transformed

Coordinates-Y during the simulation. A two-way interaction was found between Pillar

Types * Tra�c Objects (F = 8.101, p <.000).
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Multivariable analysis of variance - V (MANOVA-V)

MANOVA-V analysis was performed to identify whether each independent vari-

able has significant e↵ect on three dependent variables accordingly; Fixation Dura-

tion, logarithmic transformed Coordinates-X and logarithmic transformed Coordinates-

Y. A 2 x 2 x 6 (24) mixed design MANOVA analysis was conducted. Pillar Type is

the within subjects variable with two levels (Old and New), Tra�c Objects within

two levels (Bicycle and Pedestrian) and Trials are with six levels (T1 to T6).

Table 6.31: Multivariable Analysis of Variance on Fix-

ation Duration, logarithmic transformed Coordinates-X

and logarithmic transformed Coordinates-Y

E↵ect Test Value F Sig.

Intercept Pillai’s Trace 1.000 813920.826b .000

Wilks’ Lambda .000 813920.826b .000

Hotelling’s Trace 2168.528 813920.826b .000

Roy’s Largest Root 2168.528 813920.826b .000

Pillar Types Pillai’s Trace .213 101.460b .000

Wilks’ Lambda .787 101.460b .000

Hotelling’s Trace .270 101.460b .000

Roy’s Largest Root .270 101.460b .000

Tra�c Objects Pillai’s Trace .022 8.320b .000

Wilks’ Lambda .978 8.320b .000

Hotelling’s Trace .022 8.320b .000

Roy’s Largest Root .022 8.320b .000

Trials Pillai’s Trace .020 1.494 .098

Wilks’ Lambda .980 1.494 .098

Hotelling’s Trace .020 1.494 .098

continued on next page
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Table 6.31: continued

E↵ect Test Value F Sig.

Roy’s Largest Root .013 2.854c .014

Pillar Types *

Tra�c Objects
Pillai’s Trace .016 6.104b .000

Wilks’ Lambda .984 6.104b .000

Hotelling’s Trace .016 6.104b .000

Roy’s Largest Root .016 6.104b .000

Pillar Types * Trials Pillai’s Trace .008 .576 .896

Wilks’ Lambda .992 .575 .896

Hotelling’s Trace .008 .575 .896

Roy’s Largest Root .005 1.099c .359

Tra�c Objects * Trials Pillai’s Trace .008 .601 .877

Wilks’ Lambda .992 .600 .877

Hotelling’s Trace .008 .600 .877

Roy’s Largest Root .006 1.325c .251

Pillar Types *

Tra�c Objects * Trials
Pillai’s Trace .013 .994 .458

Wilks’ Lambda .987 .993 .459

Hotelling’s Trace .013 .992 .460

Roy’s Largest Root .008 1.737c .123

MANOVA-V results showed that Pillar Types (F = 101.460, p <.000) and Traf-

fic Objects (F = 8.320, p <.000) do have significant e↵ect on Fixation Duration,

logarithmic transformed Coordinates-X and logarithmic transformed Coordinates-Y.

Trials (F = 1.494, p = .098) has no e↵ect on collected data, suggesting that Pillar

Types and Tra�c Objects e↵ect the pixel correspondence of eye movements on Fixa-

tion Duration, logarithmic transformed Coordinates-X and logarithmic transformed
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Coordinates-Y during the simulation. A two-way interaction was found between Pillar

Types * Tra�c Objects (F = 6.104, p <.000).

Multivariable analysis of variance - VI (MANOVA-V)

MANOVA-VI analysis was performed to identify whether each independent vari-

able has significant e↵ect on three dependent variables accordingly; logarithmic trans-

formed Fixation Duration, logarithmic transformed Coordinates-X and logarithmic

transformed Coordinates-Y. A 2 x 2 x 6 (24) mixed design MANOVA analysis was

conducted. Pillar Type is the within subjects variable with two levels (Old and New),

Tra�c Objects within two levels (Bicycle and Pedestrian) and Trials are with six levels

(T1 to T6).

Table 6.32: Multivariable analysis of variance on log-

arithmic transformed Fixation Duration, logarithmic

transformed Coordinates-X and logarithmic transformed

Coordinates-Y

E↵ect Test Value F Sig.

Intercept Pillai’s Trace 1.000 888289.180b .000

Wilks’ Lambda .000 888289.180b .000

Hotelling’s Trace 2366.667 888289.180b .000

Roy’s Largest Root 2366.667 888289.180b .000

Pillar Types Pillai’s Trace .212 100.966b .000

Wilks’ Lambda .788 100.966b .000

Hotelling’s Trace .269 100.966b .000

Roy’s Largest Root .269 100.966b .000

Tra�c Objects Pillai’s Trace .029 11.319b .000

Wilks’ Lambda .971 11.319b .000

Hotelling’s Trace .030 11.319b .000

continued on next page
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Table 6.32: continued

E↵ect Test Value F Sig.

Roy’s Largest Root .030 11.319b .000

Trials Pillai’s Trace .015 1.144 .310

Wilks’ Lambda .985 1.144 .310

Hotelling’s Trace .015 1.143 .311

Roy’s Largest Root .009 1.994c .077

Pillar Types *

Tra�c Objects
Pillai’s Trace .021 8.148b .000

Wilks’ Lambda .979 8.148b .000

Hotelling’s Trace .022 8.148b .000

Roy’s Largest Root .022 8.148b .000

Pillar Types * Trials Pillai’s Trace .009 .659 .827

Wilks’ Lambda .991 .658 .827

Hotelling’s Trace .009 .658 .828

Roy’s Largest Root .005 1.103c .357

Tra�c Objects * Trials Pillai’s Trace .010 .724 .762

Wilks’ Lambda .990 .724 .762

Hotelling’s Trace .010 .724 .762

Roy’s Largest Root .007 1.557c .169

Pillar Types *

Tra�c Objects * Trials
Pillai’s Trace .010 .743 .742

Wilks’ Lambda .990 .742 .743

Hotelling’s Trace .010 .741 .744

Roy’s Largest Root .005 1.112c .352

MANOVA-VI results showed that Pillar Types (F = 100.966, p <.000) and Tra�c

Objects (F = 11.319, p <.000) do have significant e↵ect on logarithmic transformed
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Fixation Duration, logarithmic transformed Coordinates-X and logarithmic trans-

formed Coordinates-Y. Trials (F = 1.144, p = .310) has no e↵ect on collected data,

suggesting that Pillar Types and Tra�c Objects e↵ect the pixel correspondence of eye

movements on logarithmic transformed Fixation Duration, logarithmic transformed

Coordinates-X and logarithmic transformed Coordinates-Y during the simulation. A

two-way interaction was found between Pillar Types * Tra�c Objects (F = 8.148, p

<.000).

Summary of analysis of variance tests

Table 6.46 summarizes results of all analysis of variance tests conducted on eye-

tracker data. Independent variables with stars on Table 6.46 refers to ’p’ values

smaller than zero (p <0.000), which indicates a significance at the alpha level of 0.05.

One can see that significant factors have overlapping results throughout the study.

The very last row on Table 6.46 summarizes percentage accumulations of variables

that have a significant MANOVA e↵ect.

Table 6.33: Summary of significance (p-values) of

ANOVA and MANOVA analyses

Tests Dependent Variables Pillar Types Tra�c Objects Trials

ANOVA-I Fix.Dur. .000* .279 .021*

ANOVA-II Coord.X .000* .321 .679

ANOVA-III Coord.Y .911 .000* .450

ANOVA-IV Fix.Dur.LOG .000* .002* .166

ANOVA-V Coord.XLOG .000* .170 .654

ANOVA-VI Coord.YLOG .546 .000* .285

Fix.Dur.

MANOVA-I Coord.X .000* .000* .110

continued on next page
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Table 6.33: continued

Tests Dependent Variables Pillar Types Tra�c Objects Trials

Coord.Y

Fix.Dur.LOG

MANOVA-II Coord.X .000* .000* .365

Coord.Y

Fix.Dur.LOG

MANOVA-III Coord.XLOG .000* .000* .411

Coord.Y

Fix.Dur.LOG

MANOVA-IV Coord.X .000* .000* .267

Coord.YLOG

Fix.Dur.

MANOVA-V Coord.XLOG .000* .000* .098

Coord.YLOG

Fix.Dur.LOG

MANOVA-VI Coord.XLOG .000* .000* .310

Coord.YLOG

Percentages 83% 75% 8%
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Figure 6.10. ANOVA 2-way Pillar Type * Tra�c Objects interac-
tions for eye-tracking data: Fixation Duration, Coordinates-X and
Coordinates-Y
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MANOVA-IVMANOVA-I

MANOVA-VMANOVA-II

MANOVA-VIMANOVA-III

Figure 6.11. MANOVA 2-way interactions for six di↵erent MANOVA
analysis with varying raw and log.transformed data
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6.7.6 Six-way ANOVA/MANOVA - main e↵ects

This section provides an extended overview of the two-way ANOVA/MANOVA

analysis performed previously. Main goals and hypotheses covered in this study focus

on the e↵ect of Type of Pillars and Trials on eye-tracking data. However, a more

detailed study were performed to explore the e↵ects of Gender, Tra�c Object, Use

of Glasses and Driving Experience on top of Types of Pillars and Trials.

Even though logarithmic transformation performed previously smoothed out some

of the outliers and scattered points in raw data, the normalization process caused a

slight loss of fidelity. A blend of Analysis of Variance (ANOVA) and Multivariate

Analysis of Variance (MANOVA) were conducted on six independent variables and

three dependent variables. Each analysis covered raw and logarithmic transformed

data in combinations to explore whether or not independent variables are significantly

a↵ect experimental results. A total of twelve analysis of variance studies (six ANOVAs

and six MANOVAs) conducted.

Analysis of variance - I (ANOVA-I)

ANOVA-I study sought to determine whether Fixation Duration di↵ered across

the factors of: Gender, Pillar Models, Tra�c Objects, Use of Glasses, Driving Experi-

ence, and Trials. A 2 x 2 x 2 x 2 x 3 x 6 (288) mixed design ANOVA was performed on

multi-levels. Subject’s Gender was within subjects variable with two levels (Male and

Female); Pillar Models (New and Old), Tra�c Objects (Bicycle and Pedestrian), Use

of Glasses (Glasses and No Glasses). Driving Experience is within subjects variable

with three levels (Low, Medium and High), and Trials are with six levels (T1 to T6).
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Table 6.34: ANOVA-I results on Fixation Duration

Source
Sum of

Squares
df

Mean

Square
F Sig.

Corrected Model 10056352.939 239 42076.791 1.148 .083

Intercept 58064029.321 1 58064029.321 1584.747 .000

Pillar Types 309397.361 1 309397.361 8.444 .004

Tra�c Objects 20850.225 1 20850.225 .569 .451

Trials 160756.337 5 32151.267 .878 .496

Gender 94241.282 1 94241.282 2.572 .109

Driving Experience 127315.854 2 63657.927 1.737 .177

Glasses 146175.051 1 146175.051 3.990 .046

Pillar Types *

Tra�c Objects
9059.459 1 9059.459 .247 .619

Pillar Types * Trials 20740.518 5 4148.104 .113 .989

Pillar Types * Gender 46498.968 1 46498.968 1.269 .260

Pillar Types *

Driving Experience
244585.742 2 122292.871 3.338 .036

Pillar Types * Glasses 42079.807 1 42079.807 1.148 .284

Tra�c Objects *

Trials
80522.647 5 16104.529 .440 .821

Tra�c Objects *

Gender
1263.130 1 1263.130 .034 .853

Tra�c Objects *

Driving Experience
63477.930 2 31738.965 .866 .421

Tra�c Objects *

Glasses
18379.533 1 18379.533 .502 .479

Trials * Gender 372733.869 5 74546.774 2.035 .072

continued on next page
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Table 6.34: continued

Source
Sum of

Squares
df

Mean

Square
F Sig.

Trials *

Driving Experience
157504.022 10 15750.402 .430 .932

Trials * Glasses 57909.093 5 11581.819 .316 .903

Gender *

Driving Experience
286982.189 1 286982.189 7.833 .005

Gender * Glasses 42769.837 1 42769.837 1.167 .280

Driving Experience *

Glasses
356330.311 1 356330.311 9.725 .002

The ANOVA-I analysis revealed that there is a significant main e↵ect of Pillar

Types (F = 8.444, p = .004) and Glasses (F = 3.990, p = .046) on Fixation Duration.

Tra�c Objects (F = .569, p = .451), Trials (F = .8786, p = .496), Gender (F =

2.572, p = .109) and Driving Experience (F = 1.737, p = .177) have no significant

e↵ect on Fixation Duration, suggesting that Pillar Types and Use of Glasses e↵ect the

eye-fixation intensity during the simulation. There is a significant interaction found

between Driving Experience and use of Glasses (F = 9.725, p = .002).

Analysis of variance - II (ANOVA-II)

ANOVA-II study sought to determine whether Coordinates-X di↵ered according

the factors of: Gender, Pillar Models, Tra�c Objects, Use of Glasses, Driving Expe-

rience, and Trials. A 2 x 2 x 2 x 2 x 3 x 6 (288) mixed design ANOVA analysis was

conducted. Subject’s Gender is the within subjects variable with two levels (Male

and Female); Pillar Models (New and Old), Tra�c Objects (Bicycle and Pedestrian);

Use of Glasses (Glasses and No Glasses). Driving Experience is the within subjects
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variable with three levels (Low, Medium and High), and Trials are with six levels (T1

to T6).

Table 6.35: ANOVA-II results on Coordinates-X

Source
Sum of

Squares
df

Mean

Square
F Sig.

Corrected Model 50569062.071 239 211586.034 2.131 .000

Intercept 88280889.355 1 88280889.355 889.155 .000

Pillar Types 7417062.758 1 7417062.758 74.704 .000

Tra�c Objects 142807.815 1 142807.815 1.438 .231

Trials 210305.328 5 42061.066 .424 .832

Gender 17719.861 1 17719.861 .178 .673

Driving Experience 1464268.104 2 732134.052 7.374 .001

Glasses 62250.021 1 62250.021 .627 .429

Pillar Types *

Tra�c Objects
2494.076 1 2494.076 .025 .874

Pillar Types * Trials 388763.356 5 77752.671 .783 .562

Pillar Types * Gender 158301.898 1 158301.898 1.594 .207

Pillar Types *

Driving Experience
1639265.841 2 819632.921 8.255 .000

Pillar Types * Glasses 318859.184 1 318859.184 3.212 .073

Tra�c Objects * Trials 204766.646 5 40953.329 .412 .840

Tra�c Objects *

Gender
91016.599 1 91016.599 .917 .339

Tra�c Objects *

Driving Experience
78156.151 2 39078.075 .394 .675

Tra�c Objects *

Glasses
28617.026 1 28617.026 .288 .591

continued on next page
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Table 6.35: continued

Source
Sum of

Squares
df

Mean

Square
F Sig.

Trials * Gender 306643.331 5 61328.666 .618 .686

Trials *

Driving Experience
383172.376 10 38317.238 .386 .953

Trials * Glasses 161241.029 5 32248.206 .325 .898

Gender *

Driving Experience
96272.285 1 96272.285 .970 .325

Gender * Glasses 2869510.846 1 2869510.846 28.901 .000

Driving Experience *

Glasses
288190.364 1 288190.364 2.903 .089

The ANOVA-II analysis revealed that there is a significant main e↵ect of Pil-

lar Types (F = 74.704, <.000) and Driving Experience (F = 7.373, p = .001) on

Coordinates-X. Tra�c Objects (F = 1.438, p = .231), Trials (F = .424, p = .832),

Gender (F = .178, p = .673) and Glasses (F = 0.627, p = .429) have no significant ef-

fect on Coordinates X, suggesting that Pillar Types and Driving Experience e↵ect the

pixel correspondence of eye movements on X axis. There is a significant interaction

found between Gender and use of Glasses (F = 28.901, p <.002).

Analysis of variance - III (ANOVA-III)

ANOVA-III study sought to determine whether Coordinates-Y di↵ered according

the factors of: subject’s Gender, Pillar Models, Tra�c Objects, Use of Glasses, Driv-

ing Experience, and Trials. A 2 x 2 x 2 x 2 x 3 x 6 (288) mixed design ANOVA

analysis was conducted. Subject’s Gender is the within subjects variable with two

levels (Male and Female); Pillar Models (New and Old), Tra�c Objects (Bicycle and

Pedestrian); Use of Glasses (Glasses and No Glasses). Driving Experience is the
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within subjects variable with three levels (Low, Medium and High), and Trials are

with six levels (T1 to T6).

Table 6.36: ANOVA-III results on Coordinates-Y

Source
Sum of

Squares
df

Mean

Square
F Sig.

Corrected Model 2072401.48a 239.00 8671.14 1.36 .001

Intercept 138531026.81 1.00 138531026.81 21658.25 .000

Pillar Types 2029.44 1.00 2029.44 .32 .573

Tra�c Objects 25214.87 1.00 25214.87 3.94 .047

Trials 11272.72 5.00 2254.54 .35 .881

Gender 13963.12 1.00 13963.12 2.18 .140

Driving Experience 182720.56 2.00 91360.28 14.28 .000

Glasses 108450.35 1.00 108450.35 16.96 .000

Pillar Types *

Tra�c Objects
23394.97 1.00 23394.97 3.66 .056

Pillar Types * Trials 18746.70 5.00 3749.34 .59 .711

Pillar Types * Gender 7659.17 1.00 7659.17 1.20 .274

Pillar Types *

Driving Experience
27611.87 2.00 13805.94 2.16 .116

Pillar Types * Glasses 24659.59 1.00 24659.59 3.86 .050

Tra�c Objects *

Trials
38935.67 5.00 7787.13 1.22 .299

Tra�c Objects *

Gender
55.76 1.00 55.76 .01 .926

Tra�c Objects *

Driving Experience
4503.16 2.00 2251.58 .35 .703

continued on next page
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Table 6.36: continued

Source
Sum of

Squares
df

Mean

Square
F Sig.

Tra�c Objects *

Glasses
4897.08 1.00 4897.08 .77 .382

Trials * Gender 17517.05 5.00 3503.41 .55 .740

Trials *

Driving Experience
31618.21 10.00 3161.82 .49 .894

Trials * Glasses 30300.57 5.00 6060.11 .95 .449

Gender *

Driving Experience
81395.25 1.00 81395.25 12.73 .000

Gender * Glasses 95367.59 1.00 95367.59 14.91 .000

Driving Experience *

Glasses
23510.83 1.00 23510.83 3.68 .056

The ANOVA-III analysis revealed that there is a significant main e↵ect of Tra�c

Objects (F = 3.94, p = .047), Driving Experience (F = 14.28, p <.000) and Glasses

(F = 16.96, p <.000) on Coordinates-Y. Pillar Types (F = .32, p = .573), Trials

(F = .35, p = .881) and Gender (F = 2.18, p = .140) have no significant e↵ect on

Coordinates Y, suggesting that Tra�c Objects, Driving Experience and Glasses e↵ect

the pixel correspondence of eye movements on Y axis during the simulation. There is

a significant interaction found between Gender and Driving Experience (F = 12.73,

p <.000), and Gender and Glasses (F = 14.91, p <.000).

Analysis of variance - IV - (ANOVA-IV)

ANOVA-IV study sought to determine whether logarithmic transformed Fixation

Duration di↵ered according the factors of: subject’s Gender, Pillar Models, Tra�c

Objects, Use of Glasses, Driving Experience, and Trials. A 2 x 2 x 2 x 2 x 3 x 6
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(288) mixed design ANOVA analysis was conducted. Subject’s Gender is the within

subjects variable with two levels (Male and Female); Pillar Models (New and Old),

Tra�c Objects (Bicycle and Pedestrian), Use of Glasses (Glasses and No Glasses).

Driving Experience is the within subjects variable with three levels (Low, Medium

and High), and Trials are with six levels (T1 to T6).

Table 6.37: ANOVA-IV results on Fixation Duration,

Logarithmic transformed

Source
Sum of

Squares
df

Mean

Square
F Sig.

Corrected Model 8.62a 239.00 .04 1.17 .063

Intercept 2610.66 1.00 2610.66 84315.01 .000

Pillar Types .22 1.00 .22 7.00 .008

Tra�c Objects .10 1.00 .10 3.32 .069

Trials .12 5.00 .02 .76 .577

Gender .00 1.00 .00 .02 .892

Driving Experience .15 2.00 .07 2.35 .096

Glasses .31 1.00 .31 10.14 .002

Pillar Types *

Tra�c Objects
.04 1.00 .04 1.28 .259

Pillar Types * Trials .06 5.00 .01 .41 .841

Pillar Types * Gender .00 1.00 .00 .00 .981

Pillar Types *

Driving Experience
.14 2.00 .07 2.30 .101

Pillar Types * Glasses .04 1.00 .04 1.43 .232

Tra�c Objects * Trials .07 5.00 .01 .44 .820

Tra�c Objects * Gender .00 1.00 .00 .10 .754

continued on next page
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Table 6.37: continued

Source
Sum of

Squares
df

Mean

Square
F Sig.

Tra�c Objects *

Driving Experience
.05 2.00 .02 .76 .467

Tra�c Objects * Glasses .00 1.00 .00 .07 .799

Trials * Gender .15 5.00 .03 .98 .431

Trials *

Driving Experience
.20 10.00 .02 .66 .761

Trials * Glasses .06 5.00 .01 .37 .871

Gender *

Driving Experience
.21 1.00 .21 6.69 .010

Gender * Glasses .02 1.00 .02 .52 .472

Driving Experience *

Glasses
.49 1.00 .49 15.95 .000

The ANOVA-IV analysis revealed that there is a significant main e↵ect of Pillar

Types (F = 7.00, p = .008) and Glasses (F = 10.14, p = .002) on logarithmic trans-

formed Fixation Duration. Tra�c Objects (F = 3.32, p = .069), Trials (F = .76, p =

.577), Gender (F = .02, p = .892) and Driving Experience (F = 2.35, p = .096) have

no significant e↵ect on logarithmic transformed Fixation Duration data, suggesting

that Pillar Types and Glasses e↵ect the eye-fixation intensity during the simulation.

There is a significant interaction found between Gender and Driving Experience (F

= 6.69, p = .010), and Driving Experience and Glasses (F = 15.95, p <.000).

Analysis of variance - V (ANOVA-V)

ANOVA-V study sought to determine whether logarithmic transformed Coordinates-

X data di↵ered according the factors of: subject’s Gender, Pillar Models, Tra�c
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Objects, Use of Glasses, Driving Experience, and Trials. A 2 x 2 x 2 x 2 x 3 x 6

(288) mixed design ANOVA analysis was conducted. Subject’s Gender is the within

subjects variable with two levels (Male and Female); Pillar Models (New and Old),

Tra�c Objects (Bicycle and Pedestrian); Use of Glasses (Glasses and No Glasses).

Driving Experience is the within subjects variable with three levels (Low, Medium

and High), and Trials are with six levels (T1 to T6).

Table 6.38: ANOVA-V results on logarithmic trans-

formed Coordinates-X

Source
Sum of

Squares
df

Mean

Square
F Sig.

Corrected Model 44.20a 239.00 .18 2.00 .000

Intercept 2667.46 1.00 2667.46 28837.59 .000

Pillar Types 7.01 1.00 7.01 75.79 .000

Tra�c Objects .21 1.00 .21 2.32 .128

Trials .20 5.00 .04 .42 .833

Gender .01 1.00 .01 .06 .806

Driving Experience .33 2.00 .16 1.78 .169

Glasses .42 1.00 .42 4.53 .034

Pillar Types *

Tra�c Objects
.00 1.00 .00 .03 .869

Pillar Types * Trials .29 5.00 .06 .62 .683

Pillar Types * Gender .20 1.00 .20 2.14 .144

Pillar Types *

Driving Experience
1.26 2.00 .63 6.79 .001

Pillar Types * Glasses .07 1.00 .07 .74 .391

Tra�c Objects * Trials .20 5.00 .04 .43 .829

Tra�c Objects * Gender .05 1.00 .05 .55 .457

continued on next page
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Table 6.38: continued

Source
Sum of

Squares
df

Mean

Square
F Sig.

Tra�c Objects *

Driving Experience
.08 2.00 .04 .46 .633

Tra�c Objects * Glasses .04 1.00 .04 .46 .499

Trials * Gender .20 5.00 .04 .43 .830

Trials *

Driving Experience
.33 10.00 .03 .36 .964

Trials * Glasses .26 5.00 .05 .55 .736

Gender *

Driving Experience
.03 1.00 .03 .38 .539

Gender * Glasses 3.27 1.00 3.27 35.37 .000

Driving Experience *

Glasses
.43 1.00 .43 4.67 .031

The ANOVA-V analysis revealed that there is a significant main e↵ect of Pillar

Types (F = 75.79, p <.000) and Glasses (F = 4.53, p = .034) on logarithmic trans-

formed Coordinates-X. Tra�c Objects (F = 2.32, p = .128), Trials (F = .42, p =

.833), Gender (F = .06, p = .806) and Driving Experience (F = 1.78, p = .169) have

no significant e↵ect on Coordinates-X, suggesting that Pillar Types and Glasses e↵ect

the pixel correspondence of eye movements on X axis during the simulation. There

is a significant interaction found between Pillar Types and Driving Experience (F =

6.79, p <.000), Gender and Glasses (F = 35.57, <.000), and Driving Experience and

Glasses (F = 4.67, p = .031).
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Analysis of variance - VI (ANOVA-VI)

ANOVA-VI study sought to determine whether logarithmic transformed Coordinates-

Y data di↵ered according the factors of: subject’s Gender, Pillar Models, Tra�c

Objects, Use of Glasses, Driving Experience, and Trials. A 2 x 2 x 2 x 2 x 3 x 6

(288) mixed design ANOVA analysis was conducted. Subject’s Gender is the within

subjects variable with two levels (Male and Female); Pillar Models (New and Old),

Tra�c Objects (Bicycle and Pedestrian), Use of Glasses (Glasses and No Glasses).

Driving Experience is the withing subjects variable with three levels (Low, Medium

and High), and Trials are with six levels (T1 to T6).

Table 6.39: ANOVA-VI results on logarithmic trans-

formed Coordinates-Y

Source
Sum of

Squares
df

Mean

Square
F Sig.

Corrected Model 1.281a 239 .005 1.322 .002

Intercept 3081.397 1 3081.397 759887.267 .000

Pillar Types .003 1 .003 .854 .356

Tra�c Objects .015 1 .015 3.718 .054

Trials .008 5 .002 .419 .836

Gender .014 1 .014 3.545 .060

Driving Experience .110 2 .055 13.609 .000

Glasses .072 1 .072 17.761 .000

Pillar Types *

Tra�c Objects
.013 1 .013 3.207 .074

Pillar Types * Trials .013 5 .003 .618 .686

Pillar Types * Gender .004 1 .004 1.050 .306

Pillar Types *

Driving Experience
.019 2 .010 2.353 .096

continued on next page
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Table 6.39: continued

Source
Sum of

Squares
df

Mean

Square
F Sig.

Pillar Types * Glasses .012 1 .012 3.051 .081

Tra�c Objects * Trials .026 5 .005 1.290 .266

Tra�c Objects *

Gender
.001 1 .001 .183 .669

Tra�c Objects *

Driving Experience
.003 2 .002 .424 .654

Tra�c Objects *

Glasses
.006 1 .006 1.469 .226

Trials * Gender .008 5 .002 .418 .836

Trials *

Driving Experience
.023 10 .002 .567 .842

Trials * Glasses .024 5 .005 1.204 .305

Gender *

Driving Experience
.047 1 .047 11.561 .001

Gender * Glasses .041 1 .041 10.216 .001

Driving Experience *

Glasses
.016 1 .016 4.000 .046

The ANOVA-VI analysis revealed that there is a significant main e↵ect of Driving

Experience (F = 13.609, p <.000) and Glasses (F = 17.761, p <.000) on logarithmic

transformed Coordinates-Y. Pillar Types (F = .854, p = .356), Tra�c Objects (F =

3.718, p = .054), Trials (F = .419, p = .836) and Gender (F = 3.545, p = .060) have no

significant e↵ect on Coordinates-Y, suggesting that Driving Experience and Glasses

e↵ect the pixel correspondence of eye movements on Y axis during the simulation.
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There is a significant interaction found between Gender and Driving Experience (F

= 11.561, p = .001), and Gender and Glasses (F = 10.216, p = .001).

Multivariable analysis of variance - I (MANOVA-I)

MANOVA-I analysis was performed to identify whether each independent vari-

able has significant e↵ect on three dependent variables accordingly; Fixation Dura-

tion, Coordinates-X and Coordinates-Y. A 2 x 2 x 2 x 2 x 3 x 6 (288) mixed design

MANOVA analysis was conducted. Subject’s Gender is the within subjects variable

with two levels (Male and Female); Pillar Models (New and Old), Tra�c Objects (Bi-

cycle and Pedestrian), Use of Glasses (Glasses and No Glasses). Driving Experience

is the within subjects variable with three levels (Low, Medium and High), and Trials

are with six levels (T1 to T6).

Table 6.40: Multivariable Analysis of Variance on Fixa-

tion Duration, Coordinates-X and Coordinates-Y

E↵ect Test Value F Sig.

Intercept Pillai’s Trace .968 9245.577b .000

Wilks’ Lambda .032 9245.577b .000

Hotelling’s Trace 30.480 9245.577b .000

Roy’s Largest Root 30.480 9245.577b .000

Pillar Types Pillai’s Trace .083 27.308b .000

Wilks’ Lambda .917 27.308b .000

Hotelling’s Trace .090 27.308b .000

Roy’s Largest Root .090 27.308b .000

Tra�c Objects Pillai’s Trace .008 2.500b .058

Wilks’ Lambda .992 2.500b .058

Hotelling’s Trace .008 2.500b .058

continued on next page
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Table 6.40: continued

E↵ect Test Value F Sig.

Roy’s Largest Root .008 2.500b .058

Trials Pillai’s Trace .010 .586 .888

Wilks’ Lambda .990 .585 .888

Hotelling’s Trace .010 .585 .889

Roy’s Largest Root .006 1.118c .349

Gender Pillai’s Trace .006 1.681b .169

Wilks’ Lambda .994 1.681b .169

Hotelling’s Trace .006 1.681b .169

Roy’s Largest Root .006 1.681b .169

Driving Experience Pillai’s Trace .060 9.383 .000

Wilks’ Lambda .941 9.441b .000

Hotelling’s Trace .063 9.499 .000

Roy’s Largest Root .053 16.065c .000

Glasses Pillai’s Trace .026 8.066b .000

Wilks’ Lambda .974 8.066b .000

Hotelling’s Trace .027 8.066b .000

Roy’s Largest Root .027 8.066b .000

Pillar Types *

Tra�c Objects
Pillai’s Trace .004 1.361b .253

Wilks’ Lambda .996 1.361b .253

Hotelling’s Trace .004 1.361b .253

Roy’s Largest Root .004 1.361b .253

Pillar Types * Trials Pillai’s Trace .010 .596 .880

Wilks’ Lambda .990 .596 .880

Hotelling’s Trace .010 .596 .880

continued on next page



170

Table 6.40: continued

E↵ect Test Value F Sig.

Roy’s Largest Root .008 1.462c .200

Pillar Types *

Gender
Pillai’s Trace .006 1.716b .162

Wilks’ Lambda .994 1.716b .162

Hotelling’s Trace .006 1.716b .162

Roy’s Largest Root .006 1.716b .162

Pillar Types *

Driving Experience
Pillai’s Trace .035 5.330 .000

Wilks’ Lambda .966 5.357b .000

Hotelling’s Trace .036 5.384 .000

Roy’s Largest Root .033 9.898c .000

Pillar Types *

Glasses
Pillai’s Trace .008 2.438b .063

Wilks’ Lambda .992 2.438b .063

Hotelling’s Trace .008 2.438b .063

Roy’s Largest Root .008 2.438b .063

Tra�c Objects *

Trials
Pillai’s Trace .012 .758 .725

Wilks’ Lambda .988 .758 .726

Hotelling’s Trace .013 .758 .726

Roy’s Largest Root .009 1.641c .146

Tra�c Objects *

Gender
Pillai’s Trace .001 .367b .777

Wilks’ Lambda .999 .367b .777

Hotelling’s Trace .001 .367b .777

continued on next page
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Table 6.40: continued

E↵ect Test Value F Sig.

Roy’s Largest Root .001 .367b .777

Tra�c Objects *

Driving Experience
Pillai’s Trace .003 .474 .828

Wilks’ Lambda .997 .474b .828

Hotelling’s Trace .003 .473 .829

Roy’s Largest Root .002 .640c .589

Tra�c Objects *

Glasses
Pillai’s Trace .002 .495b .686

Wilks’ Lambda .998 .495b .686

Hotelling’s Trace .002 .495b .686

Roy’s Largest Root .002 .495b .686

Trials * Gender Pillai’s Trace .018 1.097 .353

Wilks’ Lambda .982 1.098 .352

Hotelling’s Trace .018 1.098 .352

Roy’s Largest Root .013 2.429c .034

Trials *

Driving Experience
Pillai’s Trace .016 .482 .992

Wilks’ Lambda .984 .481 .992

Hotelling’s Trace .016 .481 .992

Roy’s Largest Root .009 .815c .614

Trials * Glasses Pillai’s Trace .009 .523 .930

Wilks’ Lambda .991 .522 .930

Hotelling’s Trace .009 .521 .930

Roy’s Largest Root .006 1.029c .399

continued on next page
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Table 6.40: continued

E↵ect Test Value F Sig.

Gender *

Driving Experience
Pillai’s Trace .023 7.243b .000

Wilks’ Lambda .977 7.243b .000

Hotelling’s Trace .024 7.243b .000

Roy’s Largest Root .024 7.243b .000

Gender * Glasses Pillai’s Trace .038 11.958b .000

Wilks’ Lambda .962 11.958b .000

Hotelling’s Trace .039 11.958b .000

Roy’s Largest Root .039 11.958b .000

Driving Experience *

Glasses
Pillai’s Trace .015 4.610b .003

Wilks’ Lambda .985 4.610b .003

Hotelling’s Trace .015 4.610b .003

Roy’s Largest Root .002 .316c .003

MANOVA-I results showed that Pillar Types (F = 27.308, p <0.000), Driving Ex-

perience (F = 9.441, p <0.001) and Glasses (F= 8.066, p <0.001) do have significant

e↵ect on Fixation Duration, Coordinates X and Coordinates Y. Tra�c Objects (F

= 2.500, p = .058), Trails (F = .585, p = .888) and Gender (F = 1.1681, p = .169)

have no e↵ect on Coordinates-Y, suggesting that Pillar Types, Driving Experience

and Glasses e↵ect the pixel correspondence of eye movements on Fixation Duration,

Coordinates-X and Coordinates-Y during the simulation.

Multivariable Analysis of Variance - II (MANOVA-II)

MANOVA-II analysis was performed to identify whether each independent vari-

able has significant e↵ect on three dependent variables accordingly; logarithmic trans-
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formed Fixation Duration, Coordinates-X and Coordinates-Y. A 2 x 2 x 2 x 2 x 3 x 6

(288) mixed design MANOVA analysis was conducted. Subject’s Gender is the within

subjects variable with two levels (Male and Female); Pillar Models (New and Old),

Tra�c Objects (Bicycle and Pedestrian), Use of Glasses (Glasses and No Glasses).

Driving Experience is the within subjects variable with three levels (Low, Medium

and High), and Trials are with six levels (T1 to T6).

Table 6.41: Multivariable Analysis of Variance on log-

arithmic transformed Fixation Duration, Coordinates-X

and Coordinates-Y

E↵ect Test Value F Sig.

Intercept Pillai’s Trace .992 36421.988 .000

Wilks’ Lambda .008 36421.988 .000

Hotelling’s Trace 120.072 36421.988 .000

Roy’s Largest Root 120.072 36421.988 .000

Pillar Types Pillai’s Trace .081 26.822 .000

Wilks’ Lambda .919 26.822 .000

Hotelling’s Trace .088 26.822 .000

Roy’s Largest Root .088 26.822 .000

Tra�c Objects Pillai’s Trace .011 3.418 .017

Wilks’ Lambda .989 3.418 .017

Hotelling’s Trace .011 3.418 .017

Roy’s Largest Root .011 3.418 .017

Trials Pillai’s Trace .009 .543 .917

Wilks’ Lambda .991 .543 .918

Hotelling’s Trace .009 .542 .918

Roy’s Largest Root .005 .871 .500

Gender Pillai’s Trace .002 .747 .524

continued on next page
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Table 6.41: continued

E↵ect Test Value F Sig.

Wilks’ Lambda .998 .747 .524

Hotelling’s Trace .002 .747 .524

Roy’s Largest Root .002 .747 .524

Driving Experience Pillai’s Trace .061 9.630 .000

Wilks’ Lambda .939 9.689 .000

Hotelling’s Trace .064 9.749 .000

Roy’s Largest Root .054 16.406 .000

Glasses Pillai’s Trace .032 9.984 .000

Wilks’ Lambda .968 9.984 .000

Hotelling’s Trace .033 9.984 .000

Roy’s Largest Root .033 9.984 .000

Pillar Types *

Tra�c Objects
Pillai’s Trace .006 1.766 .152

Wilks’ Lambda .994 1.766 .152

Hotelling’s Trace .006 1.766 .152

Roy’s Largest Root .006 1.766 .152

Pillar Types * Trials Pillai’s Trace .011 .695 .792

Wilks’ Lambda .989 .694 .793

Hotelling’s Trace .011 .694 .793

Roy’s Largest Root .009 1.554 .170

Pillar Types * Gender Pillai’s Trace .004 1.234 .296

Wilks’ Lambda .996 1.234 .296

Hotelling’s Trace .004 1.234 .296

Roy’s Largest Root .004 1.234 .296

continued on next page
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Table 6.41: continued

E↵ect Test Value F Sig.

Pillar Types *

Driving Experience
Pillai’s Trace .033 5.023 .000

Wilks’ Lambda .968 5.048 .000

Hotelling’s Trace .033 5.073 .000

Roy’s Largest Root .031 9.412 .000

Pillar Types * Glasses Pillai’s Trace .009 2.603 .051

Wilks’ Lambda .991 2.603 .051

Hotelling’s Trace .009 2.603 .051

Roy’s Largest Root .009 2.603 .051

Tra�c Objects * Trials Pillai’s Trace .012 .756 .728

Wilks’ Lambda .988 .756 .728

Hotelling’s Trace .012 .755 .728

Roy’s Largest Root .009 1.626 .150

Tra�c Objects * Gender Pillai’s Trace .001 .361 .781

Wilks’ Lambda .999 .361 .781

Hotelling’s Trace .001 .361 .781

Roy’s Largest Root .001 .361 .781

Tra�c Objects *

Driving Experience
Pillai’s Trace .003 .447 .848

Wilks’ Lambda .997 .446 .848

Hotelling’s Trace .003 .446 .848

Roy’s Largest Root .002 .524 .666

Tra�c Objects *

Glasses
Pillai’s Trace .001 .331 .803

Wilks’ Lambda .999 .331 .803

continued on next page
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Table 6.41: continued

E↵ect Test Value F Sig.

Hotelling’s Trace .001 .331 .803

Roy’s Largest Root .001 .331 .803

Trials * Gender Pillai’s Trace .012 .745 .740

Wilks’ Lambda .988 .745 .740

Hotelling’s Trace .012 .744 .741

Roy’s Largest Root .008 1.494 .189

Trials *

Driving Experience
Pillai’s Trace .018 .562 .974

Wilks’ Lambda .982 .561 .974

Hotelling’s Trace .019 .561 .974

Roy’s Largest Root .011 .964 .473

Trials * Glasses Pillai’s Trace .009 .534 .923

Wilks’ Lambda .991 .534 .923

Hotelling’s Trace .009 .533 .924

Roy’s Largest Root .006 1.011 .410

Gender *

Driving Experience
Pillai’s Trace .022 6.966 .000

Wilks’ Lambda .978 6.966 .000

Hotelling’s Trace .023 6.966 .000

Roy’s Largest Root .023 6.966 .000

Gender * Glasses Pillai’s Trace .038 11.872 .000

Wilks’ Lambda .962 11.872 .000

Hotelling’s Trace .039 11.872 .000

Roy’s Largest Root .039 11.872 .000

continued on next page
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Table 6.41: continued

E↵ect Test Value F Sig.

Driving Experience *

Glasses
Pillai’s Trace .021 6.477 .000

Wilks’ Lambda .979 6.477 .000

Hotelling’s Trace .021 6.477 .000

Roy’s Largest Root .021 6.477 .000

MANOVA-II results showed that Pillar Types (F = 26.822, p <0.000), Tra�c

Objects (F = 3.418, p <0.017), Driving Experience (F = 9.689, p <0.000), and Glasses

(F= 9.984, p <0.001) do have significant e↵ect on logarithmic transformed Fixation

Duration, Coordinates-X and Coordinates-Y. Trials (F = .543, p = .917) and Gender

(F = .747, p = .524) have no e↵ect, suggesting that Pillar Types, Tra�c Objects,

Driving Experience and Glasses e↵ect the pixel correspondence of eye movements on

logarithmic transformed Fixation Duration, Coordinates-X and Coordinates-Y during

the simulation.

Multivariable analysis of variance - III (MANOVA-III)

MANOVA-III analysis was performed to identify whether each independent vari-

able has significant e↵ect on three dependent variables accordingly; logarithmic trans-

formed Fixation Duration, logarithmic transformed Coordinates-X and Coordinates-

Y. A 2 x 2 x 2 x 2 x 3 x 6 (288) mixed design MANOVA analysis was conducted.

Subject’s Gender is the within subjects variable with two levels (Male and Female);

Pillar Models (New and Old), Tra�c Objects (Bicycle and Pedestrian); Use of Glasses

(Glasses and No Glasses). Driving Experience is the within subjects variable with

three levels (Low, Medium and High), and Trials are with six levels (T1 to T6).
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Table 6.42: Multivariable Analysis of Variance on log-

arithmic transformed Fixation Duration, logarithmic

transformed Coordinates-X and Coordinates-Y

E↵ect Test Value F Sig.

Intercept Pillai’s Trace .994 51153.191 .000

Wilks’ Lambda .006 51153.191 .000

Hotelling’s Trace 168.637 51153.191 .000

Roy’s Largest Root 168.637 51153.191 .000

Pillar Types Pillai’s Trace .082 27.021 .000

Wilks’ Lambda .918 27.021 .000

Hotelling’s Trace .089 27.021 .000

Roy’s Largest Root .089 27.021 .000

Tra�c Objects Pillai’s Trace .012 3.734 .011

Wilks’ Lambda .988 3.734 .011

Hotelling’s Trace .012 3.734 .011

Roy’s Largest Root .012 3.734 .011

Trials Pillai’s Trace .008 .513 .935

Wilks’ Lambda .992 .512 .936

Hotelling’s Trace .008 .512 .936

Roy’s Largest Root .005 .957 .443

Gender Pillai’s Trace .003 .851 .466

Wilks’ Lambda .997 .851 .466

Hotelling’s Trace .003 .851 .466

Roy’s Largest Root .003 .851 .466

Driving Experience Pillai’s Trace .046 7.107 .000

Wilks’ Lambda .954 7.171 .000

Hotelling’s Trace .048 7.235 .000

continued on next page
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Table 6.42: continued

E↵ect Test Value F Sig.

Roy’s Largest Root .046 13.933 .000

Glasses Pillai’s Trace .039 12.180 .000

Wilks’ Lambda .961 12.180 .000

Hotelling’s Trace .040 12.180 .000

Roy’s Largest Root .040 12.180 .000

Pillar Types *

Tra�c Objects
Pillai’s Trace .006 1.832 .140

Wilks’ Lambda .994 1.832 .140

Hotelling’s Trace .006 1.832 .140

Roy’s Largest Root .006 1.832 .140

Pillar Types * Trials Pillai’s Trace .010 .618 .863

Wilks’ Lambda .990 .617 .863

Hotelling’s Trace .010 .617 .863

Roy’s Largest Root .007 1.356 .239

Pillar Types * Gender Pillai’s Trace .005 1.410 .239

Wilks’ Lambda .995 1.410 .239

Hotelling’s Trace .005 1.410 .239

Roy’s Largest Root .005 1.410 .239

Pillar Types *

Driving Experience
Pillai’s Trace .028 4.340 .000

Wilks’ Lambda .972 4.358 .000

Hotelling’s Trace .029 4.375 .000

Roy’s Largest Root .027 8.087 .000

Pillar Types * Glasses Pillai’s Trace .006 1.980 .115

Wilks’ Lambda .994 1.980 .115

continued on next page
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Table 6.42: continued

E↵ect Test Value F Sig.

Hotelling’s Trace .007 1.980 .115

Roy’s Largest Root .007 1.980 .115

Tra�c Objects * Trials Pillai’s Trace .012 .748 .736

Wilks’ Lambda .988 .748 .737

Hotelling’s Trace .012 .748 .737

Roy’s Largest Root .009 1.615 .153

Tra�c Objects * Gender Pillai’s Trace .001 .229 .876

Wilks’ Lambda .999 .229 .876

Hotelling’s Trace .001 .229 .876

Roy’s Largest Root .001 .229 .876

Tra�c Objects *

Driving Experience
Pillai’s Trace .003 .485 .820

Wilks’ Lambda .997 .485 .820

Hotelling’s Trace .003 .484 .821

Roy’s Largest Root .002 .552 .647

Tra�c Objects * Glasses Pillai’s Trace .001 .380 .767

Wilks’ Lambda .999 .380 .767

Hotelling’s Trace .001 .380 .767

Roy’s Largest Root .001 .380 .767

Trials * Gender Pillai’s Trace .011 .675 .811

Wilks’ Lambda .989 .675 .811

Hotelling’s Trace .011 .675 .812

Roy’s Largest Root .008 1.531 .178

Trials * Driving Experience Pillai’s Trace .017 .527 .984

Wilks’ Lambda .983 .527 .984

continued on next page
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Table 6.42: continued

E↵ect Test Value F Sig.

Hotelling’s Trace .017 .526 .984

Roy’s Largest Root .010 .895 .538

Trials * Glasses Pillai’s Trace .010 .611 .868

Wilks’ Lambda .990 .610 .869

Hotelling’s Trace .010 .610 .869

Roy’s Largest Root .006 1.039 .393

Gender * Driving Experience Pillai’s Trace .022 6.923 .000

Wilks’ Lambda .978 6.923 .000

Hotelling’s Trace .023 6.923 .000

Roy’s Largest Root .023 6.923 .000

Gender * Glasses Pillai’s Trace .044 14.057 .000

Wilks’ Lambda .956 14.057 .000

Hotelling’s Trace .046 14.057 .000

Roy’s Largest Root .046 14.057 .000

Driving Experience *

Glasses
Pillai’s Trace .022 6.919 .000

Wilks’ Lambda .978 6.919 .000

Hotelling’s Trace .023 6.919 .000

Roy’s Largest Root .023 6.919 .000

MANOVA-III results showed that Pillar Types (F = 27.021, p <0.000), Tra�c

Objects (F = 3.734, p <0.011), Driving Experience (F = 7.171, p <0.000), and Glasses

(F= 12.180, p <0.001) do have significant e↵ect on logarithmic transformed Fixation

Duration, logarithmic transformed Coordinates-X and Coordinates-Y. Trials (F =

.512, p = .936) and Gender (F = .851, p = .466) have no e↵ect, suggesting that Pillar

Types, Tra�c Objects, Driving Experience and Glasses e↵ect the pixel correspon-
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dence of eye movements on logarithmic transformed Fixation Duration, logarithmic

transformed Coordinates X and Coordinates Y during the simulation.

Multivariable analysis of variance - IV (MANOVA-IV)

MANOVA-IV analysis was performed to identify whether each independent vari-

able has significant e↵ect on three dependent variables accordingly; logarithmic trans-

formed Fixation Duration, Coordinates-X and logarithmic transformed Coordinates-

Y. A 2 x 2 x 2 x 2 x 3 x 6 (288) mixed design MANOVA analysis was conducted.

Subject’s Gender is the within subjects variable with two levels (Male and Female);

Pillar Models (New and Old), Tra�c Objects (Bicycle and Pedestrian), Use of Glasses

(Glasses and No Glasses). Driving Experience is the within subjects variable with

three levels (Low, Medium and High), and Trials are with six levels (T1 to T6).

Table 6.43: Multivariable Analysis of Variance on log-

arithmic transformed Fixation Duration, Coordinates-X

and logarithmic transformed Coordinates-Y

E↵ect Test Value F Sig.

Intercept Pillai’s Trace .999 295905.312 .000

Wilks’ Lambda .001 295905.312 .000

Hotelling’s Trace 975.512 295905.312 .000

Roy’s Largest Root 975.512 295905.312 .000

Pillar Types Pillai’s Trace .080 26.325 .000

Wilks’ Lambda .920 26.325 .000

Hotelling’s Trace .087 26.325 .000

Roy’s Largest Root .087 26.325 .000

Tra�c Objects Pillai’s Trace .011 3.252 .021

Wilks’ Lambda .989 3.252 .021

continued on next page
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Table 6.43: continued

E↵ect Test Value F Sig.

Hotelling’s Trace .011 3.252 .021

Roy’s Largest Root .011 3.252 .021

Trials Pillai’s Trace .009 .574 .897

Wilks’ Lambda .991 .573 .897

Hotelling’s Trace .009 .573 .898

Roy’s Largest Root .005 .927 .462

Gender Pillai’s Trace .004 1.199 .309

Wilks’ Lambda .996 1.199 .309

Hotelling’s Trace .004 1.199 .309

Roy’s Largest Root .004 1.199 .309

Driving Experience Pillai’s Trace .058 9.110 .000

Wilks’ Lambda .942 9.154 .000

Hotelling’s Trace .061 9.198 .000

Roy’s Largest Root .049 15.018 .000

Glasses Pillai’s Trace .033 10.320 .000

Wilks’ Lambda .967 10.320 .000

Hotelling’s Trace .034 10.320 .000

Roy’s Largest Root .034 10.320 .000

Pillar Types *

Tra�c Objects
Pillai’s Trace .005 1.581 .192

Wilks’ Lambda .995 1.581 .192

Hotelling’s Trace .005 1.581 .192

Roy’s Largest Root .005 1.581 .192

Pillar Types * Trials Pillai’s Trace .011 .689 .798

Wilks’ Lambda .989 .688 .799

continued on next page
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Table 6.43: continued

E↵ect Test Value F Sig.

Hotelling’s Trace .011 .688 .799

Roy’s Largest Root .008 1.503 .186

Pillar Types * Gender Pillai’s Trace .004 1.149 .328

Wilks’ Lambda .996 1.149 .328

Hotelling’s Trace .004 1.149 .328

Roy’s Largest Root .004 1.149 .328

Pillar Types *

Driving Experience
Pillai’s Trace .033 5.040 .000

Wilks’ Lambda .967 5.065 .000

Hotelling’s Trace .034 5.090 .000

Roy’s Largest Root .031 9.440 .000

Pillar Types * Glasses Pillai’s Trace .008 2.377 .069

Wilks’ Lambda .992 2.377 .069

Hotelling’s Trace .008 2.377 .069

Roy’s Largest Root .008 2.377 .069

Tra�c Objects * Trials Pillai’s Trace .012 .762 .721

Wilks’ Lambda .988 .761 .722

Hotelling’s Trace .013 .761 .722

Roy’s Largest Root .009 1.590 .160

Tra�c Objects * Gender Pillai’s Trace .002 .474 .701

Wilks’ Lambda .998 .474 .701

Hotelling’s Trace .002 .474 .701

Roy’s Largest Root .002 .474 .701

Tra�c Objects *

Driving Experience
Pillai’s Trace .003 .467 .833

continued on next page
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Table 6.43: continued

E↵ect Test Value F Sig.

Wilks’ Lambda .997 .467 .833

Hotelling’s Trace .003 .466 .834

Roy’s Largest Root .002 .625 .599

Tra�c Objects * Glasses Pillai’s Trace .002 .552 .647

Wilks’ Lambda .998 .552 .647

Hotelling’s Trace .002 .552 .647

Roy’s Largest Root .002 .552 .647

Trials * Gender Pillai’s Trace .011 .693 .794

Wilks’ Lambda .989 .692 .794

Hotelling’s Trace .011 .692 .795

Roy’s Largest Root .007 1.298 .263

Trials * Driving Experience Pillai’s Trace .020 .600 .958

Wilks’ Lambda .980 .600 .958

Hotelling’s Trace .020 .600 .958

Roy’s Largest Root .012 1.116 .347

Trials * Glasses Pillai’s Trace .010 .634 .849

Wilks’ Lambda .990 .633 .850

Hotelling’s Trace .010 .633 .850

Roy’s Largest Root .007 1.329 .250

Gender *

Driving Experience
Pillai’s Trace .021 6.490 .000

Wilks’ Lambda .979 6.490 .000

Hotelling’s Trace .021 6.490 .000

Roy’s Largest Root .021 6.490 .000

Gender * Glasses Pillai’s Trace .035 10.921 .000

continued on next page
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Table 6.43: continued

E↵ect Test Value F Sig.

Wilks’ Lambda .965 10.921 .000

Hotelling’s Trace .036 10.921 .000

Roy’s Largest Root .036 10.921 .000

Driving Experience *

Glasses
Pillai’s Trace .021 6.622 .000

Wilks’ Lambda .979 6.622 .000

Hotelling’s Trace .022 6.622 .000

Roy’s Largest Root .022 6.622 .000

MANOVA-IV results showed that Pillar Types (F = 26.325, p <0.000), Tra�c

Objects (F = 3.252, p = 0.021), Driving Experience (F = 9.110, p <0.000), and

Glasses (F = 10.320, p <0.001) do have significant e↵ect on logarithmic transformed

Fixation Duration, Coordinates-X and logarithmic transformed Coordinates-Y. Tri-

als (F = .573, p = .897) and Gender (F = 1.199, p = .309) have no e↵ect, suggesting

that Pillar Types, Tra�c Objects, Driving Experience and Glasses e↵ect the pixel

correspondence of eye movements on logarithmic transformed Fixation Duration,

Coordinates-X and logarithmic transformed Coordinates-Y during the simulation.

Multivariable analysis of variance - V (MANOVA-V)

MANOVA-V analysis was performed to identify whether each independent vari-

able has significant e↵ect on three dependent variables accordingly; Fixation Dura-

tion, logarithmic transformed Coordinates-X and logarithmic transformed Coordinates-

Y. A 2 x 2 x 2 x 2 x 3 x 6 (288) mixed design MANOVA analysis was conducted.

Subject’s Gender is the within subjects variable with two levels (Male and Female);

Pillar Models (New and Old), Tra�c Objects (Bicycle and Pedestrian), Use of Glasses
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(Glasses and No Glasses). Driving Experience is the within subjects variable with

three levels (Low, Medium and High), and Trials are with six levels (T1 to T6).

Table 6.44: Multivariable Analysis of Variance on Fix-

ation Duration, logarithmic transformed Coordinates-X

and logarithmic transformed Coordinates-Y

E↵ect Test Value F Sig.

Intercept Pillai’s Trace .999 294459.636 .000

Wilks’ Lambda .001 294459.636 .000

Hotelling’s Trace 970.746 294459.636 .000

Roy’s Largest Root 970.746 294459.636 .000

Pillar Types Pillai’s Trace .081 26.656 .000

Wilks’ Lambda .919 26.656 .000

Hotelling’s Trace .088 26.656 .000

Roy’s Largest Root .088 26.656 .000

Tra�c Objects Pillai’s Trace .009 2.608 .050

Wilks’ Lambda .991 2.608 .050

Hotelling’s Trace .009 2.608 .050

Roy’s Largest Root .009 2.608 .050

Trials Pillai’s Trace .009 .577 .894

Wilks’ Lambda .991 .577 .895

Hotelling’s Trace .010 .576 .895

Roy’s Largest Root .006 1.142 .336

Gender Pillai’s Trace .007 2.151 .092

Wilks’ Lambda .993 2.151 .092

Hotelling’s Trace .007 2.151 .092

Roy’s Largest Root .007 2.151 .092

Driving Experience Pillai’s Trace .041 6.381 .000

continued on next page
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Table 6.44: continued

E↵ect Test Value F Sig.

Wilks’ Lambda .959 6.430 .000

Hotelling’s Trace .043 6.480 .000

Roy’s Largest Root .041 12.423 .000

Glasses Pillai’s Trace .034 10.628 .000

Wilks’ Lambda .966 10.628 .000

Hotelling’s Trace .035 10.628 .000

Roy’s Largest Root .035 10.628 .000

Pillar Types *

Tra�c Objects
Pillai’s Trace .004 1.238 .295

Wilks’ Lambda .996 1.238 .295

Hotelling’s Trace .004 1.238 .295

Roy’s Largest Root .004 1.238 .295

Pillar Types * Trials Pillai’s Trace .008 .511 .936

Wilks’ Lambda .992 .511 .936

Hotelling’s Trace .008 .511 .936

Roy’s Largest Root .007 1.186 .314

Pillar Types * Gender Pillai’s Trace .006 1.872 .133

Wilks’ Lambda .994 1.872 .133

Hotelling’s Trace .006 1.872 .133

Roy’s Largest Root .006 1.872 .133

Pillar Types *

Driving Experience
Pillai’s Trace .029 4.543 .000

Wilks’ Lambda .971 4.561 .000

Hotelling’s Trace .030 4.579 .000

Roy’s Largest Root .027 8.347 .000

continued on next page
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Table 6.44: continued

E↵ect Test Value F Sig.

Pillar Types * Glasses Pillai’s Trace .005 1.569 .195

Wilks’ Lambda .995 1.569 .195

Hotelling’s Trace .005 1.569 .195

Roy’s Largest Root .005 1.569 .195

Tra�c Objects * Trials Pillai’s Trace .012 .744 .741

Wilks’ Lambda .988 .744 .741

Hotelling’s Trace .012 .743 .742

Roy’s Largest Root .009 1.556 .170

Tra�c Objects * Gender Pillai’s Trace .001 .323 .809

Wilks’ Lambda .999 .323 .809

Hotelling’s Trace .001 .323 .809

Roy’s Largest Root .001 .323 .809

Tra�c Objects *

Driving Experience
Pillai’s Trace .004 .553 .768

Wilks’ Lambda .996 .552 .768

Hotelling’s Trace .004 .552 .769

Roy’s Largest Root .002 .732 .533

Tra�c Objects * Glasses Pillai’s Trace .003 .764 .515

Wilks’ Lambda .997 .764 .515

Hotelling’s Trace .003 .764 .515

Roy’s Largest Root .003 .764 .515

Trials * Gender Pillai’s Trace .016 .983 .470

Wilks’ Lambda .984 .985 .469

Hotelling’s Trace .016 .986 .467

Roy’s Largest Root .013 2.446 .033

continued on next page
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Table 6.44: continued

E↵ect Test Value F Sig.

Trials *

Driving Experience
Pillai’s Trace .016 .485 .992

Wilks’ Lambda .984 .484 .992

Hotelling’s Trace .016 .484 .992

Roy’s Largest Root .009 .811 .618

Trials * Glasses Pillai’s Trace .011 .688 .799

Wilks’ Lambda .989 .688 .799

Hotelling’s Trace .011 .687 .800

Roy’s Largest Root .007 1.330 .249

Gender *

Driving Experience
Pillai’s Trace .021 6.630 .000

Wilks’ Lambda .979 6.630 .000

Hotelling’s Trace .022 6.630 .000

Roy’s Largest Root .022 6.630 .000

Gender * Glasses Pillai’s Trace .042 13.227 .000

Wilks’ Lambda .958 13.227 .000

Hotelling’s Trace .044 13.227 .000

Roy’s Largest Root .044 13.227 .000

Driving Experience *

Glasses
Pillai’s Trace .017 5.181 .001

Wilks’ Lambda .983 5.181 .001

Hotelling’s Trace .017 5.181 .001

Roy’s Largest Root .017 5.181 .001

MANOVA-V results showed that Pillar Types (F = 26.656, p <0.000), Driving Ex-

perience (F = 6.383, p <0.000) and Glasses (F = 10.628, p <0.001) do have significant
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e↵ect on Fixation Duration, logarithmic transformed Coordinates-X and logarithmic

transformed Coordinates-Y. Tra�c Objects (F = 2.608, p = .050), Trials (F = .577, p

= .895) and Gender (F = 2.141, p = .092) have no e↵ect, suggesting that Pillar Types,

Tra�c Objects, Driving Experience and Glasses e↵ect the pixel correspondence of eye

movements on Fixation Duration, logarithmic transformed Coordinates-X and loga-

rithmic transformed Coordinates-Y during the simulation.

Multivariable analysis of variance - VI (MANOVA-VI)

MANOVA-VI analysis was performed to identify whether each independent vari-

able has significant e↵ect on three dependent variables accordingly; logarithmic trans-

formed Fixation Duration, logarithmic transformed Coordinates-X and logarithmic

transformed Coordinates-Y. A 2 x 2 x 2 x 2 x 3 x 6 (288) mixed design MANOVA

analysis was conducted. Subject’s Gender is the within subjects variable with two

levels (Male and Female); Pillar Models (New and Old), Tra�c Objects (Bicycle

and Pedestrian), Use of Glasses (Glasses and No Glasses). Driving Experience is the

within subjects variable with three levels (Low, Medium and High), and Trials are

with six levels (T1 to T6).

Table 6.45: Multivariable Analysis of Variance on log-

arithmic transformed Fixation Duration, logarithmic

transformed Coordinates-X and logarithmic transformed

Coordinates-Y

E↵ect Test Value F Sig.

Intercept Pillai’s Trace .999 318050.905 .000

Wilks’ Lambda .001 318050.905 .000

Hotelling’s Trace 1048.519 318050.905 .000

Roy’s Largest Root 1048.519 318050.905 .000

Pillar Types Pillai’s Trace .081 26.569 .000

continued on next page
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Table 6.45: continued

E↵ect Test Value F Sig.

Wilks’ Lambda .919 26.569 .000

Hotelling’s Trace .088 26.569 .000

Roy’s Largest Root .088 26.569 .000

Tra�c Objects Pillai’s Trace .012 3.538 .014

Wilks’ Lambda .988 3.538 .014

Hotelling’s Trace .012 3.538 .014

Roy’s Largest Root .012 3.538 .014

Trials Pillai’s Trace .009 .542 .918

Wilks’ Lambda .991 .541 .919

Hotelling’s Trace .009 .541 .919

Roy’s Largest Root .005 .978 .430

Gender Pillai’s Trace .004 1.323 .266

Wilks’ Lambda .996 1.323 .266

Hotelling’s Trace .004 1.323 .266

Roy’s Largest Root .004 1.323 .266

Driving Experience Pillai’s Trace .043 6.687 .000

Wilks’ Lambda .957 6.744 .000

Hotelling’s Trace .045 6.800 .000

Roy’s Largest Root .043 13.125 .000

Glasses Pillai’s Trace .039 12.402 .000

Wilks’ Lambda .961 12.402 .000

Hotelling’s Trace .041 12.402 .000

Roy’s Largest Root .041 12.402 .000

Pillar Types *

Tra�c Objects
Pillai’s Trace .005 1.633 .180

continued on next page
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Table 6.45: continued

E↵ect Test Value F Sig.

Wilks’ Lambda .995 1.633 .180

Hotelling’s Trace .005 1.633 .180

Roy’s Largest Root .005 1.633 .180

Pillar Types * Trials Pillai’s Trace .010 .614 .866

Wilks’ Lambda .990 .613 .866

Hotelling’s Trace .010 .613 .867

Roy’s Largest Root .007 1.330 .249

Pillar Types * Gender Pillai’s Trace .004 1.311 .270

Wilks’ Lambda .996 1.311 .270

Hotelling’s Trace .004 1.311 .270

Roy’s Largest Root .004 1.311 .270

Pillar Types *

Driving Experience
Pillai’s Trace .028 4.328 .000

Wilks’ Lambda .972 4.345 .000

Hotelling’s Trace .029 4.362 .000

Roy’s Largest Root .027 8.050 .000

Pillar Types * Glasses Pillai’s Trace .006 1.711 .163

Wilks’ Lambda .994 1.711 .163

Hotelling’s Trace .006 1.711 .163

Roy’s Largest Root .006 1.711 .163

Tra�c Objects * Trials Pillai’s Trace .012 .748 .736

Wilks’ Lambda .988 .748 .737

Hotelling’s Trace .012 .747 .738

Roy’s Largest Root .008 1.549 .172

Tra�c Objects * Gender Pillai’s Trace .001 .322 .810

continued on next page
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Table 6.45: continued

E↵ect Test Value F Sig.

Wilks’ Lambda .999 .322 .810

Hotelling’s Trace .001 .322 .810

Roy’s Largest Root .001 .322 .810

Tra�c Objects *

Driving Experience
Pillai’s Trace .003 .515 .797

Wilks’ Lambda .997 .515 .798

Hotelling’s Trace .003 .514 .798

Roy’s Largest Root .002 .618 .604

Tra�c Objects * Glasses Pillai’s Trace .002 .599 .616

Wilks’ Lambda .998 .599 .616

Hotelling’s Trace .002 .599 .616

Roy’s Largest Root .002 .599 .616

Trials * Gender Pillai’s Trace .010 .619 .862

Wilks’ Lambda .990 .619 .862

Hotelling’s Trace .010 .618 .862

Roy’s Largest Root .007 1.328 .250

Trials * Driving Experience Pillai’s Trace .018 .562 .974

Wilks’ Lambda .982 .562 .974

Hotelling’s Trace .019 .561 .974

Roy’s Largest Root .011 .997 .444

Trials * Glasses Pillai’s Trace .012 .708 .779

Wilks’ Lambda .988 .708 .779

Hotelling’s Trace .012 .707 .780

Roy’s Largest Root .007 1.361 .237

continued on next page
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Table 6.45: continued

E↵ect Test Value F Sig.

Gender *

Driving Experience
Pillai’s Trace .021 6.432 .000

Wilks’ Lambda .979 6.432 .000

Hotelling’s Trace .021 6.432 .000

Roy’s Largest Root .021 6.432 .000

Gender * Glasses Pillai’s Trace .042 13.176 .000

Wilks’ Lambda .958 13.176 .000

Hotelling’s Trace .043 13.176 .000

Roy’s Largest Root .043 13.176 .000

Driving Experience *

Glasses
Pillai’s Trace .023 7.073 .000

Wilks’ Lambda .977 7.073 .000

Hotelling’s Trace .023 7.073 .000

Roy’s Largest Root .023 7.073 .000

MANOVA-VI results show that Pillar Types (F = 26.569, p <0.000), Tra�c Ob-

jects (F = 3.538, p = 0.014), Driving Experience (F = 6.744, p <0.000), and Glasses

(F = 12.402, p <0.000) do have significant e↵ect on logarithmic transformed Fixa-

tion Duration, logarithmic transformed Coordinates-X and logarithmic transformed

Coordinates-Y, suggesting that Pillar Types, Tra�c Objects, Driving Experience

and Glasses e↵ect the pixel correspondence of eye movements on Fixation Duration,

Coordinates-X and Coordinates-Y during the simulation. Trails (F = .541, p = .919)

and Gender (F = 1.323, p = .266) have no e↵ect on logarithmic transformed Fixa-

tion Duration, logarithmic transformed Coordinates-X and logarithmic transformed

Coordinates-Y.
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Summary of analysis of variance tests

Table 6.46 summarizes results of all analysis of variance tests conducted on eye-

tracker data. Independent variables with stars on Table 6.46 refers to ’p’ values

smaller than zero (p <0.000), which indicates a significance at the alpha level of 0.05.

One can see that significant factors have overlapping results throughout the study.

The very last row on Table 6.46 summarizes percentage accumulations of variables

that have a significant MANOVA e↵ect.

Table 6.46: Summary of significance (p-values) of

ANOVA and MANOVA analyses

Tests
Dependent

Variables

Pillar

Types

Tra↵.

Obj.
Trials Gender

Driv.

Exper.

Use

Glass

ANOVA-I Dur. .004* .451 .496 .109 .177 .046*

ANOVA-II Coor.X .000* .231 .832 .673 .001* .429

ANOVA-III Coor.Y .573 .047* .881 .140 .000* .000*

ANOVA-IV Dur.LOG .008* .069 .577 .892 .096 .002*

ANOVA-V Coor.XLOG .000* .128 .833 .806 .169 .034*

ANOVA-VI Coor.YLOG .573 .047* .881 .140 .000* .000*

Fix.Dur.

MANOVA-I Coor.X .000* .058 .888 .169 .000* .000*

Coor.Y

Dur.LOG

MANOVA-II Coor.X .000* .017* .917 .524 .000* .000*

Coor.Y

Dur.LOG

MANOVA-III Coor.XLOG .000* .011* .936 .466 .000* .000*

Coor.Y

continued on next page
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Table 6.46: continued

Tests
Dependent

Variables

Pillar

Types

Tra↵.

Obj.
Trials Gender

Driv.

Exper.

Use

Glass

Dur.LOG

MANOVA-IV Coor.X .000* .021* .897 .309 .000* .000*

Coor.YLOG

Dur.

MANOVA-V Coor.XLOG .000* .050 .894 .092 .000* .000*

Coor.YLOG

Dur.LOG

MANOVA-VI Coor.XLOG .000* .014* .919 .266 .000* .000*

Coor.YLOG

Percentages 83% 50% 0% 0% 75% 92%

6.7.7 Area of interest observations

One of the main hypotheses proposed in this study is that New Pillar (Proposed

Pillar) and Current Pillar (Old pillar) are significantly di↵erent in terms of provid-

ing ergonomics improvements (e.g., success of detecting tra�c objects). Summary of

ANOVA and MANOVA analyses in Table 6.46 demonstrated that Pillar Types con-

tributes significantly on visual detection of tra�c object. In this section, eye-tracker

data was analyzed to find what portion of the simulation display received significant

fixation and eye movements during simulation.

First of all, simulation screen was split into five evenly distributed areas of interest,

each being fixed to 380 by 1200 (380⇥1200) pixels in width (X-axis) and height (Y-

axis). The X-axis spans from (0,0) at the origin to (1920,0), which equals to five

even split areas of interest (380⇥5). Throughout this section total Fixation Duration
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and Coordinates (X,Y) of eye-tracker data were superimposed on each corresponding

areas of interest.

In this study, A-pillar section of the windshield area represented as Area-1, which

covers the very first 380⇥1200 portion of the simulation display. Figure 6.12 shows

the split simulation window with evenly distributed (380⇥1200) areas of interest.
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Figure 6.12. Simulation screen split in five evenly distributed areas
of interest. Area-1 represents the A-pillar zone of New Pillar design
with circular see-through gaps.

Projection of compound coordinates

In this section eye-tracker data was plotted on simulation screen that was divided

into five split areas of interest. One can see that Old Pillar model has a wider (a more

homogeneous) distribution of points across the X-axis. In contrast, eye-movements

of subjects on the New Pillar is more concentrated towards the A-pillar zone (Figure

6.13).
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A total of 1152 (576⇥2) data points were evenly distributed between Current

Pillar (576 points) and New Pillar (576 points) on Figure 6.13. For Area-1, a total

of 157 hits were counted for Current Pillar design, whereas, New Pillar received a

total of 405 hits. Histogram plots also show that there is an accumulation of eye-

movements data towards Area-1 on New Pillar plot when compared to Old Pillar. In

parallel to these findings, bar chart on Figure 6.14 also demonstrates that projection

of subjects’ eye-movements on Area-1 for Old Pillar is only 27%, while New Pillar

model receives a 43% more total number of hits for the same area.

Total fixation duration

Another variable that provides insightful information about subjects’ tra�c object

detection performance is the Fixation Duration. In this section Fixation Duration

data was plotted onto five di↵erent areas of interests. First, intensity (duration) of

fixations were superimposed on compound coordinates data (Figure 6.15). The size

of each bubble demonstrates the relative duration of the associated fixation. Per

each point on the plot (X and Y coordinates), the larger the bubble diameter gets,

longer the fixation duration becomes. One can see that New Pillar design has higher

concentration of overlapping bubble points when compared to Old Pillar design. This

observation is especially significant on Area-1, where New Pillar plot has distinctively

condensed area of fixation. A parallel observation can be captured when compared

total fixation duration (in milliseconds) between Old Pillar and New Pillar model.

Bar plot on Figure 6.16 shows a 16% increase in total fixation duration at Area-1.

Review of heat-maps and burnout images

Compound coordinates and fixation data provided an in-depth information about

distribution of subjects’ eye-movements and where fixation concentrations occur on

the simulation display. In this section, coordinates data and fixation intensities were
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Figure 6.14. Comparison of total number of hits (X,Y) between Old
and New Pillar. There is a 43% increase in the total number of eye-
movements at Area-1 when subjects use New Pillar design.

superimposed to generate heat-maps and burnout images, which provide additional

information about areas of interest.

Heat-maps are one of the versatile visual communication techniques used in image

processing, which provide color-coded representation of eye-movements in relation

to the concentration of looks that each area of interest receives [168]. Heat-maps

provided in Figure 6.17 and 6.18 were generated through superimposing fixation data

over compound coordinates data. Red (hot) areas show high levels of concentration,

whereas, blue (cold) areas represent low levels of concentration. Once can see that

there is a distinctive concentration (hot zone) found at Area-1 on New Pillar design.

Burnout images also provides similar information, where only concentrated (areas

subject to high fixation duration) areas were presented, and the rest of the image

was blackened. One can see from Figures 6.17 and 6.18 that di↵erences in burnout

images visibility associated between Old Pillar and New Pillar design. Subjects on
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Figure 6.16. Comparison of total fixation duration data between Old
and New Pillar.

New Pillar performed very concentrated visual search. In contrast, a dispersed visual

search was performed by subjects on Old Pillar design.

Heat-maps and burnout images provided another group of supporting evidence

that there is a significant di↵erence found between Old Pillar and New Pillar design

in terms of eye-movement concentrations and fixation duration. Old Pillar was as-

sociated with dispersed eye-movements on X-axis. In contrast eye-movements and

fixations on New Pillar design were heavily concentrated on the A-pillar zone.
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Figure 6.17. Old Pillar design demonstrates a dispersed data along
X-axis. Heat-maps and burnout data are relatively homegenous and
spread with weak concentration at Area-1.
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Figure 6.18. Heat-maps and burnout images on New Pillar demon-
strates higher concentration of eye-movements and fixation on A-pillar
zone.
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6.8 Results and Discussions

A good test-retest reliability on Trials was observed throughout this study (Table

6.20). Outcomes of six trials demonstrated a ’good’ ICC scores of .618, .862 and .794

for Fixation Duration, Coordinates-X and Coordinates-Y data accordingly.

One can see from Table 6.47 that there was no statistically significant di↵erence in

mean outcomes in Fixation Duration, Coordinates-X and Coordinates-Y between Tri-

als, but there were statistically significant di↵erences between Pillar Types and Tra�c

Objects. Across all MANOVA studies, New Pillar found to be significantly di↵erent

than Old Pillar model both for Fixation Duration, Coordinates-X and Coordinates-Y

outcomes. Only at Coordinates-Y Pillar Type did not generate a significant e↵ect.

Similar to MANOVA studies, ANOVA results showed a strong agreement that a dif-

ferent between New Pillar and Old Pillar model was observed in terms of generating

di↵erent outcomes on detecting tra�c objects. Pedestrians found to be significantly

di↵erent than Bicycle bot for Fixation Duration, Coordinates-X and Coordinates-Y

outcomes. This di↵erence was detected across all MANOVA studies except 6-way

MANOVA-V study. MANOVA studies showed that Trials found not to be generating

di↵erent outcomes. Cells shaded in yellow in Table 6.47 shows mutual findings on

ANOVA/MANOVA studies between 3-way and 6-way models for main e↵ects. In

contrast, cells highlighted in red shows where an agreement does not hold.

Six-way ANOVA/MANOVA study was conducted to explore further information

about subjects’ eye-tracking attributes. Results revealed valuable information in re-

garding e↵ects of Gender, Driving Experience and Use of Glasses on eye-tracking

outcomes. One can see from Table 6.46 that there was no statistically significant

di↵erence in mean outcomes in Fixation Duration, Coordinates-X and Coordinates-Y

on Gender, but there were statistically significant di↵erences between Driving Expe-

rience and Use of Glasses.

Summary of interactions e↵ects at Figure 7.9 and Figure 7.10 demonstrate that

2-way interactions found between Pillar Types and Tra�c Objects. One can see that
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non-parallel intersecting lines overlaps with significance found on ANOVA/MANOVA

studies.

In addition to ANOVA/MANOVA studies conducted, Areas of Interest observa-

tions revealed that subjects generated higher number of eye-movements and fixations

at Area-1 section of the simulator window. Figure 6.13 and Figure 6.15 show that a

dense eye-movements and fixations were associated with Area-1 section of the sim-

ulator monitor. Eye-movements and Fixation Duration related data on New Pillar

were resulted higher (43% and 16%) more than Old Pillar model.

Heat-maps and burnout images also demonstrated supporting visual evidence that

subjects eye-movements were concentrated on Area-1 section, which represents the

A-pillar zone of the vehicle windshield. Comparison between Figure 6.17 and Figure

6.18 shows that subjects did a lateral eye-gazing across x-axis when using Old Pillar

model, whereas, a highly concentrated search on Area-1 (A-pillar zone) was generated

by subjects when New Pillar model was projected on simulator monitor.

Table 6.47: Summary of significance (p-values) of

ANOVA and MANOVA analyses on main e↵ects

Tests
Dependent

Variables
Pillar Types Tra�c Objects Trials

3-way 6-way 3-way 6-way 3-way 6-way

ANOVA-I Fix.Dur. .000* .004* .279 .451 .021* .469

ANOVA-II Coord.X .000* .000* .321 .231 .679 .832

ANOVA-III Coord.Y .911 .573 .000* .047* .450 .881

ANOVA-IV Fix.Dur.LOG .000* .008* .002* .069 .166 .577

ANOVA-V Coord.XLOG .000* .000* .170 .128 .654 .833

ANOVA-VI Coord.YLOG .546 .573 .000* .047* .285 .881

Fix.Dur.

MANOVA-I Coord.X .000* .000* .000* .058 .110 .888

continued on next page
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Table 6.47: continued

Tests
Dependent

Variables
Pillar Types Tra�c Objects Trials

3-way 6-way 3-way 6-way 3-way 6-way

Coord.Y

Fix.Dur.LOG

MANOVA-II Coord.X .000* .000* .000* .017* .365 .917

Coord.Y

Fix.Dur.LOG

MANOVA-III Coord.XLOG .000* .000* .000* .011* .411 .936

Coord.Y

Fix.Dur.LOG

MANOVA-IV Coord.X .000* .000* .000* .021* .267 .897

Coord.YLOG

Fix.Dur.

MANOVA-V Coord.XLOG .000* .000* .000* .050 .098 .894

Coord.YLOG

Fix.Dur.LOG

MANOVA-VI Coord.XLOG .000* .000* .000* .014* .310 .919

Coord.YLOG

Percentages 83% 83% 75% 50% 8% 0%
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7. EXPERIMENT - II

7.1 Introduction

7.1.1 Overview

Experiment-I provided information about the accumulation of eye-movements on

specific areas (areas-of-interest) of the LCD monitor. However, this approach does

not reveal important information whether subjects did actually identify a tra�c ob-

ject or not. Goal of the Experiment-II is to provide whether subjects did actually

detect tra�c objects projected on LCD monitor or not. Furthermore, Experiment-II

also reveals information about the e↵ectiveness/success of pillar models in terms of

assisting users in detecting tra�c objects.

Experiment-II was split into three sub-experiments: Tra�c Object Detection Ex-

periment, Cooper-Harper Test and User Questionnaire/Review. Each experiment

represents di↵erent levels of performance related data (Figure 8.1).

7.1.2 Connections to human-in-the-loop design framework

Experiment-II demonstrates how an additional human related data could be con-

nected into human-in-the-loop design framework. In this specific design study three

sub-experiments was used as means of collecting human subject data. Shaded area

in Figure 7.2 shows how data collected through Tra�c Object Detection experiment.

Similarly, Figure 7.3 demonstrates a visual synopsis of how Experiment-II was inte-

grated to DHM within human-in-the-loop framework.
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Design of Experiment

Expriment - I
(eye-tracker)

Experiment - II
(traffic object detection)

Experiment - III
(structural integrity)

Tape Lines LCD Display
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Photo Camera
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CD�

A�

B�

CD�

Pillar Obscuration Model  Experimental Setup

A-Pillar

B-Pillar

CD-Pillar

Figure 7.1. Experiment-II is a human subject data collection ex-
periment through three sub-experiments: Tra�c Object Detection
Experiment, Cooper-Harper Test and User Questionnaire/Review.

7.2 Experimental Setup

7.2.1 Pillar obscuration simulation

A modified version of the static simulator used in Experiment-I was utilized in

Experiment-II. The modified setup was composed of three LCD monitors that rep-

resents corresponding pillar sections of the referenced vehicle. Still images that were

gathered from Google Maps projected on each corresponding LCD monitor. These

images represents actual road environment for constructing a virtual tra�c scene

(Figure 7.7). Similar to Experiment-I, a steering wheel, an adjustable seat and ped-

als were provided as simple physical probes. Dimensions of the experimental setup,

locations of the driver’s seat and orientation of each pillar were based on the refer-

ence vehicle blueprints. Figure 7.4 shows experimental components that are placed

in experiment room according to blueprints of the reference vehicle.

In Experiment-II, three LCD displays were used without an eye-tracker device.

Each LCD display was located on paired pillar zones, where static images associated
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Figure 7.2. Shaded area in red (inside dashed lines) represents how
Experiment-II was integrated to data flow process within human-in-
the-loop framework. Experiment-II gathered human subject related
data through three sub-experiments.

to driver’s point-of-view were projected. Figures 7.5 and 7.6 show a generic view of the

experimental setup, and how tra�c simulation scenario was transferred to physical

experiment setup.

7.2.2 Tra�c objects

A realistic tra�c scenario was created by using still images from Google Maps.

Bikers, pedestrians, motorcyclists were used as tra�c objects. Each object was placed

within associated pillar obscuration angle. Tra�c environment was based on a three-

way road junction located in the heart of the Purdue University campus at West

Lafayette, Indiana (Latitude - 40o25’26.64”N and Longitude - 86o54’28.46”W). The

junction is known for its accumulated local tra�c - heavily composed of pedestrians,
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Figure 7.3. Shaded area in red (inside dashed lines) represents which
portion of the human-in-the-loop design framework was used to inte-
grate human aspects of data during design process.

bikers and family cars. Three dimensional images of the road junction were taken

from Google Maps. Based on the reference vehicle and associated with A, B and

CD pillar obscuration zones, three tra�c objects were situated on the Google Maps

image. Each object was situated within obscuration angle. Later, still images were

taken from driver’s point-of-view. These images represent three di↵erent driving

scenarios corresponding A, B and CD pillars (Figure 7.7).
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A�
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CD�

A�

B�

CD�

Pillar Obscuration Model  Experimental Setup

A-Pillar

B
-Pillar

CD-Pillar

Figure 7.4. Orientation of tra�c objects that are within pillar obscu-
ration zones were projected to LCD displays. Static images on the
LCD display represented the depth field of the driver’s point-of-view.

In A-pillar obscuration scenario, reference vehicle was located on the very right

lane as it is attempting to make a right turn. Tra�c objects were located within

the left side of the A-pillar obscuration angle. This scenario represents a very typical

A-pillar obscuration happen at a pedestrian lane crossing.
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A�

B�

CD�

Figure 7.5. First group of tra�c objects placed within obscuration
zones (A✓, B✓, CD✓) associated with each pillar (A, B, CD). Images
show drivers point-of-view when looked at associated pillar and tra�c
element.

Similarly, for B-pillar obscuration scenario, tra�c objects were located on the

right side of the vehicle. In this setup, reference car was driving straight on its course

and tra�c objects were merging to the main road.
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A�

B�

CD�

Figure 7.6. Second group of tra�c objects placed within obscuration
zones (A✓, B✓, CD✓) associated with each pillar (A, B, CD). Images
show drivers point-of-view when looked at associated pillar and tra�c
element.

Finally, for CD pillar obscuration, tra�c elements were oriented rear right-end

of the vehicle. This scenario represented a situation where the reference vehicle was

attempting a back-up maneuver for parallel parking.

In each obscuration case, tra�c scenarios represented a combination of visual tasks

that include checking the crosswalk, monitoring merging tra�c and watching other
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tra�c objects. In each scenario, much the same to regular driving conditions, driver

must check right and left side of the vehicle as he/she continues on the course. If tra�c

objects are not present in the scene, no action is required. If tra�c objects are within

vicinity of the vehicle, driver must make multiple maneuvers to avoid them. Although

static simulator did not propose any medium of controlling simulation environment,

subjects were advised to look for tra�c objects on the monitor as if they were in a

real driving condition.

7.2.3 Pillar obscuration scenario

Throughout this experiment two tra�c objects were assigned to each pillar (A,

B and CD) and placed within obscuration angle zone of each pillar. A block-design

approach was taken by grouping pillar types with tra�c objects under each pillar

model (Old and New Pillar). Tra�c objects and pillar types were randomized during

data collection. Each tra�c object was located within associated pillar obscuration

angle as represented in Figure 7.4 and Figure 7.7. Table 7.1 shows assignment of

tra�c objects per pillar type within each block (Pillar model).

Table 7.1: Tra�c object assignment per pillar model and

pillar type

Pillar Model Pillar Type Tra�c Objects Trials

A Pedestrian 6

Bicycle 6

Current Pillar B Motorcycle 6

Bicycle 6

CD Pedestrian 6

Motorcycle 6

A Pedestrian 6

Bicycle 6

continued on next page
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Table 7.1: continued

Pillar Model Pillar Type Tra�c Objects Trials

New Pillar B Motorcycle 6

Bicycle 6

CD Pedestrian 6

Motorcycle 6

7.3 Procedure

Experiment-II was conducted for A, B and CD pillar for Old Pillar and New

Pillar model. Subjects filled-up Tra�c Object Detection form after each static image

displayed on the screen. Therefore, a total of 72 (3 x 24) Tra�c Object Detection

forms were used throughout the Experiment-II. For each pillar type, 2 Cooper-Harper

test were conducted to detect visual performance of drivers when used Old Pillar

model and New Pillar model. Thus, a total of 6 Cooper-Harper tests were used.

Finally, 3 questionnaires were given to subjects to evaluate pillar models in categories

of visibility, aesthetics and safety. Figure 7.8 summarizes overall data flow.

Specific procedures followed during Experiment-II were:

1. After Experiment-I completed, subjects were asked to start Experiment-II with

Tra�c Object Detection tasks. Subject went through Tra�c Object Detection

forms, which were static shu✏ing randomly with three seconds between each

other.

2. For each pillar model (Old and New), subjects were asked to fill up a modified

Cooper-Harper test after completing each A, B and CD pillar Object Detection

Form experiment, sequentially.

3. After simulator tasks, subjects were asked to fill up three short questionnaires.
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Traffic Layout - Road Junction 

Figure 7.7. Reference vehicle and tra�c objects were inserted into
corresponding tra�c scenario. Images represent perceptive layout of
the tra�c environment and driver’s point-of-view are shown in groups.
Each tra�c object was located within pillar obscuration angle (A✓, B✓,
CD✓) associated with each A, B and CD pillars.
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Experiment-II

2

Traffic Object Detection 
Form(s)

2.1

Cooper-Harper Test(s)

2.2

User Questionnaire(s)

2.3

A-Pillar B-Pillar CD-Pillar

Old A-Pillar
&

New A-Pillar

Old B-Pillar
&

New B-Pillar

Old CD-Pillar
&

New CD-Pillar

1 2 3123

Figure 7.8. Tra�c Object Detection form is composed of three levels
of questions that needs to be answered sequentially.

4. After all simulator tasks and questionnaires were completed, subjects were re-

quired to sign o↵ human subject log, and exited the experiment.

7.4 Variables

In Experiment-II, subjects’ response was collected through three sub-experiments.

There were four dependent variables, encompassing: 1. Object Detection, 2. Perfor-

mance, 3. Ease of Detection, and 4. Design Review.

Object Detection data represents binary variable whether subjects detect a tra�c

object on monitor or not. Similarly, Tra�c Object Detection Performance was a

binary selection. Subjects choose one correct tra�c object among four choices. Ease

of Detection data and Design Review were Rating/Score data. Table 7.2 summarizes

types of data, variables, units, and hypotheses associated with experiments conducted.
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Table 7.2
Types of data, variables, units, and hypotheses associated with ex-
periments conducted in this study

Dependent Variables Type Hypotheses

Tra�c Object Detection Binary H1, H2, H3

Object Detection Performance Binary H1, H2, H3

Ease of Detection Rating/Score H1, H2, H3

Design Review Rating/Score H1, H2, H3

7.5 Experimental Design

Each sub-experiment in Experiment-II was analyzed to provide further under-

standing on whether pillar designs provide improvements in detecting tra�c objects

or not. Table 7.3 summarizes details on measurements, goals and statistical methods

used in Experiment-II.

Table 7.3: Summary of methods of measurement, goal of

measurement, statistical methods in Experiment-II

Method of

Measurement

Goal of

Measurement

Statistical, Numerical

and Visual Methods

Detection Form Detection Performance Descriptive Statistics

Bar Graphs

Cooper-Harper Design Improvement Descriptive Statistics

Line Graphs

Questionnaire User Preference Descriptive Statistics

Bar Graphs

Internal Consistency Cronbach’s Alpha
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7.6 Participants

Participant pool was exactly the same. All participants who attended to Experiment-

I were also participated Experiment-II. A detailed information regarding participants

were previously provided in Chapter 6. You can find summary of subjects and de-

scriptive statics in tables provided in Section 6.6.3.

7.7 Data Analysis and Statistical Techniques

7.7.1 Tra�c object detection experiment

Experiment-II started with Tra�c Object Detection experiment. Subjects’ input

was collected through a Tra�c Object Detection Form. Each simulation image rep-

resenting A, B and CD pillars were displayed on a large monitor. Instead of using

an eye-tracker device, subjects’ data was collected through filling up Tra�c Object

Detection forms. This form was automatically initated right after a tra�c object sce-

nario was displayed on LCD monitor. Similar to Experiment-I, each image shu✏ed

randomly in every 3 seconds. Between each image Tra�c Detection Form was auto-

matically displayed to subjects. There were three levels of question sets associated

Tra�c Object Detection Form.

In the first level of the question set, subjects were asked whether they detect a

tra�c object or not. Those who say ’yes’ proceeded to second level and were asked

about the type of a tra�c object they saw. Finally, subjects were asked about how

easy/hard it was to detect tra�c objects. This section was split into three di↵erent

subsections to explain each level of the Tra�c Object Detection form.

Level - 1, success of detecting tra�c objects

In this section subjects were asked whether they see a tra�c object on simulation

display or not. If their answer is ’yes’, the they jumped to Level-2. Answering ’no’
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automatically canceled out subjects participation to second and third levels of the

Tra�c Object Detection form.

Figure 7.9 summarizes the data of successfully identifying tra�c objects for Old

and New pillar design for A, B and CD pillars. One can see that in every pillar type

(A, B and CD), New Pillar design generates higher tra�c object detection rate when

compared to Old Pillar design. Summary plot (D) at Figure 7.9 shows that at least

around 95% improvement is achieved when New Pillar design is used.

Level - 2, success of correct detection of tra�c objects

In this level of the Tra�c Object Detection Form subjects’ were asked to select

what type of tra�c objects they saw during the simulation. Depending on the pillar

type, di↵erent tra�c objects were projected on the simulation display. There were

four choices available (Pedestrian, tra�c sign, motorcycle, and bicycle), and one being

the correct answer.

In A-pillar simulation, correct tra�c objects were Bicycle and Pedestrian. In B-

pillar simulation Bicycle and Motorcycle were correct choices. In CD pillar simulation

Motorcycle and Pedestrian were correct choices.

Figure 7.10 shows that percentage of correct tra�c object detection rate is around

94% for A, B and CD pillar. This result indicates that subjects who answered first

questions ”yes” had success of 94% in detecting correct tra�c objects. In contrast,

subjects had a very poor correct tra�c object detection performance. Figure 7.11

shows that only close to 1% of subjects were able to correctly detect tra�c objects

with Old Pillar design.

Level - 3, ease of detecting tra�c objects

In this section subject’s perception on ease of tra�c object detection was analyzed.

There were six categories ranked in Likert Scale from Very ”Very Hard to See” to

”Very Easy to see” for detecting tra�c object.
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Results show that New Pillar design generates higher ease of detection across A,

B and CD pillars. One can see that subjects have consistent agreement on detecting

tra�c objects on Old Pillar is harder than detecting tra�c objects on New Pillar.

Figure 7.12 shows distribution of scores on A, B and CD pillars for Old and New

Pillar at A), B) and C) respectively. Summary of combined results for ’Easy to See’

and ’Very Easy to See’ in plot D) presents 50% improvement on ease of detecting

tra�c objects between Old and New Pillar design.

7.7.2 Cooper Harper test

Background on Cooper-Harper test

Cooper-Harper test is originally used in aviation industry to evaluate how pilot-

aircraft interactions a↵ect handling qualities of aircraft [169]. A modified version of

Cooper-Harper test was used in this experiment to assess whether pillar designs a↵ect

driver’s visual performance in detecting tra�c objects. In modified Cooper-Harper

test pillars were considered as a cockpit design attribute. Subjects were asked to rate

design changes between di↵erent pillar models. Each subject completed two Cooper-

Harper test for A, B and CD pillars associated with Old and New Pillar model.

This test also assesses whether pillar design provides desirable design feature to

assist drivers in detecting tra�c objects. If a pillar design provides ease of detecting

tra�c objects, thus, it is associated with lower visual workload. Within the Cooper

Harper flowchart, high scores indicate design deficiencies, thus, pillar design does not

e↵ectively assist drivers. Lower scores are associated with good pillar design, which

provides some degree of visual assistance to drivers. The degree of design success is

determined by the Cooper-Harper rating. Higher Cooper Harper rating suggests that

a design change is required. Figure 7.13 shows a modified Cooper-Harper flowchart

distributed for A-pillar, for Old and New Pillar model. Similarly, same flowchart was

used for B and CD pillars with associated images representing tra�c environment

and pillar model.
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Figure 7.13. Cooper-Harper flowchart was used for evaluating how
design changes were perceived by subjects between Old Pillar and
New Pillar model for A-pillar. Same flowchart combinations were
used for B and CD pillar.
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Results on Cooper-Harper test

Cooper Harper test builds on top of the knowledge gained from Experiment-I

data. It provides additional information about subjects’ opinion on whether each

pillar design (Old and New pillar) o↵ers su�cient adequacy to drivers (subjects)

in detecting tra�c objects. It measures whether pillar design has deficiencies or

desirable design features in terms of providing visual assistance to drivers. Subjects

used Cooper Harper flowchart and ranked each pillar model in terms of visual demands

on the driver. If a pillar design provides ease of detecting tra�c objects, it reduces

the mental workload required for detecting tra�c objects in the simulation. Within

the Cooper Harper flowchart, higher scores indicate design deficiencies. Lower scores

are associated with good pillar design, which provides visual assistance to drivers.

Thus, high Cooper Harper rating scores suggest that a design change is required.

Table 7.4
Distribution of Cooper Harper scores

Pillar Type Pillar Design N Min. Max. Mean Std. Dev.

A Old Pillar 48 2 10 8.23 2.53

New Pillar 48 1 8 3.38 1.69

B Old Pillar 48 2 10 8.54 2.05

New Pillar 48 1 8 3.23 1.55

CD Old Pillar 48 3 10 8.98 1.82

New Pillar 48 1 10 4.29 2.15

Table 7.4 shows that on average Old Pillar received a higher Cooper Harper score

when compared to New Pillar scores. Higher Cooper Harper scores indicate a design

change is required, which refer to a high mental workload is required to correctly

identify tra�c objects. New Pillar design yielded around 40% improvement across A,

B and CD Pillar (Figure 7.14).
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7.7.3 Pillar design review

Background on pillar design review

Pillar models used in this experiment were evaluated via set of questionnaire.

The goal of this questionnaire was to capture user preference related data regarding

visibility, safety and aesthetics of the pillar models. There were two types of pillar

design review/questionnaire that represent: 1. Old Pillar and 2. New Pillar design

(Figure 7.15).

These questionnaires were distributed at the end of the subject data collection.

After subjects completed Experiment-I and first two sub-experiments of Experiment-

II, they were asked to start pillar design review (last sub-experiment of Experiment-

II). Each questionnaire was designed in a Likert scale from zero to seven - ranging

from ’Strongly Agree’ to ’Strongly Disagree’ respectively. Also, ’Not Applicable’

option was provided to subjects in case the question is not applicable.

Although subjects don’t have any daily driving experience with New Pillar design,

they were asked to use their discretion and experienced gained throughout this study

while reviewing visibility, safety and aesthetics related attributes of New Pillar de-

sign. During questionnaire session, subjects were encouraged to look at pillar designs

on CAD environment and to ask questions to obtain a better understanding of the

characteristics of each pillar.

An additional usability related form was distributed after pillar design review/questionnaire

was completed. This form was composed of a two-page long general questionnaire,

which was conducted to collect subjects overall feedback about their daily driving

experiences regarding pillar obscuration problems (Figure 7.16). This portion of the

questionnaire was not used in statistical analysis. It was distributed capturing sub-

jects’ opinion on pillars related driving obscuration experiences and feedback on about

overall experimental procedures.
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Figure 7.15. Pillar Design Review form was distributed to subjects
to evaluate Old Pillar and New Pillar model in terms of visibility,
aesthetics and safety. Photorealistic rendering of the reference vehicle,
both representing Old Pillar and New Pillar model, were provided at
the top of the form. Each image clearly demonstrates di↵erences
between solid and see-through pillars models for A, B and CD pillar.
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Figure 7.16. A two page User Experience Questionnaire was dis-
tributed to subjects’ at the very end of Experiment-II. Subjects were
asked to provide a feedback about their daily driving experiences.
This includes a general understanding or perception about pillar ob-
scuration problem and their perception about visibility, aesthetics and
safety aspects of pillars. This questionnaire is used as a method of
collecting users daily experiences about pillar obscuration problem.
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Background on Cronbach’s alpha test

Cronbach’s Alpha test determines the average correlation found in data. It is

often used in a survey or rating type data to check how reliability associated with

the variation is accounted [170]. Especially, it is used in cases where same set of

questions/tasks are re-administered in a mixed manner to the same respondent [171].

The underlying goal of this study was to assess whether the same set of items pre-

sented to subjects generate similar responses. Equation 7.1 was used for conducting

Cronbach’s Alpha test.

↵ =
n

n � 1
⇥

0

BB@1 �

nP
i=1

�y
2

i

�2

X

1

CCA (7.1)

where,

n: sum of components or test items

�2

X : variance of the observed scores

�2

yi
: variance of the item i

Table 7.5
Classification of Cronbach’s Alpha range

ICC Range Meaning Notes

(0.80, 1.00] Good High inter-rater reliability

(0.50, 0.80] Acceptable Modest inter-reliability

(0.30, 0.50] Poor A reliability is present, but not high enough

(0.00, 0.30] Unacceptable No or few correlation

Correlation values of Cronbach’s Alpha test can range from 0 to 1, with values close

to 1 represent a high inter-rater reliability. Although there is no universally agreed

range, a correlation value larger than 0.8 is generally considered a good indication of

internal consistency [172]. In this dissertation scores on Table 7.5 were used.
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Results on Cronbach’s alpha

Cronbach’s alpha results show that there is an acceptable consistency on subject’s

responds to questions provided on design questionnaire/review. One can see from

Table 7.6 that design reviews have correlations (Cronbach’s Alpha and Inter-Class)

between 0.46 and 0.74, which demonstrates a moderate internal consistency.

Table 7.6
Cronbach’s Alpha and Inter-Class Correlation scores

Cronbach’s Alpha Inter-Class Correlation

Old Pillar Review (Q1 to Q5) .74 0.68

New Pillar Review (Q1 to Q5) .55 0.46

Results on pillar design review

Results showed that subjects rate New Pillar design higher than Old Pillar design

in every category (Table 7.17). Across all pillar types (A, B and CD), New Pillar

received higher average ratings when compared to Old Pillar design.

Table 7.7
Descriptive statistics for Old Pillar design review

N Minimum Maximum Mean Std. Deviation

Q1 48 2 6 2.83 .808

Q2 48 2 7 2.90 1.242

Q3 48 2 6 2.88 .866

Q4 48 2 6 3.08 1.088

Q5 48 0 7 4.31 1.504

Total 240 0 7 3.20 1.255
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Table 7.8
Descriptive statistics for New Pillar design review

N Minimum Maximum Mean Std. Deviation

Q1 48 3 7 6.42 .871

Q2 48 2 7 6.02 1.041

Q3 48 6 7 6.46 .504

Q4 48 2 7 5.88 1.196

Q5 48 2 7 4.50 1.786

Total 240 2.00 7.00 5.8542 1.35359

Figure 7.17. Comparison of mean ratings showed that New Pillar
design scored higher than Old Pillar design in each category.
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7.8 Results and Discussions

Subjects data gathered through three sub-experiments showed that New Pillar

model with see-through gaps provided a means of detecting tra�c objects better

than Old Pillar model with solid pillar design. Tra�c Object Detection experiment

results showed that there was on average more than 95% improvement in detecting

tra�c objects when New Pillar design model was used. Amongst those who detected

tra�c objects with New Pillar design, roughly 94% of these subjects made a correct

detection. In contrast to New Pillar design, tra�c object detection rate was less than

1% when subjects Old Pillar model was used. Results also showed that subject who

correctly detected tra�c objects found that it was easier to detect tra�c objects when

New Pillar was projected on LCD screen. New Pillar model generated around 50%

higher in ease-of-detection results when compared to Old Pillar design (Figure 7.18).

Cooper-Harper tests results showed that subjects rated New Pillar design model

better than Old Pillar design in terms of providing visual assistance to drivers when

detecting tra�c objects. Across all pillar types (A, B and CD pillars), New Pillar

design received on average 45% lower subject ratings (Figure 7.14). (In this Cooper-

Harper test, lower the ratings better the design changes.)

Similar results were also obtained at pillar design questionnaire/review experi-

ment. Across all design questions provided in design questionnaire/review, subjects

rated New Pillar design higher than Old Pillar design. Across all pillar types (A,B

and CD pillars), average scores were consistently higher for visibility, detecting tra�c

objects and safety related design attributes. Only aesthetics received a slightly higher

score (Figure 7.17).
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Percentage Averages Results for Traffic Object Detection Experiment
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Figure 7.18. Comparison of averages (in percentages) of tra�c de-
tection success, correct detection performance and ease of detection
success in Experiment-II.
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8. EXPERIMENT - III

8.1 Introduction

8.1.1 Overview

One of the objectives of this study is to determine whether proposed pillar design

cause any changes in the structural integrity of the referenced vehicle. New Pillar

design uses cut-out sections to provide a see-through experience in contrast to solid

pillars. A major concern is whether vehicle frame resist forces generated during a

collision. To validate changes occur in structural integrity, a FEA study was con-

ducted on solid and see-through pillar frames associated with Old Pillar model and

New Pillar model.

Design of Experiment

Expriment - I
(eye-tracker)

Experiment - II
(traffic object detection)

Experiment - III
(structural integrity)

Tape Lines LCD Display

Eye-tracker
Steering Wheel

Reference Blueprints
Photo Camera

A�

B�

CD�

A�

B�

CD�

Pillar Obscuration Model  Experimental Setup

A-Pillar

B-Pillar
CD-Pillar

Figure 8.1. Experiment-III is a roof-crush simulation experiment. No
subject data collection was involved in this experiment.
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8.1.2 Connections to human-in-the-loop design framework

Experiment-II demonstrates how an structural integrity related analysis could be

connected into human-in-the-loop design framework. In this simulation experiment

reference vehicle went through a roof-crush test. Shaded area in Figure 8.2 shows

how data collected through structural integrity test was linked to the design pro-

cess. Similarly, Figure 8.3 demonstrates a visual synopsis of how Experiment-III was

integrated to DHM within human-in-the-loop framework.

Method of Human Data Input

Method of Environment Input

Vehicle & Pillar
CAD Model

Motion & Ergonomics
 Analysis

1. Clash Detection
2. Coverage Zones
3. Kinematics
4. …

1. Reach Envelope
2. Discomfort
3. Vision Analysis
4. …

1. Posture
2. Virtual Reality
3. Rendering
4. …

Visualization

Eye-Tracking

Digital Human Modeling 
Environment Motion Output

Ergonomics Output

Rendering Output

Static 
Simulator Env.

Traffic Object 
Detection

Simulator

DHM 

Figure 8.2. Shaded area in red (inside dashed lines) represents how
Experiment-III was integrated to data flow process within human-
in-the-loop framework. Experiment-III captured structural integrity
related data through Finite Element Analysis (FEA) study.
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DIGITAL HUMAN
 MODELING

MODELING
> Ideation
> Concept Sketching
> Surface Modeling

STRUCTURAL
ANALYSIS

> Fluid Dynamics

> Digital Prototyping
> Photorealistic Render

PROTOTYPING

CONCEPTUALIZE

UNDERSTAND CREATE

DESIGN 
REQUIREMENTS

DESIGN 
REALIZATION

DESIGN
HUMAN 

FACTORS
SYSTEMS

2D/3D Pillar Model Vehicle Prototype

Eye-Tracking Traffic Object Detection
EXPERIMENT-I EXPERIMENT-II

DESIGN PROPOSAL

Tape Lines LCD Display

Eye-tracker
Steering Wheel

Reference Blueprints
Photo Camera

A�

B�

CD�

A�

B�

CD�

Pillar Obscuration Model  Experimental Setup

A-Pillar

B-Pillar

CD-Pillar

Von Mises Forces / 
Displacement

EXPERIMENT-III

Figure 8.3. Shaded area in red (inside dashed lines) represents which
portion of the human-in-the-loop design framework was used to inte-
grate structural integrity related data to overall design process.

8.2 Experimental Setup

8.2.1 Roof-crush simulation

In Experiment-III, structural integrity of pillar designs (Old vs. New Pillar) were

compared in terms of reaction forces and displacements due to applied static loads.

The main goal of this analysis is to demonstrate whether New Pillar design with see-

through-gaps compromises structural integrity based on roof-crush criteria. A series
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of Finite Element Analysis (FEA) test were conducted to determine how Von Mises

stresses and displacements vary between Old Pillar and New Pillar design.

The FEA test was based on Federal Motor Vehicle Safety Standards (FMVSS)

of roof-crush resistance test (article No-216), which is a quasi-static compression test

conducted on a vehicle roof. This experiment did not involve any human-subject data

collection. Instead, DHMmanikins representing subjects’ height and weight were used

with CAD vehicle frame models. A DHM manikin representing 95th percentile male

subject from CATIA anthropometric library. This manikin was constructed based on

largest percentile of subject’s participated this study.

8.2.2 Roof-crash test criteria

According to the Federal Motor Vehicle Safety Standard (FMVSS), the roof-crush

resistance test (article No.216) mandates that a passenger car requires to withstand

a load of 1.5 times the vehicle’s unloaded weight multiplied by 9.8 (or maximum

22,240Newtons) in kg with no more than 125mm of maximum displacement at roof-

crush area. The maximum displacement is the resultant vector of displacements in

X, Y and Z axes associated at roof section.

In this study, static loads were applied in increasing order. The maximum ap-

plied static load on the FEA model value was converted to a vector force through

multiplying curb weight of the car model (⇡1500kg) by FMVSS safety ratio of 1.5

and by 9.8 (gravity constant), which equals to 22,000N. The resultant vector has 3

dimensional axial components, which are oriented with the angle between the hori-

zontal force vector and vertical force vector of 65 degrees. Similarly, the force vector

makes a longitudinal angle of 5 degrees with the roof-base. Figure 8.4 shows vector

force applied on roof top of the CAD model, which represents a virtual resultant

force similar to a resultant force generated through a hydraulic crush test device used

during the actual FMVSS roof-crush test.
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Perspective View
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Figure 8.4. Test device location and application to the body frame
represented with associated angles. 3D solid body frame was loaded
with incremental static loads. Virtual load cell and load plate with
associated angles are located on roof-top based on FMVSS resistance
test requirements.
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8.3 Procedure

A generic body frame that overlaps with surface model used in this study. The

body frame represents current pillar design (Old Pillar) found in family cars, and used

for benchmarking the New Pillar design. For New Pillar design, each see-through-

gap that overlaps with the surface model were drilled (cut-out) from the body frame

(Figure 8.5). Throughout this study High Strength Low Alloy (HSLA) steel was

used as applied material with yield strength of 420MPa. HSLA steel is commonly

used in pillars and various body frame components that require high crash-worthiness

and/or rigidity. Von Mises stress distributions (in MPa) and displacements (in mm)

were measured to analyze the e↵ects of static loads applied on body frame.

The body frame was composed of multiple sub-assembly models (CAD models)

that were bonded together (rigidly constrained) (Figure 8.6). Surfaces located un-

derneath the body frame were anchored to the simulation environment with fixed

constraints, which prevented body frame from translating and/or rotating. Fixed

constraints act as a rigid support between the body frame and the virtual ground.

Static loads were applied to adjacent surfaces that made up A, B and CD pillars.

Each static load was distributed homogeneously on adjacent surfaces. Throughout

this study, linear structural FEA method was conducted, which assumes linear ma-

terial properties, small deformations of parts compared to overall dimensions of the

model, static loading (no dynamic loads), no a↵ects of temperature, and no buckling.

CAD body frame associated to Old and New Pillar designs were loaded with

static loads from 1650kg to 2250kg with increments of ⇡200kg. Figure 8.6 shows

constraints and vector forces applied on body frame. During FEA analysis material

properties, boundary conditions and applied loads were kept identical. The only

di↵erence between two FEA analysis between Old Pillar and New Pillar was see-

through-holes found on New Pillar design.
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Figure 8.5. CAD body frame represents the structural frame (chassis)
of the vehicle based on the surface model. See-through-gaps are drilled
out to create the body frame associated to New Pillar model.
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Figure 8.6. Static loads were applied on roof top with angular values
based on FMVSS resistance test requirements.



247

8.4 Variables

During Experiment-III, roof-crush test simulation results were grouped into two

variables: 1. Von Misses Forces and 2. Displacement. Von Mises Force data rep-

resents mean values of reaction forces generated during roof-crush test. These force

vales are measured in MPa. Similarly, displacement data provides information about

deformation occur on vehicle structure as a result of roof-crush loading. Displacement

data is measured in millimeters.

Table 8.1 summarizes variables, units, and hypotheses associated with Finite El-

ement Analysis (FEA) conducted in Experiment-III.

Table 8.1
Types of data, variables, units, and hypotheses associated with ex-
periments conducted in this study

Dependent Variables Type Hypotheses

Displacement Millimeters H4

Stresses MPa H4

8.5 Experimental Design

Experiment-III was composed of a FEA study that represents a roof-crust scenario

based on FMVSS article 216. Reaction forces and displacements associated with

applied load were analyzed to monitor whether vehicle structure meet roof-crush test

requirements or not. Structural integrity related data was plotted and compared with

required roof-crush test limits under varying loading conditions.
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Table 8.2: Summary of methods of measurement, goal of

measurement, statistical, numerical methods

Method of

Measurement

Goal of

Measurement

Statistical, Numerical

and Visual Methods

FEA Structural Integrity Descriptive Statistics

Stress & Displacement

Bar Graphs

Correlation ICC & Pearson

8.6 Participants

No subjects were involved to this experiment. Experiment-III was a simulation

experiment and did not require any subjects for data collection. A digital manikin

dummy model was used as a figurative representation of a 95% male subject. This

manikin was used throughout simulation process.

8.7 Data Analysis and Statistical Techniques

8.7.1 Background on finite element analysis

Finite Element Analysis (FEA) is a computerized method of predicting forces

acting on solid bodies or meshed-surfaces. FEA analysis is based on partial di↵er-

ential equations technique for approximating the boundary value problems. It is an

ideal tool for analyzing complex geometries, detailed material properties and com-

plicated applied forces [25, 173, 174]. FEA methods use a complex system of surface

topology (mesh) that is composed of nodes. Nodes are assigned with certain size

(density) throughout the mesh, depending on the anticipated stress levels associated

with particular topology. Depending on the generated stresses, nodes can have coarse

or very fine character (Figure 8.7). In general, finer the mesh, higher the precision of
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predictions. There are also various numerical approximation techniques and solvers

(mesh-free methods, stretch grid method, smoothed finite elements,etc.) associated

with di↵erent FEA methods.

Figure 8.7. Areas of fine and coarse mesh associated to FEA analysis.
One can see the transition from coarse to finer mesh on joints where
pillars are connected to the body frame.

In the case of a complex loading scenario with 3-dimensional components, three

di↵erent stresses on normal directions (X, Y and Z), as well as up to three di↵erent

shear stresses on shear directions (X on Y, Y on Z and X on Z) are observed. Thus,

up to six stress values can be represented on a 3D body (Figure 8.8).

8.7.2 Von Mises stress analysis

In theory, each stress value associated with a 3D solid body can be solved individ-

ually by using strength of materials equations. However, as the surface topology and

variables of interest get more complex, traditional strength calculations become time

consuming. In addition, general strength of materials equations are cumbersome in
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Figure 8.8. Principal and shear stresses presented on X, Y, and Z axes.

providing compound a↵ects of individual stresses. Von Mises stress method combines

six individual stresses (principal and shear) into a single resolved stress value that

includes both magnitude and directions of the stress vectors. This approach provides

a yield criterion through combining resolved stress values [175,176].

The yield strength of the assigned material is taken as the reference point, which

provides information about the first step in part failure. If the single resolved stress

value is greater than the yield strength of the material, then once can conclude the

part is starting to fail according to Von Mises method. Figure 8.9 shows the yield

strength assumption for Von Mises method used in this study [177,178].

Equation 8.1 shows Von Mises stress calculation that combines principal stresses

and shear stresses into a single resolved value.

�VM =
q

0.5
⇥
(�xx � �yy)

2 + (�yy � �zz)
2 + (�zz � �xx)

2

⇤
+ 6(⌧xy2 + ⌧yz2 + ⌧zx2)

(8.1)
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Stress
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Ultimate Strength

Yield Strenght

Elastic Region Plastic Region

Strain Hardening NeckingLinear Region

Fracture

Figure 8.9. Stress-strain graph demonstrates linear assumptions used
for part failure at yield strength. Shaded area represents linear as-
sumption on part failure. FEA model discussed in this study assumes
linear material properties with no e↵ects of dynamic loading, temper-
ature, buckling and crack propagation.

FEA approach used in this study is not universally applicable to all cases. It is

best used for concept product evaluation with moderate fidelity. The fidelity of the

analysis depends on various factors: material properties, a↵ect of temperature, surface

topology, application type (dynamic vs. static), etc. [179]. Static stress assumptions

used in this study are:

• Deflection and stresses are linearly proportioned to the applied load.

• Material properties are linear. The stress-strain curve is a linear straight line.
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• Loading is static and applied very slowly. No dynamic loading, vibration and

impact is considered.

• Temperature has no e↵ects on the part.

• Deformation of the part is small comparing to the overall size of the geometry.

• Sudden failures, crack propagation or buckling are not a concern.

8.7.3 Finite element analysis

In this section Von Mises stress distributions and displacements associated with

applied static loads on A, B and CD pillars were summarized. Di↵erences between

outcomes for each pillar design (Old vs. New Pillar) were also displayed to check

whether see-through type cut-outs generate any di↵erence on FEA results.

The FMVSS roof-crush resistance test (Article.216) setup described on Section

4.9 was used throughout this study (Figure 4.18). The FEA CAD model body frame

model was a derivative of the surface model used in Experiment-I and Experiment-

II. After boundary conditions and loads were assigned to the FEA model based on

FMVSS roof-crush criteria, a mesh with linear tetrahedrons was generated. The mesh

defaults has average element size of 0.100, grading factor of 1.5 and maximum turn

angle of 60.0 degrees. Average element size describes the fraction of the longest axis

between CAD surface. Grading factor specifies the ratio of maximum adjacent mesh

edges for transitioning between coarse to fine tetrahedrons. Maximum turn angle

indicates the maximum angle of arcs (from 1 to 90 degrees) of tetrahedrons. In each

mesh model, lower the ratios, finer (smaller) the mesh elements. A finer mesh leads

to a higher fidelity, which also increases the time and computation required to solve

the FEA model. Figure 8.10 shows the FEA workflow with mesh model created based

on topology, applied loads and boundary conditions.

A strong (excellent) correlation found on Von Mises stresses and displacement

results between Old Pillar and New Pillar design. Table 8.3 shows a strong liner
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Figure 8.10. FEA work-flow starts from CAD model. Loads are ap-
plied and boundary conditions are defined. Mesh model is generated
and Von Mises analysis is conducted.
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relation between FEA results for Old Pillar and New Pillar design. Correlation results

indicate that a liner relation is still present even with see-through gaps drilled on

CAD frame body. Pearson Correlation and Intra-Class Correlation (ICC) results

summarized on Table 8.3 show that FEA outcomes did not di↵er significantly.

Table 8.3
Pearson and Intra-Class Correlation correlation of FEA results

Pearson Correlation Intra-Class Correlation

Displacement 0.97 0.88

Stress 0.99 0.98

One of the major findings of the FEA is that New Pillar design generates a slightly

larger stress values (9.8% on average) and higher displacement values (20.3% on

average) (Table 8.4). Von Mises stresses and displacements across all pillar types (A,

B or CD) increase as the applied static loads becomes larger.

Table 8.4
Descriptive statistics of Von Mises stress and displacement values (in cm)

Minimum Maximum Mean Std. Deviation

Displacement Old Pillar 20.27 63.17 43.8167 15.66

New Pillar 28.77 84.20 54.9475 17.84

Stress Old Pillar 129.00 438.00 293.33 103.23

New Pillar 129.00 502.00 318.08 121.46

Most of the Von Mises stresses across pillar types were lower than the yield

strength of 420MPa (yield strength of assigned HSLA material (420MPa HSLA steel)

[180–182]. However, B and CD pillars at 20,000N and 22,000N were resulted with a

yield strength of higher than 420MPa (421MPa, 438MPa, 447MPa and 502MPa for

Old and New Pillar respectively), which indicates a potential failure (Figure 8.11).
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Displacement values for all pillar designs were less than the maximum roof-crush

threshold value of 125mm. Maximum displacement at 22,000N on Old Pillar yielded

22mm, whereas under same loading condition Old Pillar design yielded 84.2mm (Fig-

ure 8.12).

8.8 Results and Discussions

Structural integrity simulation conducted in Experiment-III revealed that New

Pillar model with see-through-gaps comply with FMVSS standards. Maximum dis-

placement at 22,000N was measured as 84.2mm for B-pillar, which is below the recom-

mended upper limit of 125mm noted in FMVSS standards. Von Mises measurements

shows that a slightly higher stress value (502MPA) was measured for B-pillar at max-

imum loading of 22,000N. Although the measured maximum stress value was slightly

higher than the FMVSS requirements, the maximum deformation was within 125mm

window. FEA stress simulation showed that a deformation occurs at 22,000N, but

the maximum value complied with roof-crush requirements. Figure 8.13 shows that

at maximum loading scenario of 22,000N, measured maximum deformation provided

su�cient head room for a 95% male manikin inserted into vehicle.

Figure 8.13. Comparison of displacement values associated with static
loads and pillar types between Old Pillar and New Pillar. All displace-
ment values are within maximum crush limit of 125mm.
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9. DISCUSSIONS

This chapter is split in two subsections: Hypothesis and Limitations. In Hypotheses

section, summary of findings supporting each hypothesis are covered in four sepa-

rate sections. Finally, limitations associated with experimental setup, data collection

methodologies and simulation assumptions are summarized.

9.1 Hypotheses

9.1.1 Hypothesis #1

Hypothesis #1 (H1) = For visual field analysis, correlation of visual field re-

sults (within subjects) between six trials should be at least in high correlation (’Good’

or ’Excellent’), where Intra-Class Correlation (ICC) index falls in range of 0.6 <ICC

<1.0.

Comparison of Fixation Duration (in milliseconds), Coordinates-X (in pixels) and

Coordinates-Y (in pixels) data between six trials resulted in ICC scores bigger than

0.6. Results in Table 6.15 shows that eye-tracker data provides ’excellent’ test-retest

reliability on capturing eye movements (X and Y coordinates) and ’good’ reliability

in detecting duration of pupil fixations associated with X,Y coordinates.

In addition to the ICC scores, similar observations are captured in ANOVA

and MANOVA analyses. One can see from Table 6.46 that, in each ANOVA and

MANOVA analysis Trials did not show any significant e↵ect on Fixation Duration,

Coordinates-X and Coordinates-Y. A strong test-retest reliability is also summarized

in Figure 9.1, where Trials data for each dependent variable shows an analogous

pattern with relatively approximate values.
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From above results, one can conclude that in each trial eye-tracker simulation

data provides su�cient test-retest reliability for Fixation Duration, Coordinates-X

and Coordinates-Y outcomes.
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Figure 9.1. Mean average values of Fixation Duration, Coordinates-X
and Coordinates-Y associated with each Trial. An analogous pattern
is visible between dependent variables at each trial.

9.1.2 Hypothesis #2

Hypothesis #2 (H2) = For each subject, visual detection of road elements with

Proposed Pillar (New Pillar) design and with Current Pillar (Old Pillar) design are

significantly di↵erent.

One can see from summary of ANOVA and MANOVA results in Table 6.46

that Pillar Type has significant e↵ect on Fixation Duration, Coordinates-X and

Coordinates-Y readings around 83% of a time. In addition, Area of Interest study

in Figure 6.7 and 6.8 shows an intense accumulation of data (fixation duration and
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eye-movements) at Area-1 in New Pillar design. In contrast, Old Pillar model shows a

significantly weaker concentration at Area-1. New Pillar model receives a 43% higher

total number of hits on Area-1 when compared to Old Pillar model.

On top of these results observed in Objective Experiment (Experiment-I), Sub-

jective Experiment (Experiment-II) also shows around 95% improvement on Tra�c

Object Detection. Subjects who were able to detect tra�c objects with New Pillar

design also had 94% performance improvement in correctly identifying tra�c objects.

Data shows that detecting tra�c objects on Old Pillar is harder than detecting traf-

fic objects with New Pillar design. Results of Cooper Harper test also reflects that

subjects had an agreement that a high driver mental workload is required when using

Old Pillar model (Figure 7.14). In addition, subjects rated New Pillar design higher

than Old Pillar design in every evaluation category (visibility, safety and aesthetics).
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Figure 9.2. Comparison of mean values of Coordinates-X data be-
tween Old and New Pillar. New Pillar design generated significantly
lower values on X-axis, which indicates that subjects make less eye-
movements to detect a tra�c object.
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Similar results can be also observed in Figure 9.2, where mean outcomes of

Coordinates-X di↵er significantly between Old Pillar and New Pillar. New Pillar

design generates around 350 pixels less than Older Pillar design, which indicates sub-

jects detected tra�c objects on New Pillar easier and stopped making more eye-gazes.

Lower average values of Coordinates-X data overlaps with subjective results found in

Experiment-II.

From above results, one can conclude that, for each subject, visual detection of

road elements with New Pillar design is significantly di↵erent that Old Pillar design.

9.1.3 Hypothesis #3

Hypothesis #3 (H3) = Proposed Pillar (New) design is significantly better

than Current Pillar (Old) design in terms of concept design criteria; forward (A-

pillar), side (B-pillar) and rear field (CD-pillar) visibility.

Experiment-I provided an extensive data about subjects forward visibility (A-

pillar). Di↵erences generated on tra�c object detection between New Pillar and Old

Pillar were demonstrated on Figure 6.17 and 6.17. In New Pillar design, subjects

eye-movements were mostly concentrated on the Area-1, whereas in Old Pillar most

of the eye-movements were scattered across the simulation display. Heat-maps and

burnout images show significant di↵erences generated by pillar designs.

Improvements in forward (A-pillar), side (B-pillar) and rear field (CD-pillar) vis-

ibility, ease of detection and Cooper-Harper tests were plotted in Figure 9.3. Once

can see that New Pillar design o↵ers around 95% of tra�c object improvement when

compared to Old Pillar design. Subjects also found that New Pillar design provides a

lower demand on drivers (subjects) when compared to detecting tra�c objects with

Old Pillar design.

Summary of results in Section 6.6.3 also provides an additional insight about

subjects’ opinion on pillar visibility. Figure 7.17 shows that subjects rated New
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Pillar design better than Old Pillar design in terms of overall visibility and visual

safety (success of detecting tra�c objects).

From above results, one can conclude that forward (A-pillar), side (B-pillar) and

rear field (CD-pillar) visibility during detection of tra�c objects with New Pillar

design is significantly di↵erent than Old Pillar design.

9.1.4 Hypothesis #4

Hypothesis #4 (H4) = Mean values of maximum forces and displacement val-

ues for front, side and rear loading on Proposed Pillar (New) design are not signifi-

cantly di↵erent than Current Pillar (Old) design.

Finite Element Analysis (FEA) conducted on Experiment-III (based on FMVSS

roof-crush test requirements) demonstrated that New Pillar design with see-through

gaps did not significantly di↵er than Old Pillar design in terms of structural integrity.

Table 8.4 shows that mean values of stress and displacement results between Old Pillar

and New Pillar design follow an increasing trend when applied force values increased

from 16,000N to 22,000N. Only B-pillar and CD-pillar at 20,000N and 22,000N re-

ceived higher stress values than yield strength of HSLA material, which indicates a

possible part failure. All displacement values were found within the acceptable crush

region of 125mm specified on FMVSS requirements.

Figure 9.4 shows the a↵ects of maximum displacement measured during FEA

experiment on occupants. The maximum displacement measured for Old Pillar and

New Pillar design was 63.17cm and 84.20cm respectively. In each case, maximum

displacement occurred at the maximum static loading (22,000N). One can see at

Figure 9.4 that New Pillar design provides su�cient head room for 95th percentile

occupants when maximum loading was applied to the pillars. Visual representation

of displacement with manikins overlaps with FEA results, where no clash or contact

between upper torso of manikins and vehicle frame were detected.
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Figure 9.4. Available head room at peak crush loading (22,000N).
Deformed area does not provide any clash/contact with occupants
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9.2 Limitations

9.2.1 Human data collection

One of the motivations during the development of this dissertation is to provide

a high-fidelity human data collection method with balanced financial investments.

Most of the human factors studies in design domain require high capital investments

and use of advance digital data collection tools. Although high-end data collection

tools may provide an additional insight, there are many alternative methods and

devices that provide su�cient fidelity within acceptable cost margins. In past decade,

devices such as motion capture, eye-tracker and 3D scanners went through significant

changes, especially in terms of precision and connectivity. Now, various low-end

devices provide su�cient fidelity and flexibility in importing and exporting raw data

within di↵erent operating systems. However, a seamless integration is still limited.

Building a custom design framework requires connectivity with multiple stand-alone

devices, which depend on hands-on experience and technical expertise.

Experimental Setup
(~ $500)

Alternative Setup
(~ $20,000)

Figure 9.5. Comparison between eye-tracker setup used in this dis-
sertation and a commercial alternative [183]. Current setup provides
a relatively similar fidelity within conservative financial approach.
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In this study a cost e↵ective eye-tracker system was used with simple physical

probes (steering wheel, pedals, monitor). There are various packages (eye-tracker,

analysis software) available, which could render this experiment with increased fi-

delity, however cost would be significantly higher (Figure 9.5). An expensive exper-

imental setup not always lead to a more precise data collection. Although using a

low-end system increased time and post-processing required for initial setup, skills

and expertise developed become invaluable assets. Depending on the nature of the

experiment, a high-end setup would be more suitable. In this experiment, desired

fidelity was achieved within a financially conservative approach.

9.2.2 Driving experiment

One of the limitations of this study is that a static driving simulator was used

instead of a full-dynamic driving simulator. The static driving simulator was com-

posed of a large scale monitor, steering wheel, pedals and an adjustable seat. Static

simulator was stationary and did not provide any dynamic interaction with the tra�c

environment. During the simulation, static images that represent the driver’s point

of view for A, B and CD-pillar were projected on the monitor. Meanwhile, subjects’

dynamic motion of eye-movements were recorded through an eye-tracker device.

In theory, the same experiment could be conducted in a simulator that has dy-

namic range of motions (in X, Y and Z axes) with real-time control of the vehicle.

This approach could provide a higher fidelity of simulating tra�c objects and collect-

ing eye-tracking data that is closer to a real driving experience. One of the major

limitations of this approach is the cost associated with a full-scale simulator. Another

major limitation is the lack of ability to modify cockpit environment for the purpose

of this experiment, which requires modification of pillar with see-through gaps (cut-

outs). This modification would be hard to achieve in a full-scale physical simulator.

Instead, an interactive simulator setup, which can map subject’s inputs (steering,

acceleration,.etc.) with a dynamic driving simulation was used (Figure 9.6).
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Experimental Setup
(~ $3000)

Alternative Setup
(~ $65,000)

Figure 9.6. Comparison of static and dynamic simulators [184]. Static
simulator used in this experiment lacks of interactivity and dynamic
control. However, it generated a desired fidelity with significant sav-
ings comparing to dynamic simulators.

9.2.3 Structural analysis

There are various strategies to solve a FEA problem, which heavily depend on

the complexity of the problem and the desired precision. In this study, FEA analysis

was conducted with assumptions of: static structural test with linear deformations,

no e↵ects of heat and no presence of buckling. The main goal was to develop a proof-

of-concept study that would demonstrate the a↵ect of forces acting on a see-through

pillar. This assumptions holds validity since FMVSS requirements rely only on static

loading. In addition, material used in this study (HSLA) shows linear deformation

character in elastic region. In an ideal case, FEA test should cover not only static

but also dynamic loading scenarios (i.e. fatigue), full-body vehicle dynamics (i.e.

vibrations) and impact tests (i.e. crash-test) (Figure 9.7). These tests look into loads

acting on body frame in more details, which goes beyond the scope of this study.
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Experimental Setup
(Static Linear FEA)

Alternative Setup
(Non-Linear FEA)

Figure 9.7. Static FEA simulation and non-linear FEA simulation
[185]. A higher fidelity could be achieved by using a holistic simulation
approach, which considers dynamic loading, vehicle dynamics and
impact tests.

9.2.4 Shape of the see-through-gaps

In this study, oval shaped see-through-gaps were cut out from the body frame of

opaque pillars found in regular automobiles. The shape of the cut-out area could

e↵ect the performance of tra�c object detection, as well as the structural integrity

of the vehicle. There could be various shapes applied depending on the type of the

vehicle (family car vs. truck), structural integrity requirements (larger gaps reduce

crash worthiness, etc.), aesthetics preferences (sharp, flowing, smooth, etc.) and

manufacturing techniques (laser cut, molding,etc.) employed. A further study that

focus on shape optimization could generate a better understanding about which shape

would be best to increase driver’s detection performance while satisfying other design

variables (type of a vehicle, structural integrity, cost, etc.) (Figure 9.8). In this study

an oval shape was created by combining two intersecting circles that were joined at

their sides with parallel lines. Oval shapes are known for their fatigue resistance and

are commonly used in aerospace industry (e.g., windows). In contrast to square shape
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cut outs, where stresses are concentrated at the sharp edges, oval shapes distribute

stresses evenly.

Experimental Shape
(Oval see-through-gap)

Alternative Shapes
(Alternative see-through-gaps)

Figure 9.8. Alternative see-through gaps. Only oval see-through gaps
provided in this study. There are various alternatives can be selected
to optimize visibility and structural integrity.

9.2.5 Assistive and augmented technologies

Advancements in automotive electronics are in an ever increasing trend. Aug-

mented technologies such as blind spot monitoring, lane departure warnings, au-

tonomous parking and rear-view cameras are becoming part of safety packages in

mid-to-high priced vehicles. Although many companies provide packages that assist

drivers, their performance in-real-time events require thorough research (Figure A.3).

In case of detecting road objects, especially while driving in downtown areas with

confined spaces and hard-to-see spots, any secondary demand on driver would reduce

the reaction time. Most of the cameras provided in high-end automobiles require

synchronous visual attention between camera screen and the windshield (road). The

additional visual task (checking camera and road back and forth) could be analogues

as text-and-driving where more than 1.5 seconds of visual loss would be catastrophic.

In addition camera systems have provide cues that are hard to represent high fidelity

of human vision. Tracking the perimeter of vehicle in continuously changing ter-

rain, speed, weather, and tra�c conditions over a small low resolution display that
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is located on the main console require significant motor-skills and psycho-physical

adjustments.

Experimental Setup
(A-Pillar Traffic Object Detection)

Concept Technology
(Proposed Video Overlay on A-Pillar)

Figure 9.9. A conceptual video display mechanism provides a real-
time vision to pillar obscuration [186].
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10. CONCLUSIONS

In this dissertation, we introduced ’human-in-the-loop design framework’, which uti-

lizes Digital Human Modeling (DHM) to incorporate Human Factors Engineering

(HFE) design principles early in design process. This framework embodies scientific

methods (e.g., mathematics) and artistic approaches (e.g., visualization) to assess

human well-being and overall system performance.

The fidelity of the design framework was evaluated through an automotive pillar

design study. A concept pillar design that provides a see-through visual experience

was proposed as a design alternative to increase safety and visual comfort. It is tar-

geted to enhance driving experience with a balanced blend of functionality, aesthetics

and cost e↵ectiveness.

Results show that human-in-the-loop design framework was able to detect er-

gonomics di↵erences (visual improvements) between pillar designs (Old Pillar vs.

New Pillar design), and replicate physical test conditions in virtual environment with

high test-retest reliability. Eye-tracker data (Fixation Duration, Coordinates-X and

Coordinates-Y) shows that proposed pillar model (New Pillar) with see-through gaps

provide a higher tra�c object detection performance when compared to Old Pillar

model. Data captured through eye-tracking experiment was also supported by sub-

ject feedback and questionnaires, where subjects found New Pillar design requires

lower mental workload when detecting tra�c objects. Subjects also rated New Pillar

design higher than Old Pillar design in terms of overall visibility and visual safety.

In addition to eye-tracker data and subject questionnaires, New Pillar design

showed a su�cient structural integrity based on Federal Motor Vehicle Safety Stan-

dard (FMVSS) tests. Finite Element Analysis (FEA) data revealed that majority

of Von Mises stress values associated with New Pillar design were below the yield
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strength of the High Strength Low Alloy (HSLA) material used in pillar design. Dis-

placement values were also within the roof-crush limits (125mm) defined by FMVSS.

The maximum deformation (84mm) occurred during static roof-crush test resulted

with minimal or acceptable risk of injury to occupants. At the maximum loading

(22,000N) scenario, 95th percentile occupants had su�cient head room and no clash

was detected between occupants and the deformed body frame.

This study demonstrated that most of the limitations related to fidelity and ex-

changebility of DHM design studies could be resolved through the human-in-the-loop

design framework. In this dissertation, a sketch-to-analysis type design framework

was demonstrated through integrating various multi-disciplinary design methods such

as: surface modeling, CAD, HFE, human-subject data collection and FEA (Figure

10.1). This approach has important advantages over most of the engineering design

platforms that do not consider human aspects early in design process. Some of the

advantages of human-in-the-loop design framework are:

• Human-in-the-loop design framework demonstrated that DHM tools can reduce

cost and time associated with design process without compromising fidelity

(Figure 8.1).

• Human-in-the-loop design process can be applied to small to large scale design

studies, from conception to creation (Figure 8.1).

• This framework embodies scientific and visual aspects of human element in

design process, which is rarely represented in HFE research (Figure 8.1).

• Asides traditional human factors interventions (questionnaires, ergonomics check-

lists, etc.), human-in-the-loop design framework allows integration of traditional

techniques with digital design (FEA, CFD, etc.) tools/methods (Figure 8.1).

• It’s ease of integration with various digital design tools makes human-in-the-loop

framework a cost e↵ective design approach for human-subject data collection

studies (Figure 8.1).



272

M
O

DE
LI

NG
PR

O
TO

TY
PI

NG

ST
RU

CT
UR

AL
AN

AL
YS

IS

UN
DE

RS
TA

ND

CO
NC

EP
TU

AL
IZ

E

CR
EA

TE

DE
SI

G
N 

RE
Q

UI
RE

M
EN

TS
DE

SI
G

N 
RE

AL
IZ

AT
IO

N

DI
G

IT
AL

 H
UM

AN
M

O
DE

LI
NG

(D
HM

)
Bi

no
cu

la
r V

is
io

n

Su
rfa

ce
 M

od
el

in
g

Fi
ni

te
 E

le
m

en
t A

na
ly

si
s

Ph
ot

or
ea

lis
tic

 R
en

de
rin

g

F
ig
u
re

10
.1
.
H
u
m
an

-i
n
-t
h
e-
lo
op

d
es
ig
n
fr
am

ew
or
k
em

b
od

ie
s
sc
ie
nt
ifi
c
an

d
vi
su
al
iz
at
io
n
as
p
ec
ts

of
hu

m
an

el
em

en
t
ea
rl
y
in

d
es
ig
n
p
ro
ce
ss
,
fr
om

co
n
ce
p
ti
on

to
cr
ea
ti
on

of
p
ro
d
u
ct
s.



273

11. FUTURE WORK

Besides all the successful results demonstrated in this study, integrating human fac-

tors principles into design process through DHM has limitations. Amongst the most,

fidelity and exchangeability of design models between HFE and multi-physics simula-

tion tools require the most attention. Human-in-the-loop framework o↵ers a method

for integrating HFE design principles with Engineering Design and Industrial Design

methods, however a seamless integration is still missing between DHM and multi-

physics simulation packages (e.g., CAE, CFD, FEA).

In most of the design applications significant post processing and data exchange

are still required. There are fidelity related limitations when evaluating human phys-

iology and cognition, as well as representing actual environmental conditions. On

top, research regarding cognitive capabilities of humans is not well reflected in DHM

packages. There are also adaptation related challenges in front of DHM community.

Industrial and educational transformation is crucial to expand the coverage of DHM

tools, which require domain specific attention. A summary of critical work needed is

presented under two topics: ’Fidelity’ and ’Adaptation’.

11.1 Fidelity Concern in DHM Domain

Working with virtual/digital tools instead of physical objects has both advantages

and disadvantages [92]. A leading PLM consultancy, CIMdata, concluded: on aver-

age, organizations using digital manufacturing (high technology investment products)

technologies can reduce lead time to market by 30%, the number of design changes

by 65% and time spent in the manufacturing planning process by 40%. Produc-

tion throughput can be increased by 15% and overall production costs can be cut

by 13% [187]. However, virtual/digital applications require relatively high capital
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investments, training and user expertise. For mass production and/or Research and

Development (R&D) environment digital tools (e.g., DHM) have significant econom-

ical potential. In contrast, when the lot size is very small and innovation is not a

concern, high technology investments become less attractive [188, 189]. Once a su�-

cient budget, the cost of building a digital human model and executing DHM analyses

will be less than the cost associated with building a physical prototype [74,190].

DHM tools share similar advantages and disadvantages. Most of the inexperi-

enced DHM software users consider the tools are di�cult to use. On the other hand,

more experienced users, mostly in aerospace and automotive industries, feel functions

are inadequate and needs customization [77, 92]. Besides software-related problems

mentioned above, one of the biggest limitations in DHM is the fidelity of the analysis

tools or in other words ’to which extend does DHM represent/replicate the reality?’.

Variation in DHM platforms, di↵erences between mathematical and visual models

used and coverage of di↵erent analysis models are some of the few variables a↵ect the

fidelity of the DHM [77].

A digital human model has many components ranging from skin, muscles to cog-

nition. All of these components should work together and function in a similar way

to a real human. Therefore, all the aspects of the DHM components must be checked

and validated for visual and functional realism [77,191].

As the applications of DHM and CEA tools are advancing and expanding, increas-

ing fidelity becomes critical. Its no longer su�cient to work with cartoon appearance

virtual human models with very simple analysis and functions. Realism is paramount,

and the success of engineering design research through DHM highly depends on visual

and functional realism [191]. Below sub-sections show some of the most important

topics related to factors influencing fidelity.
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11.1.1 Realistic visualization

Visual appearance of the manikin is critical for both engineering analysis and com-

munication purposes. The ongoing collaboration between industrial design and engi-

neering departments in various companies highlight the need of human-like manikins

[92]. Lamkull (2005) investigated the e↵ects of the body posture assessment between

manufacturing engineering managers, simulation engineers and ergonomists [192].

This study showed that the ergonomic judgment is a↵ected by di↵erent appearance

modes. A more realistic looking manikin was rated higher. In current DHM packages,

simulation of skin deformation, visual e↵ects of vibration on body and realistic body

motions are simulated with limitations [77]. This problem has computing perfor-

mance considerations in terms of price and cost. However, there are various studies

in recent years showing a promising photo-realistic digital human simulations that

represents real human physics and visualization with high-fidelity [77, 193].

11.1.2 Anthropometry

Anthropometric information forms the backbone of human models in digital envi-

ronment. Anthropometric data should provide up-to-date information about type,

gender, age, physical measurements of the workers inserted into digital environ-

ments [77]. Anthropometric data should also cover wide range of population de-

pending on the application domain. As an example, DHM integrated vehicle crash

test software should consider not only adults, but also small children and even oc-

cupants with disabilities. A study carried out by Oudenhuijzen and Zehner (2000),

assessed the anthropometrics of DHM software in terms of accuracy. In this study

live subjects are compared with CAD manikins. Results showed that accuracy not

only di↵ered between human subjects and manikins, but also between manikins [194].
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11.1.3 Predictive capabilities

Recent advancements in CAE tools expanded the traditional application area of

DHM. Current applications provide solutions in product development, vehicle analysis

and design. A fundamental component of the integrated (CAE and DHM) DHM is

posture prediction and analysis.

In predictive DHM applications, postures and motions are not based on Mo-

Cap data. Instead, optimization-based approach generates realistic postures retrieved

from a database. Motions, joint angles and segments, with multi-degrees of freedom,

are optimized and determined through performance measures such as discomfort,

joint displacement, vision and energy. The same optimization-base approach takes

into account the anthropometrics limitations and constraints.

The predictive capabilities increase the fidelity of human models by minimizing

the use of pre-coded postures/motions [93]. One example shows that if you throw

a ball to the manikin in digital environment, manikins predictive behavior should

react on the coming ball without the need of any pre-coding or user manipulation.

Within the predictive capabilities platform, the software user should assign specific

body posture and pick up to required motion to execute the task realistically [191].

11.1.4 Cognitive aspects

Integration of human sensation channels significantly contribute to fidelity of

DHM. Besides visual channels, other sensation channels are not well modeled. Hu-

man emotion, decision making and mental workload have not adequately represented

in current models [195]. A high-fidelity cognitive model that incorporate decision

making and human reliability could be incorporated to DHM research [196].

A realistic (high fidelity) manikin should be consisted of both cognitive and phys-

ical aspects of DHM. Representing only physical aspects of humans is not su�cient

to replicate the real word scenarios. Cognitive and performance aspects such as facial

representation, stress, mental workload should be included in digital manikins [77,92].
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11.1.5 Posture and motion

Computer manikins used in DHM packages di↵er from how real humans move

and position their body parts. Its hard to replicate a realistic human posture/motion

due to the complexity of human shapes, behaviors and limitations of degrees-of-

freedom in body segments/joints [197]. The biomechanical modeling does not permit

addition of large number of degrees-of-freedom (DOF) associated with various joints.

Therefore there are posture and motion related limitations that contribute of realistic

motion/behavior [92, 93].

11.1.6 Segmentation / Degrees-of-Freedom (DOF)

Digital computer models consist of multiple numbers of segments and joints, which

are linked through mathematical constraints. These constraints provide range of mo-

tion restrictions similar to real human body. In order to obtain high accuracy of

motion, large numbers of segments are needed. In contrast, low numbers of segments

provide ease of handling. Fidelity of motions (also fidelity of manikin model) can in-

crease with multi-joints and segments, which can replicate similar motion and posture

restrictions as real humans.

Traditional DHM models use single-degree-of-freedom (SDF) approach, which is

often associated with a rigid body mass. Studies showed that a lumped parameter

model with multi-degrees-of-freedom (MDF) models is an improved approach over

SDF used in low-fidelity human models [93, 198].

11.1.7 Inner and exterior body

Most of human manikins only consist of the exterior body elements. Inner body

components are also essential to create a realistic human motion and behavior in

digital environment. A complete DHM platform requires inner and outer body ele-

ments for realism [191]. As an example, dynamic human-object simulations (crash
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testing) require both outer and inner components of the manikin, which, together,

play important role in visual and mathematical analysis of injuries [199].

11.1.8 Micro and macro motions

Type of motions has a strong impact on fidelity of DHM models. Various human

tasks (e.g., gripping, picking) require very precise and detailed motions. DHM domain

is in search of models that can be used e↵ectively to perform ergonomic assessments of

di↵erent types of reaching and materials handling tasks. Most of the macro motions

can be simulated with high fidelity, however simulating micro motions need improved

prediction and analysis capabilities. Some aspects of working environments, such as

vibration, also a↵ect the fidelity of both macro and micro motions. Vibration comfort

is also a central concern in transportation design industry. Future DHM tools should

contain improved analysis tools that incorporate micro and macro motions with a↵ects

of vibration [92].

11.1.9 Analysis models

Analysis models should include improved visual and scientific (mathematical) out-

puts within a user-friendly software interface. An ideal DHM platform should be ca-

pable of guiding users during simulation setup and analysis. One of the problems in

analysis models is the inadequate representation of mathematical models used for per-

formance analysis such as Metabolic Energy Expenditure, NIOSH Lifting Guidelines,

etc. Although available DHM packages use very similar mathematical equations to

manual methods, they are still di↵er in their assumptions or in calculation methodol-

ogy. Many of those analyses have been taken from a paper version and incorporated

into DHM software [77]. Even though most of these models are theoretically sound,

but directly transferring these models without fidelity studies is not the optimal way

of achieving fidelity. This approach may lead some of inexperienced users to have
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problems about not knowing the limitations and background of the analysis mod-

els [92].

11.2 Adaptation and Expandability Concerns in HFE and DHM

The future of any scientific branch, especially HFE and DHM, depends on how

well the domain incorporates issues of emerging areas, and disseminate scientific the-

ory into practice [32]. One of the critical challenges of HFE and DHM is to translate

scientific findings and professional experiences about human needs, abilities and lim-

itations into design guidance [65].

Today, our grand challenges are dynamic, fast evolving and cross-disciplinary.

Economic, socio-political and ecological considerations will impact human prosperity

[1] [2, 3]. Thus, design process require a holistic approach, where a diverse pool of

parameters (multiple stakeholders, resources, constraints, etc.) should be taken into

the account. Human-in-the-loop design framework can o↵er solutions to some of

these challenges. There are various domains that DHM can bring human-centered

design principles early in the design process. Following section summarizes some of

the emerging areas where human-in-the-loop framework can extend current theory

and application of HFE and DHM.

11.2.1 Sustainability

Sustainability is one of the grand challenges that a↵ect every facet of life [12,

200]. Researchers agree that methods of conservation and recycling is solely not

su�cient to resolve sustainability concerns [201]. With increased population and

expanding economies, resources become more scarce than ever. Creating resilient

societies depend on how design actions are taken today. One should think short and

long-term projection as well as consequences associated with decision-making.

Sustainability has direct connections to safeguarding ecology and maintaining the

quality of life. Thus, it is inevitable that theory and good practice in HFE must be
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introduced early in the design process [202]. Although some of the researcher imply

the importance of HFE, sustainability and HFE connections is only partially explored.

Theory and practice of HFE in meeting sustainability objectives are limited [12,94].

DHM is one of the most robust design tools that can potentially integrate human-

centered design theory and methods into sustainability area. Human-in-the-loop

framework can be utilized to evaluate human safety, comfort and performance.

One of the application areas that require DHM involvement is Air Quality man-

agement. Air pollution is a critical environmental issue, which limits sustainable

development and causes health risks [94,203–205]. A Metabolic Energy Expenditure

tool based on HFE theory could help engineers to assess the adverse a↵ects of poor

indoors air quality on human health and performance. Compared to conventional

methods, DHM has the advantage of simulating, analyzing and presenting humans

inside areas with poor air quality with advance visualization and performance anal-

yses [94]. Simulations in the context of accepted engineering analysis can influence

design decisions as well as safety and health. DHM in this context also reduces

the need for in-situ human data collection and extensive prototyping, especially in

confined areas with hazardous and toxic material handling [94].

11.2.2 Safety, reliability and quality

Safety and reliability are one of the most important characteristics of a success-

ful product, which often a good indicator of market share. They are also essential

components of total quality assurance, however do not solely ensure quality [206]. Ig-

noring or omitting safety and reliability aspects often result in market loss [207,208].

It could also lead to injury and catastrophic failure. However, many industries suf-

fer from poor safety and reliability. Most of the quality assurance practices evolve

around the idea of evaluating products at the late stage of design process (e.g., beta

prototyping). This leads to accumulation of unforeseen problems, which do not get

detected until the a product is in use [207].
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Human-in-the-loop design framework has potential to detect problems related to

quality, which has direct connections to safety and reliability concerns early in the

design stage. This approach can increase the probability of designing products with

building quality into products earlier.

11.2.3 Multi-Physics simulations

Human Factors theory and methods focus on assessing human-well being and

overall performance of the system. Thus, domain coverage is extensive. Anything

that has connection and/or interactions with human element makes connections to

HFE. This extensive approach requires understanding and synthesis of coupled natu-

ral, artificial and human systems. Thus, next generation human-centered design tools

should recognize complex coupled systems at multiple scales. Within HFE domain

a framework that provides methods and tools for simulating humans in a complex

coupled systems is limited [94]. This approach requires development of domain spe-

cific tools (simulation packages) depending on the design and problem of interest [94].

One of the potential benefits of human-in-the-loop design framework is to integrate

simulation tools with HFE theory and methods. However, the coverage of these sim-

ulations packages are limited (e.g. comfort angles, binocular vision, lifting analysis,

etc.) [14, 65, 209].
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APPENDIX A

APPROVED IRB FORM

Figure A.1. Approved human participants form - Page 1.
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Figure A.2. Approved human participants form - Page 2.
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Figure A.3. Approved human participants form - Page 3.
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APPENDIX B

QUICK SUMMARY

Apart from discussed limitations and weaknesses, human-in-the-loop design frame-

work provides the method of systematically integrating human element early in the

design process. It delivers tools as well as the capability of simulating numerous what-

if scenarios without the need of excessive human-subject data collection. A concise

10-step summary is provided to systematically review goals, methodology and major

findings of this study.

1. What is the purpose of this study (research ideas/questions)?

The goal of this study is to introduce a human-in-the-loop design framework

based on HFE methods and principles. The goal is to introduce human aspects

early in the design framework.

2. What background supported (literature review)?

An extensive literature review of Engineering Design, Industrial Design, Human

Factors Engineering and System Engineering was provided. A through review

of Automotive Design literature in terms of pillar obscuration zones are also

explored. Theory and practice about current state-of-the-art human-centered

design methods were reviewed.

3. Theoretical basis for analyzing questions/hypotheses?

Theoretical foundations of human-in-the-loop design framework is based on Vir-

tual Built Methodology. Hypotheses focus on validity and reliability of proposed

methodology through experimental human subject data collection (eye-tracker),

user-feedback (questionnaires) and simulations (FEA).
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4. What are applicability/practical questions?

The methodology and results provided in this study are directly applicable to

engineering and industrial design domains, especially in automotive design. The

framework introduced in this study can be applied to various HFE studies in-

cluding: product design, safety, ergonomics and education.

5. What is the theoretical contribution?

This study incorporates physical and some of the cognitive aspects of DHM

theory and methods in product design. It includes human data collection, tech-

nology integration, data analysis and sketch-to-analysis type engineering design

design theory.

6. What are the appropriate methodologies for carrying out the questions?

A summary of variables, units and associated data analyses techniques were

covered in Chapter 5 (Data Analysis).

7. What are the appropriate statistical analysis and assumptions?

ANOVA and MANOVA analyses were executed to assess whether independent

variables have significant e↵ects on outcomes. Cronbach’s Alpha analysis was

included to check internal consistency of collected data. Reliability of repetitions

(trials) were evaluated through Intra-class Correlation analysis.

8. How results are presented and what do they really mean?

Human-in-the-loop design framework provides test-retest reliability with high

fidelity. The proposed design idea (New Pillar design) provides better visualiza-

tion performance with less mental workload in terms of detecting tra�c objects.

Subjects also rated New Pillar design higher than Old Pillar design in terms

of overall visibility and visual safety. New Pillar design was within FMVSS

roof-crush test limits.

9. What are the conclusions drawn: are they reasonable?

Human-in-the-loop design framework demonstrates potential solutions to over-

come issues related to human-centered design studies. It can reduce the time
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and cost associated with prototyping and detect safety and reliability related

problems early in the design phase. Adaptation of this design methodology as a

universal design framework requires further studies.

10. What are future work/research directions: any possibilities?

There is a need for enhancing fidelity of DHM simulations and expanding the

coverage of simulation tools. This study only covers a specific design problem

(obscuration problem in automotive packaging). One could further develop sim-

ulation methods and tools to extend the theory and practice covered in human-

in-the-loop design framework. These methods and tools could make connections

to emerging technologies, sustainability, safety, quality...etc. A detailed review

of future work regarding fidelity and expandability of DHM were covered in

Chapter 9.1 and Chapter 9.2, under ’Fidelity’ and ’Expandability’ themes.
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APPENDIX C

VEHICLE REFERENCE MODELS

C.1 Blueprint

Blueprint provided in Figure C.1 was used for construction vehicle CAD pillar

model. Blueprint was taken from drawing database web resource [139].

(http://drawingdatabase.com/volkswagen-phaeton-2011/)

Figure C.1. A generic blueprint representation of VW Phaeton model [139].
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C.2 Phaeton Model

Image credit goes to Caomengxing (https://grabcad.com/caomengxing-1/projects)

from GrabCad open-source CAD community [140]. Some of the surfaces geometry

and construction coordinates found on Phaeton surface model provided by Caomengx-

ing (Figure C.2) were used as reference geometry/points during construction of CAD

pillar model and representation of the vehicle.

Figure C.2. VW Phaeton surface model was used inline with blueprint
as reference geometry to construct CAD pillar models [140].



303

C.3 Body-in-white Vehicle Frame

Image credit of body-in-white geometry provided in (Figure C.3) goes both to

Abhijatya Gupta (https://grabcad.com/abhijatya.gupta/projects) [141] and Sameer

Bhardwaj (https://grabcad.com/sameer.bhardwaj-2/projects) [142] from GrabCad

open-source CAD community. Reference points provided in Gupta’s and Bhardwaj’s

body-in-white surface model were used as reference points, and modified to construct

CAD vehicle frame.

Figure C.3. A surface model representing a generic body-in-white
frame of a 4-door sedan vehicle [141,142]

.



VITA



304

VITA

Onan Demirel is a Ph.D. candidate under the supervision of Prof. Vincent G.

Du↵y in the school of Industrial Engineering at Purdue University, West Lafayette,

Indiana. He received B.S and M.S degrees in Industrial Engineering from Purdue

University.

In his research, Onan explores inter-dependencies and co-evolution of human ele-

ment in engineering, natural and social systems. His research focuses on understand-

ing and optimizing human performance and the well-being of the overall system. He

currently works on developing a human-in-the-loop design framework, which uses

Digital Human Modeling (DHM) to integrate Engineering Design, Human Factors

and Systems Engineering. This framework allows visualization and scientific repre-

sentation of humans in digital environment. It also embraces functional requirements

(engineering design) with form aspects (industrial design), with human element at

the center. His recent publications at HCII and IJIE focuses on sustainability, and

representing strategies to evaluate adverse e↵ects of indoor air quality.

He collaborated on cross-disciplinary DHM design research with companies such

as Ford, Whirlpool and Cummins. He expects to begin employment as Assistant

Professor at Oregon State University in the School of Mechanical, Industrial and

Manufacturing Engineering.


