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Abstract 

The A-Design approach to automated design has been developed for a general class 

of conceptual design problems. The methodology is founded on the notion that 

engineering design occurs in interaction with an ever-changing environment and 

therefore computer tools developed to aid the design process should be adaptive to these 

changes. A-Design invents solutions to open-ended design problems through the 

interactions of a multitude of agents folded into a stochastic iterative process capable of 

adapting to changes in user preference. 

The motivation for A-Design is to integrate qualities of the human design process into 

a computational algorithm. This has been accomplished by creating four subsystems that 

each embody a different characteristic of human conceptual design: an open-ended 

representation of the design problem, an adaptability to changes in problem 

specifications, a collaborative involvement of different ideas and preferences, and an 

iterative yet guided search for successful solutions. 

A design problem is presented to A-Design by a description of the desired 

functionality in the form of system inputs and outputs, a set of objectives to be optimized, 

and a library of electromechanical components. Two test problems (an electromechanical 

weighing machine and a MEMS accelerometer) test A-Design’s ability to invent novel 
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configurations. Several experimental results validate the development of A-Design as a 

successful model of human design process characteristics. The results show that A-

Design is independently capable of invention, has the ability to aid the human designer in 

developing new conceptual designs, and provides an experimental framework to model 

how to achieve conceptual design as well as how humans might achieve conceptual 

design. 
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Chapter 1 

Introduction 

In the latter half of the twentieth century, the computer’s development into a powerful 

analysis tool revolutionized engineering practice and education. Computational tools in 

engineering provide new ways of visualizing systems (Computer-Aided Design), 

analyzing components (finite-element analysis) and even automating the manufacture of 

devices (Computer Numerical Control Machining). Perhaps the computer’s biggest 

impact on engineering is the ability to design and test artifacts on a computational testbed 

prior to constructing prototypes. Such computational analysis can reduce design costs and 

cycle times by predicting difficulties early in the design process. While numerous 

computational applications have helped the engineering design process through 

automating complex analyses, few applications attend to the actual design synthesis. 

Beyond the development of ‘computer as analyzer’, lies a lesser-known and more 

challenging development of ‘computer as designer’. While the computer has a definite 

advantage over humans in calculation speed and accuracy, many believe it lacks the 

faculties to make informed and intuitive decisions, and thus is incapable of embodying 

the creative process needed for true design and invention. However, this perspective has 
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slowly changed with advances in design automation. With the establishment of state-

space search (originally formulated as a cognitive model of human problem solving by 

Newell and Simon, 1972; Simon, 1969), computational design has progressed from 

solving well-behaved mathematical problems towards addressing more ambitious 

engineering design problems. The slower development of computational design can be 

attributed to three challenges unique to design: 

• First, characteristics of the human design process (hereafter referred to as “human 

design”) have yet to be realized in an implemented process. While research in 

automated design involves static problems, real design is not static. Human 

creativity is capable of developing novel artifacts through adapting to difficulties 

and challenging past conventions. This dissertation’ main goal is to establish a 

new theory for automated computational design that incorporates characteristics 

of human conceptual designing, thereby broadening the applicability of computers 

in engineering. 

• Second, unlike analysis, which has a history of mathematical formalism at its 

foundation, engineering design has yet to be studied with the same rigor. Studies 

in cognitive psychology may provide an understanding of the underlying 

principles inherent to conceptual design. Such studies would provide the 

understanding needed to formalize design as a computational endeavor. One of 

this dissertation’s intentions is to demonstrate the need for more cognitive science 

studies of the design process to increase our understanding of both human and 

computational design.  
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• Third, design requires the comparison of various alternatives. Such comparison is 

best performed by evaluating solutions on a common metric. Depending on the 

complexity of the design problem, this comparison may require detailed analysis 

to occur as a subset of design. The challenge lies in developing a computational 

search process to automatically invoke analysis both reliably and efficiently. 

However due to the numerous design alternatives being compared, automated 

analysis must be structured to allow for a quick evaluation of alternatives. As a 

result of these time constraints, the computational design researcher may need to 

develop heuristics around complex analysis to address the challenge of both 

searching for and automatically analyzing designs in real time.  

This dissertation establishes a new theory for computational design known as A-

Design. A-Design brings together various innovations in design theory and automation to 

address the early phase of conceptualization that occurs only when a design need has 

been established. This early design phase is currently the product of human creativity and 

has yet to be realized in a computational system. This research makes several strides to 

decoding this part of the design process by developing a computational system capable of 

invention for a range of design problems. 

1.1 MOTIVATION 
Traditionally, computational design tools have been employed downstream in the 

design process to improve features in an existing design. Usually, this occurs as an 

optimization of variables already defined within a design. However, many conceptual 

design decisions have yet to benefit from computational design aids prior to establishing 

a design concept. In this early design phase, the engineering designer is faced with a 
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variety of difficult decisions. While the purpose of the designed artifact is often well 

understood, goals and trade-offs among the goals are rather transitory. Due to new 

technologies and changes in marketing demands, the engineering designer needs to not 

only build and test new prototypes but also to reevaluate the problem specifications in an 

iterative procedure of adapting and fine-tuning. 

Within this preliminary stage of design, computational aids could assist the designer 

in reducing the space of possible solutions and in establishing the specifics of a design 

artifact. It is difficult to envision the basis for such a computational tool, since current 

computational systems naturally operate on well-defined structures following well-

defined algorithms, thereby making them inappropriate for the open-ended and 

unstructured nature of conceptual design. Furthermore, unstructured conceptual design 

has a much larger design space compared to the restricted space of solutions addressed by 

optimization techniques. Whereas optimization requires variables to be defined prior to 

search, conceptual design is not limited by the number of variables or set design 

configurations.  

The design system presented in this dissertation addresses this formidable and often 

less investigated issue of understanding and formalizing the early conceptual phase of 

design. This new conceptual design theory investigates basic characteristics of human 

conceptual design and seeks to establish these traits in a computational system. The 

motivation for developing this technique is threefold: (1) to further the capacity of 

computation by creating an invention machine that automatically creates solutions to 

open-ended design problems, (2) to create a basis for future design tools that can assist 
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the engineering designer in the early conceptual stage of designing and (3) to model 

aspect of the human conceptual design process to learn more about how human design is 

accomplished. 

1.2 CONCEPTUAL DESIGN AS SEARCH 
Throughout this dissertation, the view of conceptual design is likened to the concept 

of search. We envision a space of design instances whereby each state within the space is 

a solution to a common design problem. For example, Figure 1.1a introduces the body 

weight scale example as the basic design problem used throughout this dissertation for 

both describing the methodology and for running experiments. This figure represents the 

space of possible solutions to the problem of measuring a person’s weight. Within this 

space, a variety of different designs achieve this design purpose including upright beam 

scales, dial scales and digital scales. However, because this space of solutions is 

delimited only by the problem description, it also contains all future solutions to the 

design problem that have yet to be realized. These future designs are likely to include 

novel solutions that combine previous technologies in unique ways as well as designs 

utilizing new technologies. 

Within such spaces, instances can be organized such that solutions with similar 

configurations are close in proximity. Therefore, divisions into different design families 

can be accomplished, such as dial scales and digital scales as seen in Figure 1.1a. The 

principle for this visualization is that designs that require little modification to transform 

them from one state to another are closer to each other than designs that require larger 

modification. Therefore, to move about this space of solutions, one makes 
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transformations to designs to arrive at neighboring solutions. Through numerous 

modifications, one can visit a wide variety of possible configurations. Because the space  

is infinite in its organization and includes past, present and future design states, this 

“searching” through the space becomes analogous to “creating,” “designing,” or 

“inventing” in real design problems. If this space is describable to a computational 

Figure 1.1: (a) Represents the space of possible body weight scales, (b) represents this space in 
context with the larger class of weighing machines. 
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system, then the challenge is to effectively find in this set the solution that best meets the 

demands of the design problem. However, no search process can completely capture the 

conceptual design spaces. There are four challenges to the development of making 

conceptual design a computational search process: representation, generation, evaluation 

and guidance. A discussion of each challenge follows. 

1.2.1 Representation 

The space of possible body weight scales shown in Figure 1.1a is a subset of a larger 

space of solutions. As seen in Figure 1.1b, the space of body weight scales (I) is a subset 

of the larger space (II) of weighing machines representing devices that measure the 

weight of an unspecified object. This space includes other families of weighing machines 

including load cells, spring scales and balances. This could be further extended to other 

supersets such as the space illustrated by III in Figure 1.1b. This space includes all 

devices that provide a proportional displacement as a result of a supplied downward 

force, such as a cantilever beam.  

The purpose of this illustration is to show that this view of the search space, while 

somewhat arbitrary in definition and division, provides insight into the challenge of 

representing design concepts. In order to demarcate different types of configurations, 

styles and behaviors, a method of describing these concepts in a formal manner must be 

established. While it might be easy to delineate various design functions with natural 

language, such as “body weight scales include all designs that are used to measure a 

person’s weight”, it is not clear how to best define this for a computational system. The 

method used in this dissertation is one of representing functionality by describing the 

input and output behaviors of a design. For example in Figure 1.2a, the weighing 
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machine design problem is formally specified as a transformation of an input downward 

force to an output rotational displacement. 

By mapping this representation of desired functionality onto the previously shown 

search spaces, only a partial set of the larger space of solutions is captured (see Figure 

1.2b). The output of a dial in Figure 1.2a limits the space of possible solutions to only the 

set of body weight scales that use a dial at the output as well as including non-body 

weight scales that might fit this input and output behavior. While this representation does 

not provide a perfect fit to the design problem of body weight scales, it does provide a 

general syntax for describing design function. A variety of different design problems can 

be posed in this description of input and output behaviors. With the exception of the 

endpoints of a design, this representation method does not constrain the configuration 

details, thereby allowing a wealth of possible design configurations to exist in solving 

Figure 1.2: (a) Weighing machine design problem. Design an electromechanical system that 
converts a specimen’s weight (Input) to a specified dial displacement (Output). (b) This 

representation of function isolates a section of the search space. 
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this design problem.  

1.2.2 Generation 

The second challenge in reducing conceptual design to search is the method for 

generating design concepts from a design problem description. The top of Figure 1.3 

depicts the process of generating design states. The process starts with a “seed” or 

description of the design problem (as shown by the bolded circle at the top of the figure). 

All design alternatives are constructed in stages progressing from problem description to 

complete design instance. The result of the construction is a point in the search space 

shown in the center of Figure 1.3. This generation of design solutions is not a well-

defined task. Ideally, the generation method should be capable of creating the wide 

diversity of solutions that are demarcated by the representation and should provide the 

means to move between design configurations in the search space.  

Figure 1.3: View of search space as an intermediate step between the process of creating design 
states and evaluating the utility of such states. 
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1.2.3 Evaluation 

In order to direct the search process a computational system must have some 

knowledge of how to compare design states. While design is in essence an open-ended 

problem with “no right answer”, definite distinctions can be made between good and bad 

solutions. A metric may be constructed to articulate these distinctions as an overall value 

for individual design states. A numerical value, no matter how approximate, is 

determined for each unique design in the search process, as seen in Figure 1.3. In the 

bottom of the figure, the utility of each design is visualized as a numeric value on a 

surface of “evaluated” design states.  

This utility represents an aggregation of all the attributes that characterize a design 

including performance metrics such as efficiency, maximum speed and power handling; 

market-driven metrics such as cost, durability and repairability; and consumer 

perceptions of the design state such as aesthetics and user-friendliness. The reduction of 

these many diverse attributes to a single value is further complicated by market changes, 

changes in one’s perception of design worth, and fluctuations due to the aggregation of 

many people’s view of the design. While an approximate value for such a metric can be 

made to effectively guide the search process, the means of actually ascertaining the user’s 

utility function is complex enough to be a research topic within itself.  

1.2.4 Guidance 

An exhaustive search for the best design is not possible due to the infinite size and 

complexity of the conceptual design search space. Fortunately, numerous optimization 

techniques have been developed which can provide a starting point in guiding the search 

for successful solutions. By using the utility function as the basis for comparison, 
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techniques can be developed to efficiently find successful solutions without a complete 

search of the space. However, in this work the use of the word ‘optimization’ is used with 

caution as this often implies the existence of some global optimum of a static objective 

function. The space in conceptual design envelops new technologies and processes, and 

the utility function is always under constant change. Therefore, unlike optimization, there 

is no optimal point; no utopian solution exists in these conceptual design spaces. To 

better understand this nihilistic statement, imagine the conceptual design search space for 

automobiles. This includes a space of all designs created in the last one hundred years 

with no clear indication of a true optimal solution. New technologies, market demands 

and consumer perspectives have greatly affected and will continue to affect automotive 

design.  

Therefore while optimization is a good starting point, one must realize that in true 

design nothing is fixed. The search space and the utility function change constantly, thus 

the search for the best design is never ending. The real design process is marked by a 

series a “successful” design states. These successful designs, although prone to revision 

in the future, emerge as a result of the design process converging on solutions that appear 

to satisfy the current utility function well enough to diminish the need for further search. 2 

1.3 OVERVIEW 
Thus far, four main theoretical challenges have been presented in developing an 

automated approach to conceptual design: representation, generation, evaluation and 

guidance. In overcoming these challenges A-Design looks for direction in the only 

                                                 
2 This brief description of search spaces and utility functions is a synopsis of many diverse research efforts. 
While this information is gathered from many sources, it is rooted the seminal contributions of Jones, 1976; 
Simon, 1969; Keeney and Raiffa, 1976. 
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currently successful conceptual design machine: the human mind. In so doing, each of the 

four challenges is identified with a particular human trait that makes people capable  

designers. Figure 1.4 graphically depicts these areas and the human characteristics that A-

Design integrates. As a result of this integration, A-Design can be viewed as having four 

subsystems: 1) an open-ended formulation for representing design states, 2) an agent 

Figure 1.4: Generalized view of the four challenges present in modeling conceptual design as 
search and how the four subsystems of A-Design overcome these challenges with human design 

characteristics. 
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architecture that, through the collaboration of various agent-types is responsible for 

generating candidate solutions, 3) a scheme for evaluating multi-objective decisions to 

allow for an adaptive approach to meeting user preference, and 4) an iterative algorithm 

for guiding basic design concepts to successful design solutions.  

Originally, A-Design was conceived as a combination of agent collaboration and 

adaptive design selection. However, throughout the course of bringing these two areas 

together, a stochastically guided iterative process and open-ended functional 

representation were brought in to address design problems at a more conceptual level 

than previously investigated by design automation.  

1.4 ORGANIZATION 
In this dissertation a full description of the A-Design system is presented. The early 

chapters present the fundamental elements of the theory and the later chapters validate 

the various facets of the theory through test problems and experiments. 

As seen in Figure 1.4, the next five chapters are devoted to the subsystems of A-

Design. Each of these chapters presents the purpose, related research projects, and details 

of the operations of each subsystem. Chapter 2 outlines the iterative procedure of A-

Design. The description of this procedure includes a brief overview of the remaining 

subsystems, and thus provides an introduction to the flow of information between these 

subsystems. Chapter 3 then presents the method for choosing which design solutions best 

meet a user’s utility function. Next, the method for representing designs is described in 

Chapter 4, followed by the method for generating and modifying designs through agent 
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collaboration in Chapter 5. Finally, Chapter 6 explains how learning is used to guide the 

iterative search for new designs.  

The second half of the dissertation begins at Chapter 7 with the introduction of some 

preliminary test results. Two electromechanical design problems are then described in 

Chapter 8: the design of a weighing machine and the design of a Micro-

Electromechanical accelerometer. Next, Chapter 9 validates parts of the A-Design 

methodology that are not easily observed in the examples of Chapter 7 and 8. 

Chapter 10 provides a summary of A-Design and discussion of the theoretical claims 

it makes. Also, this chapter addresses conceptual design research challenges that emerge 

from the development of the A-Design methodology. Chapter 11 then closes this 

dissertation with a list of contributions and possible areas of future work. 

1.5 THESIS STATEMENT 
A conceptual design theory combining the adaptive, open-ended, collaborative and 

iteratively guided characteristics of human design automatically creates design concepts 

to meet a user's needs and respond to changes in those needs. 
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Chapter 2 

Iterative Search 

Process 

Main Entry: it·er·a·tive3 
Pronunciation: 'i-t&-"rA-tiv, -r&- 
Function: adjective 
Date: 15th century 
: involving repetition: as a : expressing repetition of a verbal action b : relating to 
iteration of an operation or procedure 
- it·er·a·tive·ly adverb  

While many impressive innovations in computer science seem to mimic human 

behavior, the underlying operations of human intelligence and artificial intelligence are 

often quite different. The speed at which the computer performs routine mathematical 

tasks provides a basis for complex problem solving that rivals the capabilities of human 

problem solving (as seen in the accomplishments of IBM’s Deep Blue chess playing 

program (Campbell, 1999)). As a substitute for complex human thought, artificial 

intelligence can take advantage of the rapid yet routine behavior of computational 

systems to iterate through many possible solutions and present the best solution in a 

seemingly intelligent leap of decision-making (Pylyshyn, 1992). 
                                                 
3 This definition and the definitions beginning the next four chapters are courtesy of Merriam-Webster’s 
Online Collegiate Dictionary (http://m-w.com) 
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Likewise, the iterative subsystem of A-Design takes advantage of computational 

speed to create and search numerous design states. However, this use of the word 

iterative is a simplification of what is implied when human design is described as 

iterative. Through the evaluation of previous designs, the human designer is informed of 

deficiencies, failure modes and constraint violations that were not apparent in the original 

creation. Iterating in design allows the human designer to acquire knowledge and 

progressively focus on identifying and overcoming the difficulties of a specific design 

problem. This iteratively-guided characteristic of human design is the basis for this A-

Design subsystem. As the process iterates, A-Design becomes more efficient at making 

decisions, guided by knowledge acquired during the creation of previous alternatives.  

In this chapter, the iterative procedure of A-Design is presented to provide the 

framework for explaining the remaining subsystems. After the other subsystems are 

described, Chapter 6 presents the guided part of this subsystem. The subsystem 

embodying the iteratively-guided nature of human designing is separated into these two 

parts. The iterative part captures the cyclic nature of design, while the guided part of the 

subsystem learns from past designs to direct future design activity. 

2.1 RELATED WORK 
Optimization techniques attempt to find the best numerical value, be it maximum or 

minimum, of a mathematical expression of one or more variables. A suite of different 

algorithms exists for the range of different forms of an objective function that exist 

including unconstrained, constrained, discrete, or multi-modal functions. The reason for 

studying optimization in the context of conceptual design is to hopefully gain insight into 

how A-Design can efficiently search for successful designs. It is assumed that conceptual 
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design cannot be described by simple mathematical expressions and that the best 

solution, as determined by a user’s utility, presents itself in a highly nonlinear, 

discontinuous and multi-modal fashion. Stochastic optimization techniques such as 

simulated annealing (Kirkpatrick et al., 1983), Tabu search (Glover, 1989), and extended 

pattern search (Yin and Cagan, 2000) have been able to address these complex search 

spaces with some success. These approaches make informed decisions about how best to 

search by performing numerous perturbations to solutions while evaluating the objective 

function with each change. Subsequent iterations of the search process are guided by the 

statistics gathered from previous iterations, thereby allowing the optimization to 

overcome the challenges of complex search spaces. 

The field of evolutionary computation is based on the principles of natural evolution. 

Within this field, genetic algorithms provide a powerful means to solve complex 

problems and handle complex search spaces (see overview in Mitchell, 1996; Goldberg, 

1989). As a design automation technique, genetic algorithms have been utilized to solve a 

number of engineering design problems (e.g., Queipo et al., 1994; Brown and Hwang, 

1993; Gage and Kroo, 1995). Genetic algorithms compare, propagate and modify many 

design states simultaneously to produce an efficient and parallel search for successful 

designs. Oftentimes genetic algorithms are used to find solutions in highly constrained 

situations where the user is more concerned about finding a feasible solution than an 

optimal one. Genetic algorithms synthesize solutions by modifying the configurations of 

past alternatives in ways similar to those occurring in nature, through genetic crossover 

and mutation. 
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Traditionally, stochastic optimization and genetic algorithms have only been able to 

address search spaces containing a set number of variables. There have been some 

exceptions to this; algorithms such as genetic programming (Koza, 1992), messy GA’s 

(Goldberg, et al., 1993), shape annealing (Shea et al., 1997) and recursive annealing 

(Schmidt and Cagan, 1995) have furthered the capacity of optimization as a design 

automation tool by providing a richer means of representing design states. The general 

progression has been to extend the capabilities of optimization from addressing well-

behaved static variable mathematical functions to handing more elaborate engineering 

systems. A-Design epitomizes this progression by including the notion of an open-ended 

design formulation. In addition, it also differs most from other approaches because it 

maintains and evolves both populations of designs and populations of the design creators, 

the agents.  

In order to navigate the complex search spaces and avoid becoming trapped in local 

optima, both stochastic optimization and genetic algorithms rely heavily on random 

moves and statistical behavior. As a result, these algorithms need to perform many 

iterations to arrive at good results. Optimization of this sort can be costly especially when 

the generation and evaluation of each alternative is time-consuming. In engineering 

applications, evaluation times might prove to be a critical factor due to the complex and 

time-consuming analysis. Modification of designs in A-Design is performed by highly 

goal-directed agents invoked by a stochastic process rather than by a purely random 

process. The directness allows for more efficient search by preventing unfocused design 

creation. 
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2.2 THE A-DESIGN ITERATIVE SEARCH PROCESS 
The iterative subsystem outlined in this chapter includes the step-by-step procedure of 

the A-Design process. The remaining subsystems are described briefly here, as their 

operations are an intrinsic part of the overall framework. At first, a general description of 

the A-Design procedure is described followed by a presentation of the A-Design specifics 

for the weighing machine design problem.  

Figure 2.1 shows a general flowchart of the A-Design process, which can be viewed 

as an instantiation of the search process cycle from Figure 1.4. In this figure, the gray 

boxes indicate tasks involving agents. These agents are strategies that interact to solve 

these design tasks (see Section 5.2.1 for definition). Each of these three boxes contains 

Figure 2.1: General flowchart of A-Design process. 
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the interaction of numerous agents and is described in more detail in Chapter 5 and 6.  

At the top of the figure, the process is initiated with some seed specified by the user 

that encapsulates the description of the design problem. The creation of design 

alternatives is accomplished by a set of interacting agents, known as Maker-agents that 

work directly with these input specifications to produce a population of design 

alternatives. Each of these alternatives results from the contributions of several agents. 

The Maker-agents are responsible for producing new candidate solutions from the 

original description of the design problem and for revising designs returned from 

previous iterations.  

Then, the candidate solutions created by the Maker-agents are evaluated. This 

evaluation can include simple objectives that are easily calculable such as the overall 

mass of a design as well as other objectives that require external computational analysis. 

This evaluation process, which occurs independent of agents, can be viewed as the 

engineering analysis that happens as a subset of the larger engineering design task.  

Next, design alternatives are examined in a process involving the user, the Manager-

agent and the adaptive design selection mechanism described in Chapter 3 (Design 

Selection). The Manager-agent finds the design solution that best meets the 

approximation of the user’s utility function and presents it to the user. If the user wishes, 

he/she can initiate a dialog with the Manager-agent to adjust this preference. As a result 

of this dialog and the evaluation of the designs, the Manager-agent gathers data on which 

agents perform to the user’s specifications and which design elements are useful in 

meeting the user’s specifications. Then, the sorting mechanism described in Chapter 3 
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determines which designs are to be saved to the next iteration, and which designs are 

discarded to make room for new design concepts.  

The designs that are saved for modification are then passed to the next phase of the 

process. Interacting Modification-agents choose designs from the preserved set of best 

solutions and attempt to refine them based on the quality of their evaluation. Agents in 

this category add, remove, or otherwise alter elements of design alternatives to create 

new states that are returned to the process by way of the Maker-agents.  

After the modification of designs, the process repeats, evolving design populations 

and agent populations. As the process unfolds, design states cycle through the exchange 

between Maker-agents and Modification-agents until the system converges or resource 

and time constraints require the acceptance of the current best design. 

2.3 ELECTROMECHANICAL CONFIGURATION A-DESIGN 
As an instantiation of the general flowchart of A-Design shown in Figure 2.1, the 

electromechanical configuration A-Design system used throughout this dissertation can 

be detailed further. Figure 2.2 shows more clearly how the four subsystems of A-Design 

(the agents, the iterative process, the design representation and the design selection) 

interact. At the top of the figure, the initial description of the design problem for 

electromechanical design is supplied as a list of input and output behaviors. These input 

and output descriptions are accepted by the first set of Maker-agents known as 

Configuration-agents (C-agents). These agents build design configurations by connecting  

abstract components drawn from a computer catalog. The designs that result from the C-

agent operations are a connection of components that lack concrete values for the  
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parameters within the system. They are abstract functional descriptions of possible 

complete design configurations, and are described further in Chapter 4 (Design 

Representation). 

Figure 2.2: Detailed flowchart for electromechanical configuration design. 
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From these functional design alternatives, behavioral equations are constructed that 

describe the functional relationships of the inputs and outputs of the problem description. 

By referencing these equations, Instantiation-agents (I-agents) choose actual components 

from the computer catalog to instantiate the conceptual components chosen by the C-

agents. The details of the agent strategies for constructing configurations are further 

described in Chapter 5. After outfitting designs with real components, the process is now 

able to evaluate the alternatives created in this Maker-agent phase. 

The evaluation stage of the process includes objectives that the user has specified as 

the important criteria successful designs. For electromechanical configuration design, 

these evaluations can rely on the aforementioned behavioral equations (as in the test case 

shown in Section 8.1), or external computational analysis (as in the test case shown in 

Section 8.2).  

Next, the sorting of designs divides the candidates into three populations, Pareto-

optimal, Good and Poor, via the design selection process described in the next chapter. 

The Pareto-optimal solutions are first delineated as the candidates from this set that best 

meet a range of rational utility functions. As a result, the designs selected as Pareto-

optimal solutions exhibit a range of strengths in the various objectives of the design 

problem. These designs are saved to the next iteration where they are compared with new  
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and modified alternatives. Good designs are non-Pareto designs that contain beneficial 

characteristics under the current user utility function as determined by the Manager-

agent’s interaction with the user (see Section 3.4). The populations of Good and Pareto 

designs are passed to the modification phase of the process in hopes of improving these 

solutions in the next iteration. The remaining alternatives, Poor designs, are discarded to 

make room for new design concepts since they have the least potential to improve future 

designs. 

The modification phase of the process is done through a fragmentation of designs by 

the Fragmentation-agents (F-agents). The basic strategy of these agents is to improve 

design states by removing components from solutions that appear to be reducing their 

overall worth. As a result of this fragmentation, designs are then reconstructed in the 

following iteration by the Maker-agents. In this manner, the combination of F-agents and 

C-agents together improve designs through their knowledge-driven deconstruction and 

reconstruction. For example, a somewhat heavy design can be identified by a 

Fragmentation-agent. This agent removes the design’s more massive components and 

passes it back to the C-agents so that it might be rebuilt with lighter components in the 

following iteration. 

As the iterations ensue, the process generates numerous design configurations and 

moves towards solutions that best meet the user’s specifications. The Manager-agent also 

tracks successful and unsuccessful trends in the design process to discover the 

characteristics of successful designs that can be learned from past iterations. This 
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tracking provides the iterative guidance to make the process more efficient over the 

iterations and is discussed in detail in Chapter 6.4 

2.4  PURPOSE BEHIND ITERATIVE STRATEGY 
The iterative approach described here is similar to that used in genetic algorithms 

and other stochastic optimization techniques, which take advantage of the number-

crunching abilities of computers to search as many solutions as possible. However such 

approaches are rarely capable of operating beyond the optimization of a well-defined set 

of variables set prior to execution. This predefining of set variables is counter to our goal 

in developing an automated conceptual design process. 

Other than stochastic optimization, a handful of knowledge-driven or rule-based 

techniques exist for solving ill-defined conceptual design problems (e.g. Brown and 

Chandrasekaran, 1986 and Navinchandra, et al., 1991). However these approaches often 

do not take advantage of searching through numerous alternatives as is done in stochastic 

search strategies. This lack of exploration can be seen as particularly inadequate for 

conceptual design, since the search spaces are even larger than those addressed in 

parameter optimization. While knowledge-based techniques allow for ill-defined, or 

open-ended design formulations, they do not explore the vast space of possible solutions 

as is done by stochastic strategies. To resolve this, the A-Design iterative process 

described here combines aspects of both stochastic optimization and knowledge-based 

design strategies. This is accomplished by creating knowledge-driven strategies in agents 

interacting under a stochastically guided iterative algorithm. This combination searches 

                                                 
4 A pseudo-code description of the operations of this iterative process can be found in Section A of the 
Appendix. In addition, Figures 4.5, 5.5, and 6.1 show pseudo-code for agent operations and design 
construction. 
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the design space for solutions that appear to be optimal given the space and time 

resources allotted.  

The A-Design approach to simultaneously managing multiple design solutions is 

similar to the genetic algorithm approach. By comparing the population of design 

alternatives, the best ones are selected to propagate to the next iteration while the 

remaining ones are discarded to make room for new solutions. In genetic algorithms, this 

selection pressure or “survival of the fittest” is the primary motivating factor for finding 

successful designs. A-Design’s selection pressure conservatively eliminates only the 

designs that would never be desired under any user preference. The user’s preference is 

also used to guide the process towards solutions that best exemplify the desired trade-offs 

by propagating a higher concentration of designs that best meet the current user 

preference.  

In addition to the selection pressure mechanism, the design process must have a 

method for generating new or improved solutions. The traditional approach in genetic 

algorithms is to have a random process of crossover and mutation - two mechanisms for 

producing diversity from a limited population of specimens. The randomness of these 

processes, while not guaranteeing an improvement over the current set, provides a 

method for the effective search of complex search spaces. A-Design searches for 

improved designs through intelligent modification of past alternatives and through 

feedback provided to agents. Agents do not perform simple mutation and crossover 

operations as in genetic algorithms, but instead intelligently fragment or chunk designs 

based on the evaluations of the design.  
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Having many knowledge-driven agents with different strategies responsible for the 

same task, as opposed to a single knowledge-driven strategy, generates a greater variety 

of possible alternatives. The system gains robustness through the collaboration of these 

various agents, which makes the system flexible to changes in the user’s preference. 

These agents are analogous to individual specialists within a design firm. As with a 

company, there is usually not a single optimal design, but rather designs evolve and as 

they do so the company selects designs at certain stages and markets them as products. 

Furthermore, a company can rethink their products and improve upon them to better 

adapt to changes in market conditions, or to adopt new emerging technologies. This 

dynamic nature of true engineering design is the philosophy behind making A-Design 

both iterative and adaptive. The iterative process creates an opportunity for adapting both 

design specification and goals. 
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Chapter 3 

Design Selection 

Main Entry: adap·tive 
Pronunciation: &-'dap-tiv, a- 
Function: adjective 
Date: 1824 
: showing or having a capacity for or tendency toward  
adjusting to environmental conditions 
- ad·ap·tiv·i·ty /"a-"dap-'ti-v&-tE/ noun  
- adap·tive·ly adverb 
 

The second subsystem is the adaptive selection of design solutions. Reformulating 

design specifications and goals is a common occurrence in conceptual design. The design 

problem can be restructured based on market demands or on experience gained in the 

design process. This restructuring is a mix of compromising and understanding the trade-

offs of competing attributes. The decision-making in design is quite similar to the 

research known as multi-attribute utility theory first explored in depth by Keeney and 

Raiffa (1976). For a conceptual design process, a formal understanding of this decision-

making can lead to the construction of a utility function that encapsulates a designer’s 

preferences in guiding design automation. 

Decisions in conceptual design can have large impact downstream in the design 

process. Sometimes, these early decisions produce unexpected and undesirable effects in 
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the attributes when the artifact is fully realized at the end of the design cycle. The 

engineering designer must predict how early decisions effect a product’s attributes. For 

example, money is often an important attribute and it contrasts with performance 

attributes such as efficiency and power consumption. Ideally, after some design progress, 

the designer becomes aware of how to manage the trade-offs, as well as determine what 

are the key challenges in meeting design goals. As the designer acquires the new 

information on the design process or as the goals for the design problem change, a 

parallel change to the utility function occurs.  

Design is the art of making products for a changing world. The creation of new 

products is an ever-adapting and interactive process of integrating new information, new 

technologies and new biases from the marketplace. This chapter lays out the method by 

which A-Design is able to adapt to these types of changes, thereby reinforcing the claim 

that A-Design is a unique conceptual design theory. Previous computational design aids 

operate on well-behaved or static problems where there is no means for user interaction 

or interjection of new knowledge and preferences. The adaptive method described here 

provides an in-depth search of the design space, retains flexibility in the design process, 

and allows for robust selection of designs regardless of the number of objectives.  

3.1 NOMENCLATURE AND ASSUMPTIONS  
Because the work related to this subsystem deals with such a broad range of research 

areas including both mathematical and economic studies of decision-making, the 

terminology used throughout the remainder of the dissertation is clarified in this 

discussion. 
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First, the computational A-Design process interacts with a user or engineering 

designer. The use of the words user and designer are used interchangeably to describe the 

person that communicates with A-Design throughout the conceptual search of new 

designs. In this dissertation, the user does not refer to the person interacting with the 

designed artifact, as in the term end-user. Several times we refer to the end-user, or 

equivalently the consumer as the one providing the target market that may indirectly 

influence the actions of the user or designer. 

The definitions of design goals, attributes and objectives are slightly different as 

defined in Keeney and Raiffa, and these subtle differences are honored here. In short, an 

attribute is merely a characteristic of an artifact – a placeholder for a specific value either 

qualitative or quantitative. An objective is a statement (usually a mathematical 

expression) of an attribute that is to be maximized or minimized as much as possible, for 

example, maximize efficiency, or minimize cost. A goal poses an attribute within the 

context of a constraint to be met, for example, reduce weight to less than 3.5 pounds. It is 

often the case that design problems are overwhelmed by goals such as this and, according 

the Simon (1986), these goals are the real crux of design and decision-making. His belief 

is that human decision-making is based on “satisficing” instead of optimizing, where 

satisficing is the act of improving attributes to meet or possibly exceed predefined 

acceptable values. However, due to mathematical formalisms, the A-Design design 

process is focused mainly on objectives. This is due to the fact that in search, every 

design state must be comparable to other design states in the space. By imposing a metric 

afforded by the objective model used in optimization, an algorithm can be constructed to 

determine design worth on a continuous scale. The goals of a design process are, in a 
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sense, Boolean in nature; they are either met or not met. One way to fulfill design goals 

in the computational process is to superimpose the continuity that objectives demonstrate 

as a measure of how well goals are met. The goal is then posed as an objective that 

through minimization of that objective leads to a fulfillment of the goal statement.  

From this distinction of attributes, objectives and goals, one must also note the subtle 

difference in the research areas of multi-attribute decision-making and multi-objective 

optimization. The multi-attribute decision-making theory established by Keeney and 

Raiffa does not focus on the challenges encountered in the search for ideal attribute 

values, but with the formal structure required for understanding the choices made among 

established design solutions. This is opposed to multi-objective optimization, which 

focuses on the automated search for solutions that best meet more than one minimization 

or maximization statement. 

In both multi-objective optimization and multi-attribute utility theory, one is faced 

with the difficult task of formalizing the perceptions of how attributes affect the overall 

worth of a design. This brings us to our next set of ambiguous terms: value and utility. 

Both value and utility represent the quality of an alternative as determined by some 

complex user perception. The main difference is that value is only used when certainty is 

guaranteed, while utility contains a degree of uncertainty about the actual value of an 

attribute. Therefore, the basic question is whether this perception held by the designer is a 

certain quantity or an approximation subject to change. This debate as applied to 

engineering design has supporters on both sides (see Thurston, 1999; and Scott, 1996), 

however approximating the user’s utility of a design is favored to the user’s value of a 
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design in this dissertation. It is this author’s opinion that while decisions within the 

design process lead to specific and definite changes in the attributes, the context in which 

these attributes are judged by the user can be transient and subject to uncertainty. 

This chapter describes how the A-Design system approximates the form of this user 

utility function by combining the objectives in a mathematical formula. The general term 

for how these objectives relate is known as the preference the user has for the objectives. 

The form for such a utility function can be quite difficult to approximate, as one needs to 

understand interdependencies among the attributes. In this research, the most basic form 

of a linearly weighted sum is used to approximate the utility function. The coefficients or 

weightings for the various attributes provide one simple instantiation of the user 

preference. Alternate forms of the utility function can be readily incorporated into the A-

Design framework. Figure 3.1 provides a summary of some of these terms. 

The final terminology issue concerns the use of Pareto-optimality. In this chapter, the 

principle behind Pareto-optimality is introduced as a means of separating the design 

states. It is sometimes labeled the non-dominated set or the efficient frontier in 

optimization to better delineate its use from its formal definition in decision-making. 

Figure 3.1: An example of various terms used throughout this chapter. 

fi attribute of a design (such as cost) 
min fi objective of the design process (such as minimize cost) 
fi < $C goal of the design process (reduce cost to under $C) 
uj = Σi wifji utility function, uj, the worth of design j as approximated 

by a preference for the various attributes, fji, by linearly 
weighted sum. Each attribute has a corresponding weight, 
wi. 
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However, within the majority of related work in multi-objective optimization the term 

Pareto-optimal set is used interchangeably with the non-dominated set. In this 

dissertation, the use of Pareto-optimality is used to label those solutions that currently 

represent the Pareto-optimal set of designs despite the fact that in future iterations new 

solutions might cancel out previously designated Pareto-optimal designs. This distinction 

will be discussed in more detail in Section 3.3. 

3.2 RELATED WORK 
Decision-making about more than one criterion was formally addressed by Keeney 

and Raiffa (1976). This seminal work laid out the details for future decision-making 

research and provided the foundation for multi-objective optimization. As an important 

step in formulating their theories, Pareto-optimality has been cited as a basic divisor 

between good and bad decisions. The original work of the Italian economist Vilfredo 

Pareto has had many diverse contributions to our understanding of economics and 

decision-making, and is extrapolated for use in optimization in Balachandran and Gero 

(1984) and in Eschenauer et al. (1990). Many algorithms, especially genetic algorithms, 

have incorporated this notion of comparing designs (see overview in Fonseca and 

Fleming, 1995). Interestingly enough, the combination of Pareto-optimality and agents 

has also been explored by Petrie et al. (1995) where existing software tools are controlled 

by a single governing agent that makes decisions to keep or discard designs based on 

Pareto-optimality.  

In addition to Pareto-optimality’s use in multi-objective optimization, other related 

research projects have addressed the multi-attribute problem of engineering design. Most 

notably, Thurston (1991) and D’Ambrosio and Birmingham (1995) have applied multi-
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attribute utility theory to engineering design problems. Dong and Agogino (1995) 

developed the concept of spectral optimization to approximate Pareto-optimal design 

choices with specific application to catalog selection. The work presented here also uses 

Pareto-optimality as the basis for dividing designs, but makes further provisions to allow 

for flexibility in focusing on changing user preferences. 

3.3 DIVISION OF DESIGN SOLUTIONS 
At each iteration in the process, the algorithm contains a population of design 

candidates. From this population, it is necessary to determine which alternatives are most 

useful for advancing towards successful designs and which alternatives have little or no 

design worth. With this distinction, designs that offer little worth to the process are 

removed to free up space for new design states so that the search process can constantly 

move towards improved designs. In order to decide which designs to save and which to 

discard, A-Design employs a unique strategy whereby candidates are divided into three 

separate populations labeled “Poor” designs, “Good” designs and “Pareto” designs as 

described below.  

The idea of Pareto-optimality provides the basis for mathematically determining 

which designs are clearly better than others without simplifying the objectives to a single 

scalar through an a priori determined utility function. Pareto-optimality guarantees that 

the best design for any utility function will be found in a set of designs called the Pareto-

optimal set. The simple definition of Pareto-optimality is that solutions are Pareto-

optimal if no attribute can be improved without compromising other attributes. In the 

scope of comparing design solutions, this means that a design is Pareto-optimal if no 

other designs exist that offer an improvement in one or more attributes without 
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compromising other attributes. Mathematically, this is defined in (Eschenauer et al., 

1990) as: 

x*∈ X is a Pareto-optimal point if and only if  

there is no other vector x∈ X such that 

fj(x) ≤ fj(x*)  ∀ j ∈ {1, …, m} (1) 

and 

fj(x) < fj(x*)  ∃ j ∈ {1, …, m} . 

In this equation, f is an attribute, m is the total number of attributes and X is the set of all 

design states. By requiring all objectives to be optimized through minimization, no other 

design should exist that contains more minimal values for the total of the attributes 

present. This can also be visually determined through plotting alternatives on a graph 

with the axes representing different objectives as in Figure 3.2a. If only two objectives 

Figure 3.2: a) Two-dimensional plot of designs depicting Pareto-optimal set for two objectives, 
b) the performance profile method of comparing of designs states. 
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are to be optimized, one can view design alternatives on a two-dimensional grid and the 

Pareto-optimal designs can easily be determined. These designs form a “front” of 

solutions that are closest to the coordinate axes. One can also extend this visualization 

tenuously to three objectives but difficulties obviously exist for depiction of higher 

dimensions with this method. A visualization for higher dimensionality that is favored in 

this dissertation is the performance profile originally used in Keeney and Raiffa shown in 

Figure 3.2b. This plot lists attributes along the x-axis and represents a single design state 

as a link connecting attribute values. Here, again if a minimization of all objectives is 

imposed, one can find how various design states trade-off with other designs. When two 

links cross in Figure 3.2b neither solution dominates the other. Since Pareto-optimal 

solutions are those that are not dominated by other designs, all Pareto-optimal designs 

intersect with all other Pareto-optimal solutions. In this figure, the open shapes represent 

Pareto-optimal solutions, while the filled shapes represent non-Pareto solutions.  

As mentioned in Section 3.1, this division of designs into Pareto and non-Pareto sets 

is valid only for the current set of designs. The true Pareto-optimal solutions, that is, 

those designs that fulfill the condition stated in Equation 1 for all designs in the search 

space, are not attainable in conceptual design. The search spaces for conceptual design 

contain an infinite number of solutions as described in Section 1.2, and as a result, one 

can only approximate the true Pareto-optimal set of solutions. Therefore, the set of 

designs labeled Pareto-optimal in this research is valid for only the set of visited design 

states and not for the entire space of solutions. This set of designs is updated throughout 

the iterations of the process, as can be seen in Figure 3.3. The essence of the A-Design 

search process is to continually update the Pareto front to constantly find better solutions. 
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As new design states are visited, previously believed Pareto-optimal designs are removed 

from the set. This constantly updated front of Pareto designs is a conservative 

preservation of designs depicting a diversity of relative strengths in the objectives. This 

diversity accommodates the changes in the user utility function that can occur in the 

course of the A-Design process. In Figure 3.3, the user utility function or preference for 

objectives identifies a member of the Pareto set that is most successful in meeting the 

design problem specifications. As the search process ensues, the best design available to 

the user can change to any member of the current Pareto-optimal set.  

In addition to storing design diversity, A-Design also focuses on improving designs to 

best meet the current user preference. Outside of Pareto-optimal designs, the system 

further divides solutions into Good and Poor designs. Some designs, while not Pareto-

optimal, might better meet user preference than some of the outlying Pareto-optimal 

alternatives that have been preserved for extreme changes in user preference. These  

Figure 3.3: Updating Pareto surface while considering user preference. 
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preferred but non-Pareto designs comprise the Good population visualized as a set of 

solutions that are located within a given radius of the intersection of current user 

preference and the Pareto set (Figure 3.4). In general, the Good designs are the best 

designs (top 50% in the current implementation) of the non-Pareto designs that meet the 

current approximation of the user’s utility function. If the user’s preference should 

change then the location of the Good population also changes. Through preserving the 

Good designs, new design states are constructed in the modification phase to hopefully 

lead to improved or possibly Pareto-optimal solutions in future iterations. By preserving 

this set of Good designs along with Pareto designs, A-Design contains both a focus on the 

current user preference as well as design diversity. The remaining designs that do not fall 

into the Good population are labeled as Poor designs. These designs are discarded by the 

Figure 3.4: Bulb of Good populations move with user preference. 
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system to make room for new design states that are built from modifications of Good and 

Pareto solutions in subsequent iterations. 

The multi-objective selection described here is capable of handling large numbers of 

objectives in a robust manner, as well as tailoring designs for specific designer needs or 

consumer markets. Imagine a situation in which weight and cost are two competing 

objectives in a conceptual design problem. A-Design might be asked to conceptualize 

designs with more importance given to minimizing cost than minimizing weight. The 

process concentrates its effort on this user preference by preserving Good designs in the 

region of this preference. Furthermore by maintaining the complete Pareto-optimal set, 

the system can accommodate changes if the preference should shift towards minimizing 

weight. The diversity of designs stored in the Pareto-optimal set is similar to the 

maintenance of recessive information in biological systems where unused characteristics 

are preserved to allow for rapid transition in response to environmental changes. 

Another important feature of the division of designs is to track the agents that create 

them. By increasing the prevalence of agents that create Pareto and Good designs, future 

design activity will ideally produce more designs like the current Pareto and Good set. 

Conversely, agents that produce Poor designs are penalized in order to eliminate design 

activity that leads to inferior design states. Manager-agents control this feedback 

mechanism by keeping track of the agent contributions and modifying the Maker-agents 

and Modification-agents accordingly (this is described in detail in Section 6.4). This 

division of designs and the feedback it provides to the agents allows A-Design to adapt to 

changes that occur in the conceptual design process. 
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3.4 ADAPTING TO USER PREFERENCE 
The previous section discussed how designs are divided into separate populations so 

that A-Design can change the focus of the search process to bring about the adaptive 

nature of conceptual design. This section explores how that change is impressed upon the 

system. The basic method of effecting the direction of the A-Design search process is to 

interact with the Manager-agent (as described further in Chapter 6). In each iteration, 

prior to design selection, the Manager-agent displays various statistics on the process and 

prompts the user for input. If the user decides not to interact, the process continues. If the 

user sees that a change is required, he/she can temporarily halt the process and enter into 

a dialog with the Manager-agent. The Manager-agent then prompts the user with 

questions about the current set of designs to determine what changes can be made to 

adapt to the user’s needs.  

Figure 3.5 shows a typical dialog from the weighing machine test problem that 

includes four objectives to be minimized: cost, weight, dial error, and input displacement. 

In this example, the process is initiated with linear weights on the objectives of “1 10 

1,000,000 1,000,000.” At each iteration, data on the current state of the process are 

presented to the user (population sizes, the amount of change in the Pareto set, etc.), as 

well as the current best design for the user preference. In this figure, the user hits return at 

the end of the sixth iteration initiating a brief dialog with the Manager-agent.  

Having presented the attribute values of the best design at this juncture of the process, 

the Manager-agent asks the user to rate a set of three random pareto-optimal designs on a 

scale of one to ten. In order to provide a reference for the user, the current best solution is 

assigned a value of 5 so that the user may rank the remaining three designs in proportion  
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Iteration 6.
Population = 44.
Pareto has 13 members.
Pareto changed by 7.
The ave. Pareto values are
(46.295383 0.570433 7.8543525
0.0028573587).

The best Pareto values are
(18.5 0.14699998 0.0012533892
9.648292e-4).

Good has 16 members.
The radius is 47.80917.
Poor has 15 members.
Todo has 0 members.
Taboo has 0 members.
Weights are (1.0 10.0 1000000.0 1000000.0)
Entering evaluate....done
Pareto last changed 0 iterations ago.
Top Design last changed 5 iterations ago.
Currently the best design for your
preference is:

COST = 72.84
MASS = 0.23563002
DIAL-ERROR = 0.0012533892
INPUT-DX = 0.002038508

------------------------------------------
Talk to M-agent (hit return) ?

1: COST = 26.43
MASS = 0.175
DIAL-ERROR = 0.066433564
INPUT-DX = 9.648292e-4

------------------------------------------
2: COST = 84.13

MASS = 2.9145
DIAL-ERROR = 4.7503047
INPUT-DX = 9.648292e-4

------------------------------------------
3: COST = 85.13999

MASS = 2.232
DIAL-ERROR = 6.769965
INPUT-DX = 9.648292e-4

------------------------------------------
Given that the best design presented is 5,
how would you rate each of these
designs(1-10) ?
1: 10
2: 2
3: 2
Is this design as good as the best shown
above [y/n]?

COST = 20.99
MASS = 0.164
DIAL-ERROR = 0.31395644
INPUT-DX = 0.002038508

------------------------------------------
y
Interpolate or Extrapolate new
preference[i/e] Is your preference between
these two designs or more along the lines
of the second? i
new weights = 23.53806 28.02538 500023.03

500000.0
The design process is 0.15 complete.

Iteration 7.
Population = 46.
Pareto has 17 members.
Pareto changed by 4.
The ave. Pareto values are
(45.26059 0.52912116 6.0937095
0.003011668)

The best Pareto values are
(18.11 0.14699998 2.5082377e-5
9.648292e-4).

Good has 15 members.
The radius is 47.212936.

Poor has 14 members.
Todo has 0 members.
Taboo has 0 members.
Weights are (23.5 28.0 500023.0 500000.0)
Entering evaluate....done
Pareto last changed 0 iterations ago.
Top Design last changed 5 iterations ago.
Currently the best design for your
preference is:

COST = 22.3
MASS = 0.169
DIAL-ERROR = 0.31395644
INPUT-DX = 0.002038508

------------------------------------------
Talk to M-agent (hit return) ?

Iteration 8.
Population = 49.
Pareto has 22 members.
Pareto changed by 9.
The ave. Pareto values are
(48.8 0.46536332 2.2392752 0.002516745)
The best Pareto values are
(18.11 0.14199999 2.5082377e-5
9.648292e-4).

Good has 14 members.
The radius is 48.007374.
Poor has 13 members.
Todo has 0 members.
Taboo has 0 members.
Weights are (23.5 28.0 500023.0 500000.0)
Entering evaluate....done
Pareto last changed 0 iterations ago.
Top Design last changed 1 iteration ago.
Currently the best design for your
preference is:

COST = 19.71
MASS = 0.172
DIAL-ERROR = 0.31395644
INPUT-DX = 0.002038508

------------------------------------------
Talk to M-agent (hit return) ?

Figure 3.5: A display of the dialog that occurs between the user and the system in adapting to 
user preference. 
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to this value. This ranking supplies the system with data used to approximate a new 

user’s utility function. We are somewhat reassured that the user can accurately estimate 

meaningful values for his/her utility for such designs due to experiments in human 

perception. Most notably, Stevens (1975) has shown that people are capable of accurate 

prediction through experiments that correlate perception and cardinal rankings in a 

technique known as magnitude estimation. 

As a result of this dialog, the Manager-agent determines a new form of the utility 

function in an approach similar to the learning of “static evaluators” through linear 

regression (Abramson, 1990). From these cardinal rankings, the Manager-agent performs 

a best fit to the system of linear equations that result from the weighted sum of 

objectives. Figure 3.6 shows how these equations are constructed for the dialog in Figure 

3.5. Based on this best fit, the new best Pareto design is presented to the user. To further 

refine the accuracy of the newly adapted weights, the Manager-agent asks the user if the 

trend towards this new preference is severe enough to warrant further extrapolation of the 

preferences or to establish some middling between the current and prior preferences. In 

other words, this dialog tries to determine if the user preference is actually between the 

new best design and the prior best design or tending more towards the new design. In the 

dialog of Figure 3.5, the user opts for an interpolation of the new and prior preferences, 

and as a result a new approximation for the weights is established, in this example the 

new weights change from “1 10 1,000,000 1,000,000” to “23.5 28.0 500,023.0 

500,000.0”. 
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The design selection process described above now has a means to determine where 

the Good population of designs should lie – at the intersection of this new preference and 

the Pareto surface. Further, the result of changing this preference leads the A-Design 

process and the Manager-agent to present new solutions in the subsequent iterations of 

Figure 3.5.  

While this demonstration shows the adaptive nature of the A-Design system, further 

experimental results address this matter in Chapter 9. The methodology underlying the 

Manager-agent’s behavior is based on several distinct research areas including machine 

learning, magnitude estimation and utility theory. The use of the above dialog mechanism 

raises many interesting research questions about the dialog between man and machine, 

the ability to correctly estimate design worth and the means of approximating utility.  

Figure 3.6: Determining the new weights is a process of solving the linear system of equations 
that is created by the cardinal ranking of various Pareto design states. 

Given: d0 (the best design dialog of Table 3.1) 
 has attribute values of  f01 = 72.84  
   f02 = 0.23563002 
   f03 = 0.0012533892 
  f04 = 0.002038508 
 and has a ranking r0 = 5 
Find: new values for w1, w2, w3, w4. 
• Manager presents three new designs. 
• Users ranks these 10, 2, 2 

��r1 = 10, r2 = 2, r3 = 2. 
• Establish as a system of linear equations: 
 w1• f01 + w2• f02 + w3• f03 + w4• f04  =  r0 
 w1• f11 + w2• f12 + w3• f13 + w4• f14  =  r1 
 w1• f21 + w2• f22 + w3• f23 + w4• f24  =  r2 
 w1• f31 + w2• f32 + w3• f33 + w4• f34  =  r3. 
• Solve of wi. 
• Interpolate/Extrapolate with previous wi. 
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Chapter 4 

Design 

Representation 

Main Entry: open-end·ed 
Pronunciation: "O-p&n-'en-d&d 
Function: adjective 
Date: 1825 
: not rigorously fixed: as a : adaptable to the developing needs of a situation b : 
permitting or designed to permit spontaneous and unguided responses 
- open-end·ed·ness noun  

 

This chapter focuses on the innovations of A-Design that provide a foundation for 

representing design concepts. As can be seen from Figure 1.4, this part of the automated 

conceptual design process exists outside of the search mechanism. The reason for the 

isolation is to show that the representation is defined prior to search as the foundation 

upon which designs are constructed.  

It is necessary in any computational process to establish a formal language of the 

artifact being manipulated, created, or optimized. Traditionally, in optimization, the 

representation is a fixed set of variables representing different physical dimensions or 

parameters of a design. While a set number of variables provide a concrete method for 
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computational search, it provides too much constraint for conceptual design. The 

representations within many search techniques are constrained by the generation 

techniques intrinsic to the process. For example, in the case of genetic algorithms, a 

vector formulation used to define the design space is often expanded to a bit string in 

order to represent a genotype encoding. This encoding provides the crossover and 

mutation operators a means of manipulating design states to search the space of possible 

solutions. 

In order to avoid the constraints imposed by the search process, we develop a 

description that is most natural to modeling the actual design space as opposed to one 

prescribed by the search mechanism. The freedom of constructing a representation 

independent of the search process allows one to include variable length vectors or 

complex data structures to attain a greater variety of design solutions. The drawback of 

having a more general design description is the need for more involved techniques for 

generating designs. This is where the agents are used to act as a buffer between the 

iterative process and the representation. The development of agents along with the 

development of the representation allows A-Design to be tailored to a general body of 

conceptual problems. 

This research has concentrated on a specific electromechanical problem space, but 

there is no reason that other representations and agents for manipulating such 

representations cannot be developed within A-Design. Therefore, while this chapter lays 

out the important contribution of this work to a specific domain, one contribution is 

implicitly stated by the fact that the agents act as a buffer between the iterative search 
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process and the design representation. This important feature enables A-Design to 

address large and ill-defined search spaces characteristic of conceptual design. 

As will be seen in this chapter, the electromechanical representation provides a 

language for understanding components and how they connect. No restrictions are placed 

on the form of the design, thereby accomplishing an unstructured or open-ended space of 

possible design solutions. The search space is defined as open-ended in that no common 

structure of the solution is presumed prior to design. 

4.1 RELATED WORK 
Several research areas are centered around implementing an understanding of how the 

physical world functions. On the most general level qualitative physics research (see 

overview in Forbus, 1988) has provided several computational strategies for symbolically 

or qualitatively modeling the physical environment. Specifically for mechanical systems, 

many widely varying approaches have been explored: through linguistic approaches such 

as (Stone and Wood, 1999); through causal models (Nayak, 1992), through configuration 

space models (Stahovich, et al, 1998; Chakrabarti and Bligh, 1996), or geometric 

algebras (Palmer and Shapiro, 1993). 

In addition to understanding how the physical world behaves, we are also concerned 

with how to synthesize solutions to design problems. Several research projects have dealt 

with the automated synthesis problem for electromechanical configuration design. The 

methods for synthesizing topologies are as diverse as the representation methods shown 

above. Approaches to synthesis include case-based reasoning (Navinchandra, et al., 

1991), constraint programming (Subramanian and Wang, 1995), and qualitative symbolic 
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algebra (Williams, 1990) to name a few. The most historically significant of these include 

several approaches applying expert system formulations to specific design problems. The 

paper roller system established in Mittal et al. (1985) and the R1/XCON system 

(McDermott, 1982, 1993) have yielded some interesting and useful results for industrial 

applications.  

In the larger context of representing and synthesizing electromechanical function, a 

small number of projects have sought to both establish a generic scheme for 

electromechanical design and remove limitations on design topologies. These few 

research projects have influenced the functional representation of A-Design. As can be 

Figure 4.1: The development of this representation is related to the contributions of various 
previous research projects. 
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seen in Figure 4.1, the A-Design representation approach builds primarily on the work of 

Welch (Welch, 1992; Welch and Dixon, 1994). Furthermore, the innovations of Welch 

are the result of combining the research endeavors of Ulrich (1989, Ulrich and Seering, 

1989) with Pahl and Beitz (1988). The work of Ulrich was first to realize the design 

potential of bond graphs, while Pahl and Beitz established a formalism of unique 

qualitative characteristics to define various facets of engineering design. The bond graph 

research was conceived by Paynter (1961) as a method of modeling various domains by a 

fundamental language of dynamic operators. While bond graphs originated as an analysis 

method, various other projects (Bracewell and Sharpe, 1996; Finger and Rinderle, 1989) 

have since realized the potential of the bond graph formalism as a foundation for design 

synthesis. 

Function grammars are an emerging concept in design synthesis (see Schmidt, 1995; 

Fu, et al., 1993; and Pinilla, et al, 1989). These techniques create a formal language for 

generating and updating designs. Through the development of production rules, complex 

designs can be constructed from a simple initial specification, or “seed”. The artifacts of 

function grammars are often graphs (nodes and arcs) and rules formulated to add, 

remove, or modify elements of a graph. In the A-Design representation, a function 

grammar formalism is combined with the representation of Welch to handle a wide 

variety of design configurations. 

4.2 BASIC COMPONENTS 
The representation developed in A-Design is based on the description of individual 

components and the points of connectivity between the components. By describing points 

of connectivity within a design, a formal syntax is established to model the input-output 



 49

functionality of interacting components. The network of transformations resulting from 

the interactions of many components yields the overall functionality of a design. In this 

section, the two fundamental structures of the representation are introduced - the 

Embodiment and the Functional Parameter - as extensions of structures developed by 

Welch. In short, the Embodiment is the computational structure describing components, 

while the Functional Parameter describes the interaction between components. 

4.2.1 Functional Parameter (FP) 

At the interface between components, a structure referred to as the Functional 

Parameter (FP) provides qualitative and quantitative descriptions of electromechanical 

behavior. Figure 4.2 shows the contents of the Functional Parameter structure and the 

possible values variables can have. The first four slots in this structure represent the state 

variables at a given point in a design. The general terms, through and across, are used to 

represent important dynamic variables in a variety of electromechanical domains. 

Concepts like force, torque, current and flow rate are categorized as through variables 

FP - Functional Parameter: 
 Through {number, range, bound, unbound} 

 Across-integral {number, range, bound, unbound} 

 Across-none {number, range, bound, unbound} 

 Across-differential {number, range, bound, unbound} 

 Class {power, signal, material} 

 Domain {translational, rotational, electrical, 
hydraulic} 

 Coordinate {[4 x 4] transformation matrix} 

 Interface {standard size, e.g. 9/16” bolt} 

 Direction {source, sink}. 

Figure 4.2: The contents of the FP structure. 
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because they are understood as passing “through” elements in the system. This is opposed 

to across variables such as velocity, voltage and pressure, which operate according to 

their difference “across” an element. Often, through and across variables also have a 

physical meaning when integrated or differentiated with respect to time. For example, 

velocity is integrated to find displacement and differentiated to find acceleration. Since 

these variables have physical meaning in many domains (i.e. electrical, mechanical, or 

hydraulic), they provide a systematic framework for reasoning about functionality as well 

as modeling unfamiliar domains.  

The values for through and across slots can be either quantitative or qualitative. 

Each of these four slots can have a numeric value, a numeric range, the bound label, or 

the unbound label. The bound and unbound labels are used to qualify the behavior of a 

Functional Parameter before a design is fully realized. To classify a variable as bound 

means that the true numeric value, while unknown, will eventually converge to a single 

value. Unbound variables describe a diverging or unconstrained numeric value. 

Throughout the construction of a design, the bound and unbound values act as 

placeholders to inform agents of the behavior at points in an incomplete design. In 

addition, a goal prefix can be added to the through and across slots to differentiate an 

actual value from a desired value specified as part of the design description. The 

importance of these values in the context of design construction is detailed in Section 4.3 

The domain variable in the FP structure describes the domain of the Functional 

Parameter. In the implementation, electromechanical design contains four domains: 

translational, rotational, electrical and hydraulic. Table 4.1 shows the physical 
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manifestation of the through and across variables for each domain. The table also depicts 

components within each domain that establish a proportional relationship between the 

through and across variables. Often domains have physical components for each 

transformation of the through variable to the across variables as can be seen by the 

components listed in the table. 

Along with the through, across and domain variables, the FP structure includes a 

few more descriptors of the connections between components. The class characteristic 

derived from Pahl and Beitz provides a description of what is physically transferred 

through the connection. In this work and in the previous work of Welch, 

electromechanical designs are all described by the same class value (class = power). 

However, the hope is that other than describing electromechanical energy, one could also 

describe the flow of information (class = signal), or possibly even flow of a material 

(class = material). The Functional Parameter includes slots for describing the location of 

a connection point in space by storing the position in a coordinate transformation matrix. 

A description of the connection’s interface with other components is described as well as 

the direction of flow at the interface. 

Table 4.1: Through and Across Variables for Each Domain 

 Translational Rotational Electrical Hydraulic 

Through Variable 
Force 

(f [Newtons]) 
Torque 

(T [N-m]) 
Current 

(I [amps]) 
flow rate 
(m [kg/s]) 

Across Variable 
Velocity 
(v [m/s]) 

angular speed
(Ω [rad./s]) 

Voltage 
(v [volts]) 

Pressure 
(P [N/m2]) 

Through ∝ d(Across)/dt mass 
Rotational 

inertia 
capacitor reservoir 

Through ∝ Across 
Damper 
friction 

Damper 
friction 

resistor 
Valve viscous 

drag 

Through ∝ �(Across) dt spring 
Rotational 

spring 
inductor coil long piping 
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As mentioned earlier, the basic manner of describing functionality to A-Design is a 

statement of the desired set of input and output behaviors. The Functional Parameter 

structure provides this method of describing design problems. In Figure 4.3, the weighing 

machine design problem that was previously specified by an input and output is now 

more formally represented by an FPinput and FPoutput. Initially these FPs are specified by 

the user as the seed for the design problem. Specifications on the through and across 

variables in the figure have goal prefixes to denote their values are desired by the user 

and not actual values derived from the construction process. 

4.2.2 Embodiment (EB) 

Besides describing connecting points, the representation also describes components 

by a common structure known as the Embodiment (EB). The structure models 

Figure 4.3: Weighing machine with input and outputs described as Functional Parameters. 

x

y

z
x

y

z
x

y

z

FPoutput:
Through nil
Across-int (goal [0 5])
Across (goal bounded)
Across-diff nil
Class power
Domain rotate
Interface dial
Direction sink

FPinput:
Through ([0 300])
Across-int (goal 0)
Across nil
Across-diff nil
Class power
Domain trans
Interface feet
Direction source



 53

components as ‘black boxes’ where the internal functions of a component are only 

evident in how the inputs and outputs of the component relate to one another. These 

descriptions are used to model how a class of components operate, not the specifics of a 

particular component. For example, a spring Embodiment has equations and constraints 

describing the general behavior of springs, but does not specify numerical values for 

variables such as spring stiffness.  

This structure builds on the EB structure of Welch by including the following 

extensions: n-port components, non-linear transformations, and more thorough 

constraints on the connectivity with other components. However, the key innovation of 

the EB structure within A-Design is how it is used within the creation of new designs. 

The Configuration-agents (described in Section 5.3.1) attach Embodiments together to 

form an abstract configuration, and then these designs are instantiated with real 

components by the Instantiation-agents. This two level design generation method allows 

A-Design to explore design on two levels: determining the best topological connection of 

components, and determining the best components for such a configuration. 

Figure 4.4 shows the makeup of the EB structure and an example of a gear 

Embodiment. The variables slot lists the names of the parameters of the abstract 

component, which are instantiated with actual values at the instantiation level. The 

constraint parameters (CPs) establish how components are constrained at their outputs 

thus preventing infeasible connections with other components in the system. A constraint 

parameter has the same variables as the Functional Parameter and can thus prevent 

improper matching of domain, interface, direction of flow, etc. The magnitude-change 
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(MG-Change) slot includes code describing the transformation between the state 

variables into and out of ports on the components. These include such formulas as 

“F=k•x” for springs, or possibly more complicated non-linear functions such as F = 

K(x)•x. The MG-change slot contains the dynamic model of the Embodiment and is 

similar to how bond graph information is incorporated in previous work. Finally, the 

position-change (PO-change) slot lists transformation matrices for converting the 

coordinates of one port to another, and is thus used to evaluate the coordinate slot in the 

FPs connected to an Embodiment.  

EB - Embodiment: EB - Gear: 

variables 
names of the dimensions or 
parameters of a component. 

variables Dgear, Dshaft, Pitch 

CPs 
constraint parameters - constrain 
which FPs can be connected. 

CPs 1:  class=power 
 domain=rotation  
 interface=shaft-hole(Dshaft) 
2:  class=power 
 domain=translation 
 interface=teeth(Pitch) 

MG-Change 
magnitude change functions 
relating the through and across 
variables at each port to those of 
other ports. 

MG-Change through1 = (through2 * Dgear)/2 
across-int1 = (across-int2 *2)/Dgear 
across1 = (across-int2 *2)/Dgear 
across-diff1 = (across-diff2 *2)/Dgear 
through2 = (through1 * 2)/Dgear 
across-int2 = (across-int1 *Dgear)/2 
across2 = (across-int1 *Dgear)/2 
across-diff2 = (across-diff1 *Dgear)/2 

PO-Change 
position change matrix relating 
position of each port to the position 
of other ports. 

PO-Change 

�
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Figure 4.4: The contents of the EB structure: (a) shows the general description of the slots of the 
EB and b) shows an example of a gear EB. 
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4.3 UPDATING DESIGNS: HANDLING INCOMPLETE CONFIGURATIONS 
The A-Design representation of Functional Parameters and Embodiments includes a 

framework for constructing designs one Embodiment at a time. This allows for an 

interactive construction of designs where agents contribute to designs based on how 

previously agent contribution effect a design. When a Configuration-agent connects a 

new Embodiment to a partial design, the FPs throughout the system are updated. The 

notion of updating functionality in a design is based on Schmidt and Cagan (1998) where 

designs are created through a function grammar. The innovation in this research is to 

combine function grammars with the Functional Parameters of Welch to allow for a more 

general component connectivity and a more complete component description than 

previously achieved. 

The difficulty in this approach is understanding how a design behaves even when it is 

not fully connected. In the previous work, no technique was developed to handle 

incomplete designs. Instead, design alternatives were conceived through an immediate 

expansion of the system’s input and output behavior. As a result, only simple design 

states were constructed. The framework here for allowing agents to interact with partial 

design states allows for an infinite number of possible design configurations. Agents are 

not constrained to add components in series, parallel or any particular order, but instead 

follow their individual preferences for design. These agent strategies are addressed in 

detail in Chapter 5.  

The weighing machine problem description shown in Figure 4.3 specifies the input 

and output FPs that describe the functionality of a device. At the output, the functionality 

of dial displacement is classified as a goal range of 0 to 5 in the across-integrated slot. 
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This range represents an angle of displacement since the integrated across variable in the 

rotational domain is an angle. The goal slots in the input and output FPs direct agents to 

achieve the desired functionality of a weighing machine. At the input FP, the domain 

variable is translational and therefore specifying the across-integrated slot to {goal 0} 

relates to zero displacement at this point. Also, the through variable has a range of {[0 

300]} specifying it as an input force from zero to 300 pounds. Note that in the output’s 

across variable slot the user has specified the values as {goal bound} since damped 

motion is also a desired requirement in the weighing machine design problem. 

C-agents begin attaching various EBs to fulfill the goal slots in the original FPinput and 

FPoutput. With the addition of a new EB into a configuration, the adjacent FPs need to be 

updated. The update mechanism follows the pseudo-code in Figure 4.5. This update 

assigns values to the slots of the FPs connecting to an EB and performs a recursive 

update of all the through and across variables in the design configuration. This recursive 

update changes bound and unbound flags in the through and across slots and checks to 

see if goal slots are met. The following example further explains how the recursive 

update mechanism and how complete configurations are assembled from incomplete 

configurations. 

Figure 4.6a shows a partial design state with Functional Parameters represented as 

ovals and Embodiments as rectangles. The configuration presently contains seven EBs as 

a result of previous C-agent contributions. The FPinput and FPoutput have changed slightly 

from those shown in Figure 4.3. With the introduction of every new EB to a design, an 

update mechanism makes changes to both the FPs adjacent to the new Embodiment and  
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possibly to FPs throughout the configuration. In the incomplete configuration of Figure 

4.6, the path connecting input to output leads to a change throughout the design. The 

through variable range in the input of [0 300] causes the through slots in all FPs in the 

system to update from unbound, which is the default value, to bound. Furthermore, due to 

friction in the system, notably in the bearing, the across variable in the output FP 

specifying damped motion in the dial has changed from {goal bound} to bound from 

Figure 4.5: Pseudo-code for updating partial design state. 

Update-Configuration (EBs, FPs, EBnew) 
 Update-Immediate-Vars (FPs, EBnew) 
 Update-Through-&-Across (FPs, EBs, EBnew) 
 Add EBnew to EBs 
 Return Updated Partial Design (EBs, FPs) 
 
Update-Immediate-Vars (FPs, EBnew) 
 For each FP connected to EBnew (FPi ∈ FPs-connected-to-EBnew) 
  FPi:class := EBnew:CPi:class 
  FPi:domain := EBnew:CPi:domain 
  FPi:direction := EBnew:CPi:direction 
  Update-Interface (FPi:interface, EBnew:CPi:interface) 

// function not shown. A table lookup function that determines what the  
 new interface of a component is after the two interfaces are  connected. 
For example, NULL is the resulting interface of pulley and belt – nothing else can 
connect at this FP. Shaft is the resulting interface  of gear and shaft, as more  
than one connection can be made to a shaft. // 
 

Update-Through-&-Across (FPs, EBs, EBnew) 
// Update through and across variables of FPs connected to EBnew. If other more definite values exist
in neighboring FPs, for example, if FPi:through = unbound but neighbors an FP  
with an FP:through = bound, then update FPi:through to bound. // 

 For each FP connected to EBnew (FPi ∈ FPs-connected-to-EBnew) 
  If FPi:through < FPs:through, 
   then FPi:through :=FPs:through 
  If FPi:across < FPs:across, 
   then FPi:across :=FPs:across 
  If FPi changed, then check other EBs connected to FPi 

For each EB connected to FPi (EBj ∈ EBs connected to FPi other than EBnew) 
Update-Through-&-Across (FPs, EBs, EBj) 

 Return updated FPs 

EBnew FPi

FP

FP

Value of Through/Across Flags 
number > bound > goal > unbound
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Figure 4.3 to Figure 4.6a. One of the three goal specifications is now fulfilled by the 

removal of this goal flag. 

Two goal statements are still present in Figure 4.6a’s description of FPinput and FPoutput 

({goal [0 5]} and {goal 0}). When a new spring EB is added to the design between the 

lever and rack and ground, as seen in Figure 4.6b, a new design configuration is 

achieved. Information from this new connection must be propagated throughout the 

Figure 4.6: a) Partial design state with update FPs, b) Design is completed with addition of spring.

FPinput:
Through {[0 300]}
Across-int {goal 0}
Across bounded
Across-diff nil
Class power
Domain trans
Interface feet
Direction source
FPoutput:
Through bounded
Across-int {goal [0 5]}
Across bounded
Across-diff nil
Class power
Domain rotate
Interface dial
Direction sink

FPinput:
Through {[0 300]}
Across-int {0}
Across bounded
Across-diff nil
Class power
Domain trans
Interface feet
Direction source
FPoutput:
Through bounded
Across-int {[0 5]}
Across bounded
Across-diff nil
Class power
Domain rotate
Interface dial
Direction sink

FPinput

rack

FPoutput

FP

FP

FPFP FP

FPgnd

lever
shaft

bearing

gear

spring

FPgnd

dialfootpad

Update all 
across-int slots 
to bounded.

FPgnd: across-int = 0
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FPoutput
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FPFP FPlever
shaft
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FPgnd
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FPinput:
Through {[0 300]}
Across-int {goal 0}
Across bounded
Across-diff nil
Class power
Domain trans
Interface feet
Direction source
FPoutput:
Through bounded
Across-int {goal [0 5]}
Across bounded
Across-diff nil
Class power
Domain rotate
Interface dial
Direction sink

FPinput:
Through {[0 300]}
Across-int {0}
Across bounded
Across-diff nil
Class power
Domain trans
Interface feet
Direction source
FPoutput:
Through bounded
Across-int {[0 5]}
Across bounded
Across-diff nil
Class power
Domain rotate
Interface dial
Direction sink
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bearing
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design. The recursion in the update mechanism transfers knowledge from the ground FP 

on the spring throughout the design to note that across-integrated is now bound. This 

bound variable is propagated throughout the design. The remaining goal ranges ({goal [0 

5]} and {goal 0}) represent bound values, and thus are fulfilled by this propagation. As a 

result, both goal flags are removed, thereby completing this design configuration. 

As shown by this example, the update mechanism is quite intricate. The propagation 

of variable values allows the system to monitor the progress of the design from initial 

specifications to completed design. This occurs mainly as a result of propagating 

qualitative values such as bound and unbound to keep track of the effects of components 

as they are introduced into designs. These labels are also used by the agents to identify 

the best way to add new components to a design. 

4.4 EXTRACTING EQUATIONS 
After a design configuration is completed, symbolic equations are extracted to 

determine the analytical effect that the configuration of Embodiments has on the behavior 

of the design. A behavioral equation is constructed for each goal variable in the original 

FPinput and FPoutput. For example, the equations for the goal dial angle (θdial is 

FPoutput:across-int = {goal [0 5]}) and goal input displacement (xinput is FPintput:across-int 

= {goal 0}) from Figure 4.6b are found to be: 
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θdial=
1

rgearkspring

d1

(d1 + d2 )
Fweight

, (2) 

xinput =
1

kspring

d1
2

(d1 + d2 )2 Fweight

, (3) 

where θdial = [0 5], xinput = 0 and Fweight = [0 300].
 

These equations are formed by extracting key information about the connections in 

the system: rgear is the radius for the gear EB, kspring is the stiffness term from the spring 

EB and d1 and d2 are length terms extracted from the second class lever EB. These 

equations are determined by a computational recursive algorithm similar to the update 

mechanism for through and across variables shown in the previous section. The 

equation extractor constructs symbolic equations for the through and across variables 

similar to how bond graph systems derive behavior. The technique starts at each goal 

value in a design and works back to given data, such as the input weight (Fweight = [0 

300]) or zero values in the ground FPs. The equation extractor retrieves information 

stored in the Embodiments’ magnitude-change (MG-change) functions, which describe 

how the Embodiments interact with neighboring Functional Parameters, and combines 

these interactions to form complete equations. By performing a depth first search through 

the graph of connecting FP nodes, the extractor determines across and through variable 

transformations for series and parallel connections. As a result, the process is capable of 

finding equations for a wide variety of design configurations including all series and 

parallel branchings, and non-linear transformations between Functional Parameters. 
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The equations extracted for each design have two purposes later in the process. First, 

the equations are referenced by the Instantiation-agents in their choosing actual 

components for the Embodiments in a design (furthered explained in Section 5.3.2). 

Second, the equations are used to determine the values for performance-based objectives 

in the design problem. In the previous chapter, the weighing machine problem was shown 

with four objectives, two of which are direct results of the equations shown here: 

minimize dial error and minimize input displacement. In Equations 2 and 3, the values on 

the left side of the equations are specified by the user (θdial = [0 5] and xinput = 0). The 

right sides of the equations are determined for each design in the search process using 

this equation extraction. The values for the objectives are determined by the amount of 

mismatch in these equations. The closer that the left hand side of Equations 2 and 3 are to 

the behavior predicted on the right hand side, the better the system conforms with the 

user specifications. 

4.5 CATALOG OF COMPONENTS 
As seen in the flowchart in Figure 2.2, design states are first configured by the 

Configuration-agents, then equations are extracted, and finally, designs are instantiated 

with real components. At first, designs are configured using the Embodiment information 

from the catalog, so that specific component values do not create unnecessary constraints 

for the configuration. The catalog of components thus maintains both the abstract 

Embodiment data and data on real components. For electromechanical design, the catalog 

contains the 32 Embodiments shown in Table 4.2. 
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The main tasks of the Instantiation-agents to be discussed further in Chapter 5 is to 

lookup each Embodiment in a configuration and find a suitable component to fulfill that 

Embodiment. The library is a directory of files that contains these abstract and concrete 

component descriptions. There are over 300 components in all for instantiating the 32 

Embodiments. Figure 4.7 shows how a gear is represented in the file “gear.comps”. The 

figure shows actual gear components, and their values for diameter, teeth pitch, cost, etc. 

Components ;;; Gear.comps 
;;; This file contains information on gear components. 
;;; It contains two lists: one instantiating the variables  
;;; in the gear EB, and another with evaluatable criteria 
;;; Components have the format: 
;;; (name  (Dia [m], shaft-Dia [m], teeth, Pitch [teeth/in.])  
;;;   (cost [$], mass [kg.], efficiency)) 
;;; The following gears are from the Nordex catalog p. 286 
(LAS-F7-28   (11.1e-3 6.35e-3 28 64) (5.75 5e-3 0.98)) 
(LAS-F7-36   (14.2e-3 6.35e-3 36 64) (6.29 10e-3 0.98)) 
(LAS-F7-46   (18.3e-3 6.35e-3 46 64) (6.66 14e-3 0.98)) 
(LAS-F7-60   (23.8e-3 6.35e-3 60 64) (7.54 65e-3 0.98)) 
(LAS-F7-75   (29.8e-3 6.35e-3 75 64) (8.18 17e-3 0.98)) 
(LAS-F7-90   (35.7e-3 6.35e-3 90 64) (9.40 22e-3 0.98)) 
(LAS-F7-104 (41.3e-3 6.35e-3 104 64) (10.26 25e-3 0.98)) 
(LAS-F7-128 (50.8e-3 6.35e-3 128 64) (12.03 33e-3 0.98)) 
(LAS-F7-168 (66.7e-3 6.35e-3 168 64) (15.69 35e-3 0.98)) 
(LAS-F7-208 (82.6e-3 6.35e-3 208 64) (21.99 45e-3 0.98)) 
(LAS-F7-248 (98.4e-3 6.35e-3 248 64) (24.74 50e-3 0.98)) 

Figure 4.7: Gear Embodiment with sample of gear component file: gear.comps. 

Table 4.2: Current Embodiments implemented in the system 

Battery Lever (class 3) Resistor Solenoid 

Cable Motor Rotational Bearing Spring 

Capacitor Pipe Rotational Damper Sprocket 

Gear Piston Rotational valve Stopper 

Electrical valve Potentiometer Switch Transistor 

Inductor coil Pulley Tank Translational Bearing

Lever (class 1) Rack Torsional Spring Translational Damper

Lever (class 2) Relay Shaft Worm gear 
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4.6 SYSTEM CONFIGURATION 
A completed design state enters the evaluation phase of the process with a topological 

connection of Embodiments and Functional Parameters, a list of components instantiating 

these Embodiments, and a list of all the agents that contribute to the design. Upon 

evaluation, the design also contains values for all the objectives specified in the design 

problem. This total set makes up the System Configuration (SC) structure as seen in 

Figure 4.8. These SCs are the representations of the design states that are transported 

throughout the system among the various agents and other functional modules. 

4.7 COMPARISON WITH PREVIOUS METHODS 
Of the four subsystems of A-Design, the functional representation shown here is most 

SC – System Configuration: 

 graph List of all the FPs in the design. 
Each is indexed to the one or 
more EBs that it connects. 

 EBs List of Embodiment names that 
make up a design. 
(gear dial spring rack …) 

 Comps List of components that makes a 
one-to-one with the EB list. 

 C-agents List of C-agents – also makes a 
one-to-one match with EB list. 

 I-agents List of I-agents – makes a one-to-
one match with Comps list. 

 F-agents List of F-agents that have 
fragmented the design in past 
iterations 

 Evaluations List of attribute values for the 
  design problem. e.g. for attributes 
  (cost weight efficiency). 

Figure 4.8: The contents of the SC structure. 
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similar to related work. The terminology in the A-Design representation borrows directly 

from the research of Welch, and the method for updating designs is akin to that of 

Schmidt and Cagan. Just as human design is unstructured or open-ended in the 

development of design concepts, the A-Design approach and the related approaches do 

not restrict the design solutions to a set topology. These representations are structured to 

address a wide variety of solutions for fulfilling a given conceptual design problem. 

However, by building on these previous techniques, the A-Design representation exhibits 

several unique innovations over the previous work. 

The A-Design representation does not confine the complexity of design 

configurations. Any number of series and parallel connections can be made to instantiate 

a design, as opposed to the previous work of Welch and Ulrich, where series and parallel 

connections were limited. Their approaches involved creating configurations through a 

bond graph formalism described as a power spine. Similar to A-Design, the power spine 

fulfilled the description of a specific input/output behavior of the design problem. 

Configurations, or power spines, were created from a tree expansion starting with the 

most simple design state possible (a direct connection from input to output). Levels of the 

tree elaborate upon this simple design, but are bound by simple modification rules (or 

rewrite rules in Ulrich). The resulting designs from these techniques are a direct 

connection from input to output with components either in series or parallel with this 

direct connection.  

A-Design’s ability to comprehend incomplete designs allows for a much broader 

space of possible designs. The Functional Parameter formalism along with the function 
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grammar update mechanism allows the construction of designs to occur without 

constraint. By tracking the goals of the design problem, agents are given the freedom to 

connect components anywhere in a configuration as opposed to only along a direct path 

from input to output.  

The A-Design representation also provides a more complete representation of design 

states than the previous work. Welch and Ulrich saw the interesting design activity 

occurring at a phenomenological level. In their model, this level is a step before 

Embodiment design. Figure 4.9a shows the view of conceptual design developed by 

Welch. This approach did not instantiate components in designs, since it stopped at the 

Embodiment level. The approaches of Welch and Ulrich first build dynamic models with 

a bond graph at the phenomenological level, then embody these bond graphs with 

component models. 

Figure 4.9: Views of the conceptual design process : a) the view established in Welch and Ulrich, 
b) the A-Design view. 
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In the A-Design model, design occurs at both the Embodiment level and the 

Instantiation level and not a Phenomenological level. The viewpoint taken in A-Design is 

that human design occurs with real components in mind and not phenomena like Hooke’s  

Law or Kirchoff’s Law as is suggested by these predecessors. Figure 4.9b shows the A-

Design view of conceptual design. In this figure, a store of phenomenological 

information can be referenced to guide the design process at the Embodiment level, but 

the Embodiment level is not a result of prior design stages. Observations made from real 

design processes suggest that people think on a component level rather than a behavior 

level when solving design problems For example, a designer is more likely to say, “We 

should put a spring in the design”, rather than “We should use Hooke’s Law to solve this 

design functionality”. It is possible that a store of phenomenological data is used in 

making design decisions, but contrary to previous approaches, this data is auxiliary to the 

design process.  

Of course, that is not to say that this information is not essential to design. The 

learning that guides the construction of new alternatives is an invaluable source of design 

knowledge, especially if such knowledge is distilled to basic principles or phenomena. In 

the A-Design model of Figure 4.9b, the storing of past design similarities is available to 

agents in the construction of designs at both the Embodiment level and the Instantiation 

level. In Chapter 6, the method for creating this store of information from past design 

instances is described. 

The construction of the Welch and Ulrich model might result from the traditional use 

of bond graphs. Bond graphs were created to model actual dynamic systems to determine 
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underlying phenomena (i.e. to extract phenomenological behavior from design instances 

as in Figure 4.9b). These previous techniques have added additional concepts to bond 

graphs to allow them to design as well as analyze. As a result, the conceptual design 

process in Figure 4.9a is founded on and confined to the bond graphs analysis approach, 

as opposed to corresponding with the actual human design process.  

In addition, problems occurred in Welch and in Ulrich after conceiving 

phenomenological design concepts. Fulfilling the “power spine” phenomena with a 

design at the Embodiment level created some problems. This realization from phenomena 

to embodiment occurred by hand in Ulrich and computationally in Welch. The idealized 

bond graph elements could not easily be matched to embodiments without introducing 

new behaviors intrinsic to real components. In addition, there was a degree of variability 

in the configurations that resulted from the bond graph “power spines”. To handle this, 

Welch’s system develops several possible configurations for a single bond graph 

representation. The realization from bond graph to physical configuration in Ulrich 

occurred with some creative license; Welch referred to Ulrich’s design configurations as 

a “quantum leap”. Because this realization from phenomena to design configuration is so 

problematic and unnatural to design, the A-Design approach constructs designs by 

directly configuring Embodiments and components. The iteration of the search process 

then provides for the discovery of successful designs and useful phenomenological 

information extracted from such designs. 
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Chapter 5 

Agents Architecture 

Main Entry: col·lab·o·rate 
Pronunciation: k&-'la-b&-"rAt 
Function: intransitive verb 
Inflected Form(s): -rat·ed; -rat·ing 
Etymology: Late Latin collaboratus, past participle of collaborare to labor together, 
from Latin com- + laborare to labor 
Date: 1871 
1 : to work jointly with others or together especially in an intellectual endeavor 
2 : to cooperate with an agency or instrumentality with which one is not immediately 
connected  
- col·lab·o·ra·tion /-"la-b&-'rA-sh&n/ noun 
- col·lab·o·ra·tive /-'la-b&-"rA-tiv, -b(&-)r&-/ adjective or noun  

 

The agent subsystem is the heart of the A-Design theory. A population of diverse 

agents provides a way of combining stochastic search algorithms and knowledge-driven 

methods. The collaborative exchange of designs among various agents achieves a sense 

of parallel execution. This interaction produces a more robust process capable of solving 

the conceptual design problem with more variety. Furthermore, the combination of agents 

and stochastic search allows one to tailor the representation to best embody the 

complexity of the design space. In order to bridge the search process and the functional 

representation, the agents are constructed in response to the specifications of these 

subsystems. This allows the representation to be developed without restriction.  



 69

Agents follow knowledge-driven strategies in adding or subtracting elements to 

designs. These strategies follow various preferences agents have for understanding the 

functional representation, and for solving the goal specifications of the input and output 

Functional Parameters. Because these knowledge-driven, goal-directed agents are 

deterministic, A-Design stochastically chooses agents to prevent stagnation at local 

minima. In addition, the agents are augmented by a learning strategy to hone their 

understanding of how to best overcome the unique challenges specific to each conceptual 

design problem. 

5.1 RELATED WORK 
The concept of cooperating agents has had a growing acceptance as a method for 

complex computation beginning with Artificial Life research (Langton, 1988; Holland, 

1992). Artificial Life, or A-Life, seeks to understand how natural systems perform 

complex tasks as a result of interacting naïve agents. The highly distributed and parallel 

emergent behavior from these simple interactions leads to a robust and efficient process.  

Such multi-agent systems have previously been applied in a number of engineering 

design applications (see overview by Lander, 1997). The approach in many of these 

engineering applications is to use agents to handle the pre- and post-processing of various 

computational analysis tools such as spreadsheets or CAD systems. By communicating 

through a common framework, the agents, which, act as “experts” in representing the 

results produced by their encapsulated applications (see example in Goldstein, 1994). 

Currently, these approaches offer an unobtrusive means to communicate between 

computer tools used in concurrent engineering design. Other research projects in this area 
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are incorporating reasoning and learning (Grecu and Brown, 1996) into agents in order to 

more closely simulate strategies used by human designers. 

Asynchronous Teams, or A-Teams, (Talukdar, 1996) is a computational design 

methodology that combines design utilities such as optimization techniques with 

autonomous agents. These agents perform computations independently from other agents 

and contribute their results in a parallel and distributed fashion. It is believed that 

combining programs in a collaborative yet anarchistic manner will produce better results 

than if programs were executed individually. Talukdar (1993) describes this as synergy: 

“When the effectiveness of cooperation is so great that a super-object is, in some sense, 

greater than the sum of its parts, the cooperation is synergistic.” The philosophy of the 

agent-based approach of A-Design is similar to that of A-Teams. Note that A-Teams have 

also explored the use of a multi-objective selection of designs as seen in Murthy (1992) 

and Quadrel et al. (1993). 

5.2 THE A-DESIGN AGENT 
The creation of any one design in A-Design is due to collaboration among several 

different agents. These agents contain knowledge of how to design based on their 

individual strategies and preferences. They are constructed to understand the 

representation of a design state and contribute in a manner that leads to successful 

solutions. The strategies used by these agents are based on deterministic algorithms, 

which are triggered by the head Manager-agent in the current implementation. A simple 

hierarchy exists where the Manager-agent invokes the operations of the other agent 

classes: the Maker- and Modification-agents. Within the Maker- and Modification-agent 

classes, subclasses can exist as well, and within these subclasses different agent types are 
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expanded to populations of agents. For example, the electromechanical A-Design 

approach has two subclasses of Maker-agents, Configuration-agents (C-agents) and 

Instantiation-agents (I-agents); there are 48 different C-agent types and 18 different I-

agent types; and of the 48 C-agent types, there are four agents per agent-type.  

The Maker-agents have two responsibilities: create design alternatives based on the 

problem description and re-build designs returned by the Modification-agents. 

Construction of a complete design state is accomplished by several Maker-agents adding 

their distinctive parts to make a complete design alternative. The Modification-agents are 

active at the end of the evaluation phase of the process (see Figure 2.2) to take design 

states from the Pareto and Good populations and improve them based on how they were 

evaluated. These agents allow the process to move from current design states to possibly 

better ones and thus produce a better approximation of the true Pareto-optimal front.  

The Manager-agent makes observations about the population of designs and the 

population of agents. This agent also communicates with the user to understand what 

objectives in the problem are most important (as discussed in Section 3.4). While the 

Maker- and Modification-agents can be viewed as adding a directed and deterministic 

nature to A-Design, the Manager-agent brings a stochastic and learning aspect to the 

process. Initially, the Manager-agent randomly invokes the Maker- and Modification-

agents but as the process progresses and data is gathered about each agent’s success rate 

more directed agent calls are made. The interaction of the various agent types is 

displayed in Figure 5.1. Recall that some of the design tasks happen independent of agent 

interaction. These include the evaluation of designs, the sorting of designs, the updating 
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of incomplete design states and a handful of bookkeeping functions. These tasks do not 

fit into our definition of an agent, detailed below, because they do not happen as a 

collaboration of uniquely defined directed strategies and do not directly deal with the 

uncertain design issues. 

5.2.1  Definition of Agent 

There is some ambiguity in computational research over the proper use of the word 

“agent”. Our use of agent is consistent with the definition of Russell and Norvig (1995) 

where agents are viewed as perceiving their environment through sensors and acting 

upon their environment through effectors, as is illustrated in Figure 5.2. Within the 

electromechanical A-Design system, agents are implemented as independent functions 

that perceive an environment of design states, and through some decision-making effect 

Figure 5.1: The interaction of the agents occurs with the designs and the user. 
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this environment by modifying a partial or completed design state. 

While some might argue that without displaying specific behaviors of autonomy, 

mobility, or sociability (Sycara, 1998; Franklin and Graesser, 1996), the agents in A-

Design do not fully conform to the definition of “agency”. However, within the Artificial 

Life community agents often are defined as simple strategies that, when combined, lead 

to more complex emergent behaviors (Langton, 1988). Similarly, our agents are defined 

as knowledge-driven strategies for solving open-ended problems that, when 

collaboratively combined with other similar strategies, leads to a more complex and 

often emergent behavior for achieving a design goal. For example, in designing travel 

paths between two set destinations, one can imagine different agents to accomplish the 

goal. One agent might try to determine the best path for driving while another might look 

at possible flight paths for connecting the start and end points. The various agents would 

accomplish the same goal but in different manners. Because no single strategy is best for 

solving this design task, we refer to such strategies as fulfilling a “disputed” 

Figure 5.2: An agent is defined by its sensors, effectors and judgments. 
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functionality. If more than one approach exists to solve a problem then the various 

“disputed” strategies can be enumerated as computational design agents as is shown in 

the agent strategies in this chapter. 

Because, in design, there is no single answer, different agents working on the same 

design problem can generate completely different solutions. By having agents with 

different abilities and preferences contributing to designs, the process gains robustness 

and variety in solving various conceptual design problems. This manner of working 

together on a problem is known as collaborative agent interaction. There are other multi-

agent strategies, especially in the artificial life area where agents interact either 

cooperatively (Hoffman and Waring, 1996; Reynolds, 1987) or competitively (Steels, 

1996; Hillis, 1991). In cooperative and competitive multi-agent systems, agents act on an 

environment consisting mainly of other agents. Depending on the goals of the agents, the 

interactions are either beneficial or detrimental to the other agents. Beneficial agent 

interactions cooperate to achieve a common goal, whereas detrimental agent interactions 

are usually the result of a competition for survival or resources. In this work, the agents’ 

environment consists mainly of designs and not other agents. The actions of any one 

agent are not detrimental to other agents and thus the system is not competitive, and since 

the agents are not directly aiding one another, the interaction is not cooperative. The 

agents interact indirectly through the common goal of producing successful designs, and 

as a result in this work and in related projects such as A-Teams research (notably 

Talukdar, 1999; Talukdar, 1998) the interaction is labeled collaborative. This 

collaborative interaction in design is analogous to a collaborating team of engineering 

designers. 
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5.2.2 Utility agent model 

The underlying premise of the utility agent strategies is the concept that agents are 

trying to maximize their utility in their interactions (i.e. creation or reconstruction) with 

their environment (i.e. design state). What occurs inside each agent is, in a sense, what 

occurs in the system’s model of the user. The utility agent model claims that the effectors 

of an agent lead to new states in the environment and such states can be predicted and 

mapped onto real numbers representing an agent’s utility. Figure 5.3 shows the strategy 

used by utility agents in the context of design. Each agent has a unique evaluation 

function that is a combination of terms from individual agent preferences and outside 

learning. In the general utility agent model, a local search is performed over all possible 

actions that the agent can carry out. Each action is evaluated by the agent and a choice is 

Figure 5.3: Utility agent tests all possible actions before performing the action with the highest 
utility. 
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made based on the action that maximizes the agent’s evaluation function. In the following 

sections, an example of how the utility agent strategy is realized in A-Design is 

presented. 

5.3 MAKER-AGENTS 
5.3.1 Configuration-Agents (C-Agents) 

C-agents are, by far, the most involved and interesting of the agent types. They have 

the ability to take the user-defined inputs and outputs and build designs to achieve the 

functionality specified in the design problem. In doing so, C-agents determine what 

portion of a configuration to address, and what Embodiments to connect to the 

configuration. For this reason, their operation is closely linked to the functional 

representation described in Chapter 4. As a utility agent, the C-agents perceive the 

current state of the environment and search for actions that lead to the most desired 

outcome. In the case of electromechanical design, the agent searches among possible EBs 

in the catalog to find one that leads to a new design state that maximizes the agent’s 

evaluation function. In any given design configuration, each Embodiment represents the 

unique contribution of a specific C-agent. As a result of the different C-agent behaviors 

and combination of these behaviors an infinite variety of configurations can be created.  

Initially, C-agents examine a partial design state to determine where to attach a new 

Embodiment. In an incomplete design state like that found in Figure 5.4, a new 

Embodiment can be connected to any of the Functional Parameters present in the system. 

The number of connection possibilities is not combinatorially large. Each C-agent 

exhaustively tests all 32 EBs (shown in Table 4.2) on all possible connection points in the 
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system and commits to the EB and target FP connection that maximizes the utility of the 

agent.  

C-agents are created to encompass various preferences that can be envisioned in 

adding new Embodiments to a design. Table 5.1 shows the various preferences that 

characterize agents within each agent type. In the C-agent type, agents exist for each 

combination of characteristics in the first column. For example, some agents prefer 

electrical Embodiments while others prefer rotational, translational, or hydraulic 

Embodiments. As a result of this preference, an agent preferring electrical components 

will score connections made to “electrical” FPs higher than other connection types. This 

same preference might also elicit the introduction of a motor’s rotational connection into 

a system that has no electrical connections present, in order to introduce electrical FPs 

into the design state. 

In addition to the domain preference, the decision-making for other preferences in 

Table 5.1 operates similarly. Agents can prefer connecting to FPs that are supplying 

energy (FP:direction = source) or receiving energy (FP:direction = sink). This is followed  

Figure 5.4: The C-agent’s perception of an incomplete design state. 
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by another preference that chooses to connect Embodiments in parallel or series with 

existing EBs. Finally after an Embodiment is connected, agents have a preference for 

how to connect the remaining ports of the new Embodiment. These remaining ports can 

be linked to Functional Parameters currently in the configuration, can be used to establish 

new FPs, or can be connected to ground FPs. Each C-agent has all four preference types, 

and so as a result of all possible combinations of these preferences, 48 unique C-agent 

strategies can be constructed. As an example, one of these agent types is known as “C-

agent-electrical-parallel-source-existing”, meaning the C-agent has a preference for 

Table 5.1: Different preferences that exist in the current set of C-, I- and F-agents. 

C-Agents (48 agents) I-Agents (18 agents) F-Agents (72 agents) 

Domain Preference 

electrical EBs 

translational EBs 

rotational EBs 

hydraulic EBs 

Objective Preference 

prefer inexpensive components

prefer lightweight components 

prefer efficient components 

Design Preference 

modify expensive designs 

modify inexpensive designs 

modify heavy designs 

modify light designs 

Parallel vs. Series 

connect EBs in parallel 

connect in series 

Variable Preference 

select component based on 
variables present in behavioral 
equations 

select component based on 
variables present in FP 
interfaces 

Objective Preference 

remove expensive components

remove heavy components 

remove inefficient components

Source vs. Sink 

connect to source FPs 

connect to sink FPs 

Value for Instantiated 
Variable 

High 

Medium 

Low 

Degree of Fragmentation 

remove component from 
design 

remove EB from design 

Other EB connections 

link new EB to existing FPs 

link new EB to new FP 

link new EB to ground FP 

 EB Fragmentation 

remove repeated EBs 

remove dangling EBs 

remove ground connections 
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electrical Embodiments, connected in parallel, from source FPs, to existing Functional 

Parameters in a design.  

In addition to these unique preferences, every C-agent’s evaluation function contains 

terms to account for EB connections that complete a design goal. As discussed in Chapter 

4, the initial input and output FPs have goal flags that act as placeholders in 

distinguishing actual values from those that are desired by the user. In testing candidate 

Embodiments, outcomes fulfilling goal specifications are emphasized, so that agents are 

also striving to solve the design problem as well as meet their personal preference.  

Finally, the agent model includes a method of learning. Chapter 6 examines how the 

Manager-agent finds both useful and detrimental commonalities in the designs of past 

iterations. The TODO list includes positive commonalities, while the TABOO list 

includes poor commonalities. So, in addition, to personal preferences, and strategies for 

fulfilling goal specifications, C-agents are also advised by the presence of good and bad 

past design exemplars. This method of guiding agent decisions is similar to the multi-

agent reinforcement learning approach in Tan (1993). The evaluation function of the C-

agent is rewarded when the addition of a new EB fulfills a design fragment that is on the 

TODO list, and conversely penalized for fulfilling subsystems of the TABOO list. 

In Figure 5.5, pseudo-code is presented to clarify how the Configuration-agents 

operate. The utility functions, or evaluation functions, of the C-agents include five terms: 

the value of the Functional Parameter (VFP), the value of the Embodiment (VEB), the 

value of the other EB connections (VC), and the two reinforcement learning terms 

(TODO, and TABOO). These values are incremented by one every time an agent’s  
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Figure 5.5: Pseudo-code for Configuration-agent. 
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preference is met for a particular action. In summing up the effect of these terms, each 

agent has a weighted utility function similar to the linear weighted approximation of the 

user’s utility function. The weights (w1, w2, w3, w4, w5) are predetermined in the current 

A-Design implementation for each agent. Various agents of each agent type are created 

with different weightings. For example, for the agent-type “C-agent-electrical-parallel-

source-existing”, various agents can be implemented each emphasizing different terms of 

the evaluation function. One agent might prefer the Embodiment (high value for w2) 

more than the FPs it connects to in a design (lower value for w1). Also, some agents can 

strongly consider learning influences (higher w4, w5), while others ignore learning (w4= 

0, w5 = 0). With this approach, a variety of agents can be constructed to produce more 

variety in the possible configurations. In the current A-Design system, four agents, each 

with different weights, are formed for each agent type. This results in a total of 192 C-

agents in the electromechanical A-Design process (48 types multiplied by four of each 

type). Future work with this utility agent model will investigate alternative ways of 

choosing weights either automatically or through experimentation. 

The specifics explained here are for the current set of C-agents. They are by no means 

the only way to implement such Configuration-agents and are shown here to portray the 

amount of programmed intelligence that can successfully lead to interesting design states. 

It is important that agents are directed enough to prevent infeasible design alternatives, 

but it is also equally important that they are not so developed as to unduly limit the 

exploration of the design space. For example agents that determine the complete 

configurations on their own will greatly limit the possible design configurations that are 
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visited. The iterative nature of A-Design relieves C-agents from having to produce viable 

alternatives at the start of the process. The space of possible solutions is better searched 

by the set of C-agents producing possibly extravagant alternatives at first and then 

progressively becoming focused on improving the better solutions over time. 

5.3.2 Instantiation-Agents (I-Agents) 

The Instantiation-agents have a simpler job than the Configuration-agents. They 

choose real components from the catalog for each Embodiment in a configuration. I-

agents choose the EB to instantiate as well as the component for the instantiation. 

Component selection is performed by referencing a catalog of real components and the 

equations extracted from the configuration to determine which actual components best 

meet the design specifications.  

Similar to C-agent preferences, I-agents can also exhibit different preferences in 

instantiating Embodiments with actual components. The I-agent preferences are shown in 

Table 5.1 and often include specific design objectives that the user wishes to optimize. 

For example, if cost and mass of a design artifact are to be minimized then specific I-

agents are developed to have preferences for choosing inexpensive or lightweight 

components. Also, I-agents can have a preference for which variables of an Embodiment 

are the deciding factor in selecting a component, for example, choice of a gear 

component can be based on diameter or gear pitch. Finally, I-agents have a preference for 

instantiating such variables with high, medium, or low values. Similar to the C-agent 

utility model, the I-agents search all possible components and return the instantiation that 

maximizes the agent’s utility. The I-agents are invoked until no Embodiments in the 

system are without a corresponding component. 
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Again, the strategies shown in Table 5.1 are not the only possible implementations; 

they merely reflect a combination of goal-directed selection of components and the 

stochastic interaction of agents. 

5.4 MODIFICATION-AGENTS 
In the final implementation of A-Design discussed in this dissertation, only one type 

of Modification-agent was utilized. It is possible to imagine other types of Modification-

agents such as agents that exchange components, agents that merge designs, or agents 

that attempt to create function sharing in designs. The idea behind these agents is to 

establish strategies to find design states related to the ones that have been previously 

created. In other words, these agents explore the design space in the neighborhood of past 

successful design solutions. The Modification-agents are constructed to bridge the gap 

between the iterative exploration of the search space and the complexities of the design 

representation. 

5.4.1 Fragmentation-agents (F-Agents) 

The Fragmentation-agents are crucial in driving the system towards optimal design 

states. F-agents first identify a design to modify, and then further search over the EBs or 

components within the chosen design to find traits that are believed to be reducing the 

design’s worth. The agents then remove parts of the design in an indirect effort to 

improve the current design solutions in the following iterations. 

Various fragmenting preferences differentiate F-agent types from one another as is 

seen in Table 5.1. Similar to I-agents, these agents can be defined by the choice of 

objectives to address, and the choice of designs to modify. In addition, the degree of 

fragmentation can be a removal of instantiated components (to alter a design’s 
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instantiation) or a removal of complete Embodiments (to alter a design’s configuration). 

Finally, the strategy behind removing Embodiments from a system, can include the 

deletion of repeated Embodiments, of dangling EBs, or even of EBs that appear to be 

unjustifiably connected to ground. The result of these preferences is a set of 72 

Fragmentation-agents. These agents fragment all Good and Pareto designs at the end of 

every iteration. While the Fragmentation-agents are not capable of completing design 

states, the fragmented solutions are returned to the C-agents and I-agents in the next 

iteration for reconstruction.  

5.5 COLLABORATION AMONG AGENTS 
In this chapter, three different agent types are described in reference to 

electromechanical design problems. In each of the design tasks in a given iteration of A-

Design, agents are called sequentially until all design activities are accomplished. These 

agents are nearly deterministic in nature. That is, they always choose based on the action 

that maximizes their evaluation function. In cases of a tie, they pick randomly from the 

best evaluated actions. While the behavior of these agents collaborate in a well-defined 

manner, the sequence in which agents are invoked is done randomly through the process. 

As discussed in the next chapter, this random invoking of agents is guided by stochastic 

decisions made by a Manager-agent. 

In order to create the most variety, agent strategies are enumerated to form as many 

different approaches to solve a design problem as possible. Each “disputed” strategy 

presents one possible approach used in the design process. Similar to design solutions, 

there is no clear answer as to which strategy is best for creating designs. The population 
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of agents represents the spectrum of different approaches interacting under a common 

goal to create a variety of successful design states. 
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Chapter 6 

The Manager-Agent: 

Guidance for 

Iterative Search 

Main Entry: guide 
Function: verb 
Inflected Form(s): guid·ed; guid·ing 
Date: 14th century 
transitive senses 
1 : to act as a guide to : direct in a way or course 
2 a : to direct, supervise, or influence usually to a particular end  
   b : to superintend the training or instruction of 
intransitive senses : to act or work as a guide 
- guid·er noun 

This chapter returns to the iteratively-guided search subsystem described in Chapter 2 

The iterative operation of A-Design is a simplification of the iteration occurring in human 

design. Human problem solving is more than just “trial and error”; people absorb an 

abundance of information from studying failed attempts and from observing successful or 

competing products. The learning that results from design activity can lead to an efficient 

search downstream in the process by building intuition about successful and unsuccessful 

regions of the search space.  
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Unlike Maker- and Modification-agents shown in the previous chapter, the Manager-

agent acts as a moderator in the process between the user and the A-Design process. 

Through the advice supplied by the user, the Manager-agent filters the immense amount 

of data in the process and assesses how to best guide the search process. In this sense, the 

Manager-agent collaborates with the user and the other agents in the A-Design system.  

In the implementation of electromechanical A-Design, only one Manager-agent was 

developed. Like the agents shown in the previous chapter, this Manager-agent also 

addresses ambiguous conceptual design issues and therefore embodies a “disputed” 

design strategy. Future models of A-Design may include a number of interacting 

Manager-agents similar to the interacting Maker- and Modification-agents. 

The philosophy behind the Manager-agent is to glean information from the complex 

thought process of the user and from the extensive details of past iterations. The learning 

attained by the Manager-agent is then used to guide the process to better designs. This 

guidance can both narrow search to particular areas of the space of design solutions and 

broaden search to find new fruitful areas of the search space. 

6.1 RELATED WORK 
The Manager-agent model is built mainly upon machine learning research (see 

overview in Mitchell, 1996). Learning algorithms have many uses in computation 

because they can automatically determine strategies for complex environments and can 

adapt to new stimuli that might be encountered in such environments. Similar to 

stochastic optimization, A-Design uses statistics based on previous design states as the 

stimuli for making better design decisions in future iterations. Many learning approaches 
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require a “teacher” to articulate the proper responses to various stimuli. Unfortunately, 

proper response in design is not a simple matter of right and wrong. While there are 

degrees of success in design, there are no right answers or strategies that can be 

referenced in creating better designs in the future. 

Constructing data to be used for learning in A-Design starts with the user/Manager-

agent dialog. In Chapter 3, this dialog established a scale to sort designs. From these 

rankings, an evaluation function can be constructed. The method of extracting an 

evaluation function from the user’s rankings is based on Christensen and Korf (1986). 

This paper laid the groundwork for determining coefficients of a linear weighted 

function. Later, this was explored in depth by Abramson (1990) in reference to game-

playing. 

A second area of learning in A-Design is finding trends in past designs. The 

TODO/TABOO learning that is explained below in Section 6.3, is based on several 

different machine learning techniques. First the detection of good and bad design trends 

is similar to learning by analyzing differences, explored by Winston (1982, 1992). This 

work determines classifications of instances by observing differences and commonalities 

in test data. The algorithm performs best when the test data include “near-misses” – 

alternatives that, although similar, belong to different classes. The technique developed 

here to discover characteristics of good and bad designs has also been influenced by the 

SOAR system (Laird et al.1986) and the EURISKO system (Lenat, 1983). Although the 

domains in these projects are quite different than the configurations built in A-Design, the 

concept of dissecting alternatives to find commonalities is similar. The design fragments 
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that belong to the TODO and TABOO sets are similar to the “chunking” of ideas 

discussed in Laird et al. 

The Manager-agent uses the information gained from past designs to guide the design 

activities of the other agents. The TODO and TABOO sets passed to the Maker- and 

Modification-agents influence the actions of these agents by a reinforcement learning 

technique (see overview in Kaelbling, 1996). The manner in which this new design data 

affects the decision-making process of the agents is similar to other approaches that have 

combined reinforcement learning with multi-agent systems (see Tan, 1993; Sandholm 

and Crites, 1995).  

Finally, the Manager-agent also can adjust the probabilities of the randomly invoked 

Maker- and Modification-agents. This adjustment is based on the past contributions of 

these agents and is similar to techniques such as proportional selection in genetic 

algorithms (see Bäck and Hoffmeister, 1991) and move set probabilities in simulated 

annealing (Hustin, 1989). These approaches can allow stochastic optimization to be more 

directed and efficient in the search for successful design alternatives. 

6.2 BASIC OPERATION 
This section describes the complete operations of the Manager-agent. Figure 6.1 

shows pseudo-code representing the Manager-agent’s procedure at every iteration in the 

process. The Manager-agent receives the design alternatives separated into Pareto and 

non-Pareto solutions. Because this separation can be determined mathematically, it is not 

part of a unique agent strategy. From these designs, the Manager-agent prepares data to 

present the current state of the process to the user (as shown in the example of Figure 
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3.5). From the interactions with the user, the Manager determines an evaluation function 

that approximates the user’s utility function. Based on this evaluation function, the 

Manager-agent is able to further divide the remaining non-Pareto designs into Good 

solutions and Poor solutions. 

Next, the Manager-agent initiates the TODO/TABOO learning. This process, 

described in depth in the next section, finds common trends among design states. These 

trends include both combinations of agents and design fragments from both good and bad 

designs. The TODO list is constructed by examining the best designs from an iteration to 

Figure 6.1: Pseudo-code for Manager-agent. 

Sensors = design states (already divided into Pareto and non-Pareto) 
1. Find best design for current user preference. 
2. Report to user details of process (see Figure 3.5). 

a. Inform on the amount of change to the Pareto set. 
b. Present best-design and inform when this changed last. 

3. Query user ("Talk to M-agent (hit return) ? "). 
 if “yes” 

a. Present random Pareto designs 
b. Retrieve rating from user 
c. Approximate preference as linear weights (see Figure 3.6) 

4. Find Good as a fraction of remaining non-Pareto solutions that best meet 
this user preference.  

5. Create TODO and TABOO lists 
a. find trends in agents, configurations, and components 

6. rank occurrence of such trends  
7. Update agent statistics  
Effectors = Pareto designs, Good designs, Poor designs 
 
Throughout process: 

• recommends Configuration-agents  
• recommends Fragmentation-agents 
• recommends Instantiation-agents 
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find trends of positive design activity. Conversely, the worst designs in an iteration are 

compared to find elements of the TABOO list representing poor design trends.  

In the next iteration, the Manager-agent advises the Maker- and Modification-agents 

with the TODO and TABOO lists. The trends on the TODO list are strived for, while 

TABOO trends are avoided. Maker- and Modification-agents balance their preferences 

with these trends to make informed decisions. This method of reinforcement learning is 

discussed in Chapter 5 where the electromechanical A-Design agents are described in 

detail. Also, the effects of TODO and TABOO learning are tested in the experiments of 

Chapter 9, which show that keeping track of design trends allows the process to converge 

more rapidly and to achieve better quality solutions. 

Finally, statistics on the agents are recorded based on previous design activity. The 

Manager-agent keeps track of the designs each agent produces. For example, a particular 

C-agent might contribute to two Pareto designs, one Good design and four Poor designs. 

This data is then used to adjust the probabilities of invoking an agent in future iterations, 

and is discussed in more detail in Section 6.4.  

At this point in the process, the Manager-agent returns control back to the iterative 

process with the division of designs into Pareto, Good, and Poor populations, and the 

recommendations for invoking agents in the next iteration.  

6.3 FINDING TRENDS  
The TODO/TABOO learning determines good and bad trends in past designs to 

provide a reference to improve future design activity. These trends are found by 

intersecting System Configuration structures (shown in Figure 4.8). These intersections 
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can be either graphs (connections of EBs and FPs) or various lists such as agents and 

components. Three types of trends are currently found in the implementation: 1) design 

fragments consisting of EBs and FPs connected together to form small functional blocks 

such as a “rack-and-pinion”, 2) agents that act as design teams to create either good or 

bad design instances, and 3) groups of components that instantiate configurations. 

From the approximated utility function determined by the dialog with the user, the 

designs are sorted from best to worst by collapsing the various objectives to a single 

metric as seen for two objectives in the example of Figure 6.2a. From this sorting, a 

Figure 6.2: An example of detecting TODO and TABOO trends from a set of 10 designs (A 
through J). (a) The approximation of the user’s utility allows designs to be collapsed a single 

metric. (b) The sorted list is then divided into elements for TODO and TABOO comparison. (c) 
The top five TODO designs are intersected exhaustively for all possible combinations. 
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number of the best designs are selected for constructing the TODO list and a number of 

the worst designs are selected to determine the TABOO list (see Figure 6.2b).  

Next the designs are exhaustively compared to find commonalities in the selected 

designs. In Figure 6.2, the top five designs separated for TODO comparison are examined 

to find common intersections in the designs. First, the process looks for an intersection in 

all five designs. Sometimes the intersecting all of the designs does not yield any 

commonalities. Therefore, the process also checks all possible combinations within four 

out of the five designs to find trends. This intersection continues for all possible 

combinations of designs down to comparing only two members at a time. The level 

corresponds to the number of designs that a particular trend is common to, and this 

number is assigned to that trend to be used in the reinforcement learning of the agents. 

Finding the intersection of sets (such as common design teams of agents) is easier 

than finding the intersection of graphs (such as design fragments). While set intersection 

routines are rather quick and fundamental to computation, the intersection of graphs can 

be an intricate procedure. To find a design fragment, the set of Embodiments are first 

intersected to find a common set. Then, the set of common EBs are checked to see if they 

are connected in the same manner between designs. Repeated Embodiments and highly 

connected FP’s make finding common design fragments difficult.  

In the A-Design implementation, the intersection procedure is not particularly time-

consuming, but because of the number of intersections (as in Figure 6.2c), the size of the 

TODO/TABOO lists can be constrained by resource constraints. Increasing the 

membership of the TODO and TABOO sets drastically increases the number of required 
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intersections. Also, if the designs that are created contain more components, then the 

individual intersection times would greatly effect the time required to find the TODO and 

TABOO trends. For example, airplanes contain orders-of-magnitude more components 

than weighing machines. To find commonalties in larger design domains will require 

considerable computational resources or the development of efficient heuristics to find 

commonalities. Currently, detecting these trends has produced promising results as seen 

in Section 9.3. Future research may find quicker ways to detect trends or specific ways to 

identify useful trends without extensive comparisons. 

6.4 STOCHASTIC EXECUTION OF AGENTS  
Throughout the modification and creation of designs, the basic operation of the 

iterative process is to randomly invoke C-, I- and F-agents until all design tasks for a 

given iteration have been completed. The Manager-agent stores statistics on agent 

contributions from previous iterations and uses these statistics to direct the choice of 

agents. These Manager-agent decisions give the process a stochastic guidance while still 

allowing for a certain degree of randomness in the search for new design states.  

Before every agent call, the Manager-agent is queried by the process to generate a list 

of how to proportion the probabilities for selecting an agent. The Manager-agent rates 

each possible agent based on the agent’s prior statistics and prior collaborations with 

other agents. These ratings for each agent are the result of the Manager-agent’s own 

evaluation function, which combines TODO/TABOO agent teams and agent statistics. 

Figure 6.3 illustrates an example of how this stochastically-guided proportional agent 

selection is accomplished. After a particular agent call, a partial design is constructed 
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from calling agents D, A, C, A (as seen in Figure 6.3, element 1). The Manager-agent 

then sets up probabilities for the next agent to call based on information from the agent 

statistics (Figure 6.3-2), and the TODO and TABOO lists of design teams (Figure 6.3-3). 

The agent statistics and the TODO/TABOO list information are filtered through the 

evaluation function. This function is a weighted sum of five terms that determines the 

probabilities of the next agent call: 

U = 2 x num_of_pareto  + 1 x num_of_good - 1 x num_of_poor + 2 x TODO_team (4) 

      - 2 x TABOO_team. 

The number of past Pareto designs the agent contributed to (num_of_pareto), the number 

of past Good designs (num_of_good), and the number of past poor designs 

(num_of_poor) weigh in to the Manager-agent’s evaluation. Also, if a particular agent 

completes an agent team from the TODO TABOO list of trends, then the degree of that 

Figure 6.3: Manager-agent proportions probabilities based on evaluation function.  
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trend also weighs into the Manager-agent’s evaluation. The agents within an agent team 

are not invoked in any particular order. They represent the intersection of several designs, 

where the number indicates how many designs the agent team was found in. As an 

example, agent B contributes to a TODO team (BD = 3) and a TABOO team (BC = 2) as 

seen in Figure 6.3-3. Since the addition of B fulfills both of these teams based on the 

previous agents contributing to a design, then the evaluation function for B includes 

TODO_team = 3, and TABOO_team = 2. 

The Manager-agent considers all possible agents and gives each a score from the 

evaluation function (Figure 6.3-4). As a result of these values, the Manager-agent divides 

the probabilities as shown in Figure 6.3-5. The process then picks a random number to 

determine which agent to invoke based on the Manager-agent’s division. The coefficients 

in Equation 4 have been implemented to produce a balanced yet effective division of 

agent probabilities. It is possible that these coefficients could be adjusted for different 

applications or agents. The means of optimally or automatically weighing the factors of 

this stochastic guidance is subject to future development and experimentation. 

This manner of stochastically guiding the process is similar to the dynamic selection 

mechanism of proportional selection in genetic algorithms. However, the A-Design 

stochastic process is augmented by the fact that the Manager-agent updates the selection 

probabilities for each agent call. The case-by-case updating of probabilities allows 

designs to be tailored to their strengths and weaknesses, and encourages certain agents to 

collaborate on specific or diverse designs. The context of continually recommending 

agents based on the state of a design is a unique guidance mechanism to A-Design. The 
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range of possible M-agent behaviors is large and intricate and lends itself to future 

research, however current strategies of providing feedback have improved efficiency and 

performance as is shown in Chapter 9.  
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Chapter 7 

Preliminary Test 

Problems 

This chapter introduces the second half of the dissertation, which sets out to test the 

various facets of the A-Design methodology presented in the first six chapters. The two 

design problems in this chapter test individual subsystems of the theory and illustrate the 

generality of the methodology. While these examples do exhibit some design-like 

qualities, they do not have an open-ended formulation like the electromechanical 

representation described in Chapter 4. The first example tests the multi-objective design 

selection and agent interaction subsystems, while the second numerical optimization 

problem explores the iterative process’ ability to efficiently search a complex space for 

optimal solutions.  

7.1 MANHATTAN TRANSFER 
In this example, solutions are relatively easy to find, but contrasting objectives make 

meeting the user’s preference difficult. The object of the Manhattan Transfer problem is 

to get from one location to another in a grid-based city in the minimum amount of time, 



 99

cost and effort. A user specifies the start and end location of a trip as the initial 

specification to the algorithm. The algorithm then finds solutions that connect the start 

and end locations via various transportation devices. A simulated two-dimensional grid of 

squares represents city blocks, and the transportation devices consist of bike, walk, run, 

bus, taxi and subway. Each of these devices has a unique cost, time and effort. For 

example, a taxi might cost an average of $0.20 a block but requires little effort and is 

time efficient, while walking costs nothing but requires more time and effort. The 

problem specification requires A-Design to create alternatives using combinations of the 

6 transportation devices in order to best satisfy the user’s weighted criteria of minimizing 

cost, time and effort. 

As in Figure 2.1, the process begins with the Maker-agents contributing partial travel 

paths along the way to the creation of complete trips. Rather than each agent solving the 

complete problem from start to end, the Maker-agents add individual travel segments that 

combine to make a complete solution. Designs result from the combined efforts of 

several Maker-agents. These Maker-agents differ in how they handle constraints in the 

system such as bus and subway stops, and maximum distances one can walk or run. After 

Maker-agents complete travel paths, the alternatives are evaluated on their cost, time and 

effort, and solutions are sorted into Pareto, Good and Poor populations. Next, 

Modification-agents remove undesirable segments of travel paths and return the 

fragmented designs back to the Maker-agents for reconstruction.  
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In the Manhattan Transfer experiments, problems were initiated with beginning (0, 0) 

and end (20, 20) locations as well as the relative importance of each objective. At the end 

of the process A-Design returns several solutions that best meet the user preference. 

Originally, the user preference placed more emphasis on minimizing cost than 

minimizing time or effort (cost was five times more important than time and two and a 

half times more important than effort). The solution shown in Figure 7.1 was created by 

A-Design in 62 iterations with a maximum design population of 160.  

In addition, the user is free to change preference throughout the process allowing the 

system to adapt appropriately. By examining the results produced, the user can adjust the 

preference weighting to achieve a desired travel path. In this example, the adaptability of 

the system was tested by changing the user preference to prefer minimizing time twice as 

much as effort and 5 times as much as cost. This produced the result of “take taxi from 

Figure 7.1: A solution to the Manhattan Transfer problem generated by the A-Design process. 

 
Bike for nine blocks.

Take bus for
28 blocks. 

Walk 
last 
three 
blocks. 
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start to finish” (TAXI (0 0) (20 20)). By starting from the population of designs created 

under the first preference, the process easily adapted to the new preference. As a result, 

the algorithm took only 11 iterations to converge after the preference change, thus 

illustrating the power of the recessive traits stored in the Pareto set. It was determined 

through a separate experiment that the space of possible designs numbers approximately 

1.2 million and of these, only 99 are Pareto-optimal. After our experiment, A-Design had 

found 40 Pareto points of the 99 in only searching approximately 7,000 design states. 

Although the Manhattan Transfer example deals with a highly abstracted situation, it 

illustrates that agents with different characteristics are able to work together to adapt to 

change and to find optimal design configurations. Alone, agents consider minimizing 

only single objectives. For example, low-cost designs are usually created by agents that 

prefer low-cost devices. Through the collaboration of different agents, solutions are 

constructed to exemplify a balance of attributes as suggested by the user’s preference. 

The combination of agents that prefer low-cost devices with agents that prefer low-effort 

devices will ideally lead to designs that are both low in cost and low in effort. In the 

example, the initial user preference shifted from low-cost designs to quick designs. A-

Design was able accommodate this alteration by switching focus to agents with a 

preference for quick transportation devices. 

7.2 NUMERICAL OPTIMIZATION 
In addition to adapting to changes in user preference, the iterative search should also 

be able to improve or “optimize” for a given user preference. Therefore, this example 

tests the optimizing power of A-Design apart from its use as a conceptual design 

generation tool.  
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This multi-objective example contains two highly multi-modal numerical objective 

functions. The two functions shown in Figure 7.2, are expressed by 
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where the minimum is -59.2 and is found at (x = 0.023, y = -2.105), and 

( ) ( )y100x100yx 22
2 sinsinf −−==  (6) (Figure 7.2b) 

where the minimum is -234.6 and is found at (x = -1.57, y = -1.57). 

A-Design was compared with a robust SQP algorithm (Lawrence, et al., 1993) in its 

ability to find the optimum for a weighted sum of the two objectives. First, both A-

Design and SQP were tested by weighting f1 ten to one over f2. Then using the results of 

the first run tested again with a weighting of f2 ten to one over f1. The 10:1 and 1:10 

preferences are used to establish different optimal points for the lumped objective 

functions. Agents within this problem are simple functions that increase or decrease 

parameters within the equations to reduce objective values or avoid local minima. 

Figure 7.2: The two mathematical functions (a) f1 and (b) f2 used to test the optimizing power of 
A-Design. 

(a) (b) 
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A single run of A-Design proved to be a time-consuming process partly due to the 

number of design state evaluations and partly due to agent and design management. 

Although SQP found the optimal solution with fewer evaluations for the 10:1 weighting, 

it found the global minimum only one in seven runs of the process. The A-Design 

algorithm, due to its agent-based search and storing of design alternatives, found the 

solution in every run with a population size of 100 and an average of 88 iterations. When 

the weightings changed, A-Design only needed to perform a single iteration to arrive at 

the new optimum, while SQP had to be rerun 13 times before finding the new optimum. 

By retaining the Pareto-optimal set from the first run, the A-Design algorithm quickly 

adapts to changes in weighting of the two objectives. Certainly, SQP is a more efficient 

optimization strategy if it starts in the neighborhood of the optimum (requiring only on 

average 10 evaluations per run as opposed to the hundreds of evaluations required by A-

Design). However, in general, A-Design is more robust in its ability to find the optimum 

and the time required in arriving at Pareto-optimal solutions for the first user preference 

results in a large savings when the process is reinitiated with different weights. 

The two examples discussed above demonstrate the versatility of the A-Design 

methodology. Both examples illustrate the methodology’s potential outside the intended 

use as a conceptual design tool. These examples show that A-Design, through its unique 

design selection scheme of preserving the Pareto front and iterative-based agent 

operations, can successfully and adaptively produce results for a wide variety of 

problems. 
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Chapter 8 

Electromechanical 

Test Cases 

The two test cases presented in this chapter make full use of the potential of the A-

Design conceptual design process. The implemented electromechanical A-Design system 

includes the iterative search process, the adaptive design selection, the functional 

representation, the C-, I-, F-agents, the Manager-agent, the equation extractor, the design 

evaluation mechanism, and a general framework for transferring designs to the various 

sub-processes. The system is written in LISP and is shown in abbreviated form in the 

Appendix.  

8.1 WEIGHING MACHINE 
In order to pose the weighing machine design problem, the user supplies the desired 

inputs and outputs, the objectives and the location of the files that make up the catalog of 

components. In this test case, four objectives were chosen to guide the system to 

successful design states: minimize cost, minimize mass, minimize dial error and 

minimize input displacement. The first two objectives (minimize cost and minimize 
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mass) are calculated by summing component values found in the catalog. The latter two 

(minimize dial error and minimize input displacement) are results of the behavior 

resulting from the extracted equations. The problem is described to the process by both 

the functional description and the objectives (see Figure 8.1). The catalog of components 

for this test example consists of the Embodiments shown in Table 4.2. For each of the 32 

Embodiments shown, there exist actual components drawn from Allied Electronics, 

Nordex Inc. and Mc-Master Carr Supply catalogs. These total just over 300 components 

available for constructing designs. The catalog is expandable to allow the user to 

introduce new Embodiments and components.  

Since the first several chapters have already described the problem, the results will 

now be presented. Figure 8.2 shows three weighing machines created by the process over  

Figure 8.1: Description of weighing machine design problem as posed to A-Design. 
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Figure 8.2: Three different alternatives created by the A-Design process. Design (a) is found by 
an equal preference for the four design objectives, whereas designs (b) and (c) are found by 

placing more importance on minimizing input displacement. 

(b)

Design objectives:
cost = $616.18, mass = 1.3kg,
input dx = 5 mm, accuracy = 0.4 rad.

Components:
cylinder-1: 62205K77 $368.49,Dia=3.25” 
cylinder-2: 62205K71 $198.63, Dia=1.5” 
linear-bearing: ABS-L1-4 $10.47, Dia=0.25” 
lever: 10 cm bar stock w=1.0”, t=0.25” 
spring: ERS-A1-2 $0.89, K=2.0lb/in 
rack: KHS-F2-142 $26.75, pitch=64 
gear: LAS-F7-28 $5.75, 28 teeth

Design objectives:
cost = $46.82, mass = 0.2kg, 
input dx = 4.1cm, accuracy = 0.4rad.

Components:
lever: 5 cm bar stock w=1.0”, t=0.25” 
spring: ERS-A1-36 $0.93, K=16.0lb/in 
rack: KHS-F2-142 $26.75, pitch=64 
gear: LAS-F7-28 $5.75, 28 teeth 
shaft: AAS-A8-20 
bearing: ABS-A2-19

(c)

Design objectives:
cost = $90.20, mass = 0.5kg,
input dx = 0.7mm, accuracy = 0.2 rad.

Components:
lever-1: 4 cm bar stock w=1.0”, t=0.25” 
lever-2: 4 cm bar stock w=1.0”, t=0.25” 
lever-3: 13 cm bar stock w=1.0”, t=0.25” 
lever-4: 7 cm bar stock w=1.0”, t=0.25” 
spring: ERS-A1-7 $0.78, K=14.6lb/in 
rack: KHS-F2-142 $26.75, pitch=64 
gear: LAS-F7-128 $12.03, 128 teeth 
motor: 542-0130 $34.19, 300prm 
resistor:297-7751 $0.01, 180KΩ
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Design objectives:
cost = $616.18, mass = 1.3kg,
input dx = 5 mm, accuracy = 0.4 rad.

Design objectives:
cost = $616.18, mass = 1.3kg,
input dx = 5 mm, accuracy = 0.4 rad.

Components:
cylinder-1: 62205K77 $368.49,Dia=3.25” 
cylinder-2: 62205K71 $198.63, Dia=1.5” 
linear-bearing: ABS-L1-4 $10.47, Dia=0.25” 
lever: 10 cm bar stock w=1.0”, t=0.25” 
spring: ERS-A1-2 $0.89, K=2.0lb/in 
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gear: LAS-F7-28 $5.75, 28 teeth
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rack: KHS-F2-142 $26.75, pitch=64 
gear: LAS-F7-28 $5.75, 28 teeth

Design objectives:
cost = $46.82, mass = 0.2kg, 
input dx = 4.1cm, accuracy = 0.4rad.

Design objectives:
cost = $46.82, mass = 0.2kg, 
input dx = 4.1cm, accuracy = 0.4rad.

Components:
lever: 5 cm bar stock w=1.0”, t=0.25” 
spring: ERS-A1-36 $0.93, K=16.0lb/in 
rack: KHS-F2-142 $26.75, pitch=64 
gear: LAS-F7-28 $5.75, 28 teeth 
shaft: AAS-A8-20 
bearing: ABS-A2-19

Components:
lever: 5 cm bar stock w=1.0”, t=0.25” 
spring: ERS-A1-36 $0.93, K=16.0lb/in 
rack: KHS-F2-142 $26.75, pitch=64 
gear: LAS-F7-28 $5.75, 28 teeth 
shaft: AAS-A8-20 
bearing: ABS-A2-19

(c)

Design objectives:
cost = $90.20, mass = 0.5kg,
input dx = 0.7mm, accuracy = 0.2 rad.

Design objectives:
cost = $90.20, mass = 0.5kg,
input dx = 0.7mm, accuracy = 0.2 rad.

Components:
lever-1: 4 cm bar stock w=1.0”, t=0.25” 
lever-2: 4 cm bar stock w=1.0”, t=0.25” 
lever-3: 13 cm bar stock w=1.0”, t=0.25” 
lever-4: 7 cm bar stock w=1.0”, t=0.25” 
spring: ERS-A1-7 $0.78, K=14.6lb/in 
rack: KHS-F2-142 $26.75, pitch=64 
gear: LAS-F7-128 $12.03, 128 teeth 
motor: 542-0130 $34.19, 300prm 
resistor:297-7751 $0.01, 180KΩ

Components:
lever-1: 4 cm bar stock w=1.0”, t=0.25” 
lever-2: 4 cm bar stock w=1.0”, t=0.25” 
lever-3: 13 cm bar stock w=1.0”, t=0.25” 
lever-4: 7 cm bar stock w=1.0”, t=0.25” 
spring: ERS-A1-7 $0.78, K=14.6lb/in 
rack: KHS-F2-142 $26.75, pitch=64 
gear: LAS-F7-128 $12.03, 128 teeth 
motor: 542-0130 $34.19, 300prm 
resistor:297-7751 $0.01, 180KΩ
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30 iterations with a maximum population of 100 designs5. The first solution (Figure 8.2a) 

was created when the user preference was for low-cost low-weight designs, and as a 

result the solution is relatively inexpensive and lightweight compared to the other two 

solutions. However, it is deficient on the two performance objectives lacking dial 

accuracy and stability at the input. As a result of this trade-off, the system was then 

adjusted to place more emphasis on minimizing movement at the input. As a result of this 

preference shift, designs were created that although more costly and more massive, 

addressed the issue of minimizing input displacement. The second and third designs 

(Figure 8.2b, c) show two different ways that A-Design was able to solve this problem. 

Figure 8.2b uses two hydraulic cylinders with different diameters while Figure 8.2c 

utilizes a series of levers to minimize input. These examples demonstrate the richness of 

alternatives created by the A-Design algorithm and the collaborative reasoning of the 

agents. The ingenuity of these solutions is especially evident in resolving the “minimize 

input displacement” objective. The search process overcame the challenges of the design 

problem by improving alternatives to better designs through the iterations. 

8.1.1 Results Under the Influence of TODO and TABOO Learning 

In addition to the results shown above, several experiments were run to test the 

validity of TODO and TABOO learning (a detailed description of this experiment can be 

found in Chapter 9). Two interesting artifacts from these experiments are shown in Figure 

8.3. These two designs are able to solve the design problem better than when no learning 

                                                 
5 Figure 8.2, and 8.3 are the authors’ renditions of the appearance of the Embodiments 
and instantiations generated by the system. The system outputs System Configuration text 
structures, which include the Embodiments, their connecting FPs, and their instantiations 
(see Appendix). 
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is present. The design shown in Figure 8.3a makes use of a belt and pulley as opposed to 

the rack and pinion pairing found in previous designs. Here also, the challenge in 

reducing the displacement in the input leads to some interesting solutions such as that 

shown in Figure 8.3b. The learning seems to favor more components to solve the problem 

as is noted by multiple springs in these configurations. 

 

Figure 8.3: Two additional weighing machines found under the influence of TODO and TABOO 
learning. 
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8.1.2 Discussion of Weighing Machine Results 

All the designs in the previous two figures make interesting use of series and parallel 

connections. Also, these designs all contain several connections to ground - an essential 

factor in solving the design problem. The ground provides a reference and the sense of 

bounded state variables that is prescribed by the input/output FPs. The general update 

mechanism for adding new EBs to a configuration and the diverse agents leads to the 

wide variety of achievable designs for this problem. Figure 8.4 shows a performance plot 

for the five designs from Figure 8.2 and Figure 8.3. In this figure, the four objectives 

Figure 8.4: Performance plot of five designs from Figures 8.2 and 8.3. 
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along the bottom are all “minimizations”, therefore the lower the data point, the better. 

The two designs created under the influence of learning dominate those created in the 

absence of learning. Even the first design (Figure 8.2-a) created under the low-cost and 

low-weight preference was dominated on both cost and mass by the design from Figure 

8.3a despite that fact that the design in Figure 8.3a was created under the preference for 

minimizing input displacement. The two designs created under the influence of learning 

are Pareto-optimal for this set of solutions.  

One of the most interesting design structures in this set of solutions is the motor-

resistor pairing in Figure 8.2c. This is one way to meet the goal in the output FP of a 

bound across variable (FP:Across-none = (goal bound) in Figure 8.1). This goal 

statement states that designs must have a “damped” motion at the output. All other 

designs solve this by including bearings (with friction damping) in the solution. However, 

the motor-resistor is similar to a damper due to the analogy of a resistor as an “energy 

dissipater” and a motor as a “transformer” from rotational to electrical energy. 

This example also brings up an interesting point about the representation. While it is 

true that bearings lead to damped motion due to the inescapable friction that exists 

between a bearing’s moving parts, the true purpose of bearings is to contain rotation to a 

specific location in space. Currently this degree of functionality is not incorporated 

within the current functional syntax. However, it is possible that extensions could be 

made to incorporate this detail.  

Furthermore, the designs shown are not complete in position information. The 

coordinate slot of the Functional Parameters has been implemented, however the 
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transformation of these coordinates within the Embodiment is not fully realized. This is 

due to the fact that such transformations include some variability and thus require further 

constructive power to be included within the Configuration-agents. For example, the gear 

EB in Figure 8.5 shows the ports of a gear as (A) the connection with the rotational shaft, 

and (B) the translational connection with the gear teeth. The position of the B Port can be 

located at any angle about the shaft. The choice for the value φ needs to be made to relate 

port A of the EB to port B in space. The decisions for position variables like φ can lead to 

a variety of different geometric layouts with a set configuration. This variability might 

mandate the construction of new objectives to describe how well the positions of the 

input and output FPs meet with the user specifications. Including this geometric 

information would establish a more authentic portrayal of the challenges in designing 

realistic weighing machines. 

Also, the interface between components is a simplification of real component 

interfaces. All of the current 300 components in the catalog are constrained to the same 

interface dimensions. For example, only one gear pitch, shaft diameter and bolt size are 

used throughout the catalog. This is because dimensioning the interface would necessitate 

the inclusion of individual component’s operating ranges or failure modes. A shaft with a 

one-inch diameter has very different characteristics than a shaft with a one-sixteenth inch 

diameter. Constraints on these shafts could specify the maximum values of the through 

and across variables, or the operating ranges of components (e.g. maximum shaft torque, 

or maximum current through a resistor). While it is obvious that the shaft with a one inch 

diameter can handle much higher torque loads than the one-sixteenth inch shaft, these 
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two shafts are not distinguishable on any characteristics other than cost in the current 

formulation. Without the operating range or failure mode data, the process would most 

likely create weighing machines using the smallest, most inexpensive components. 

Therefore, in order to include components with a variety of interface sizes, operating 

ranges need to be incorporated within component descriptions. The agents then need to 

be aware of how to design around these new constraints, or new objectives need to be 

created to measure the amount of operating range violations in a given design.  

Despite these limitations to the current functional representation subsystem, it appears 

that diverse and interesting designs can be created. If a more detailed functional 

representation is developed, the A-Design electromechanical design process will be 

capable of more realistic designs. The adaptive user preference along with the various 

agent strategies created some exciting “proof of concept” results portraying a variety of 

Figure 8.5: There is some variability for the position of ports on an EB. For the gear, this 
variability is the variable, φ, which relates the port A of the shaft hole to port B, the gear teeth 

interface point. This point can be anywhere on the radius of the gear. 
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configurations. Also, the learning in the iteratively-guided subsystem leads to better 

designs (Figure 8.3) than when the process is simply iterative (Figure 8.2). 

8.2 MEMS ACCELEROMETER 
The second electromechanical design problem for A-Design is the design of an 

accelerometer within the domain of Micro-ElectroMechanical Systems (MEMS). MEMS 

is a fairly recent technological endeavor with the basic principle of fabricating 

electromechanical systems using the manufacturing innovations pioneered by integrated 

circuit (IC) fabrication techniques. The technology behind constructing the micron-sized 

transistors of IC computer chips is enhanced in MEMS to construct micron-sized 

mechanical systems. Such techniques have been evolving for several decades and are 

capable of creating microscopic sensor and actuator devices with resolutions on the order 

of a few microns. The fabrication of Micro-ElectroMechanical Systems is accomplished 

through depositing and etching layers of silicon or other metals on a flat silicon substrate. 

By using various computer-aided design tools, one can construct a MEMS “layout” 

which is transferable to manufacturing houses for fabrication. The entire design of a 

MEMS device can quite easily be performed by a single engineering designer with access 

to the proper CAD tools. 

There are many possible ways that computational design can improve the MEMS 

design process. MEMS design has an inherent formalism as a result of the extensive use 

of CAD tools and the constraints imposed by the manufacturing processes. Since most 

devices are constructed though the deposition and etching of layers, the space of possible 

solutions is confined to a series of two-dimensional planes. Although these constraints do 

not necessarily reduce the difficulties of finding successful designs, they do help in 
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establishing a formal representation of the design space. With its focus on the conceptual 

design process and electromechanical configuration design, A-Design is ideally suited to 

the application of synthesizing MEMS devices. 

8.2.1 Description of design problem 

Perhaps the most commercially successful MEMS device today is the ADXL 

accelerometer developed by Analog Devices, Inc. (1998). These devices, which come in 

a variety of acceleration ranges, are packaged on small computer chips along with 

corresponding digital circuitry that sense accelerations in the range of 0.1 mG to 100 G 

and can withstand shock up to 1000 G. Inside the chip is a miniature mass-spring system 

like any conventional accelerometer occupying a space less than half of a square 

millimeter. This mass-spring system is etched from silicon and is suspended between 

layers of the chip to allow it move in response to external accelerations. Figure 8.6 shows 

a layout of an ADXL accelerometer. At the center of the layout is a large plate of silicon 

that acts as a proof mass for sensing the accelerations. Connected on the top and bottom 

of the mass are electrostatic comb fingers used to sense the displacements of the mass as 

well as to position the mass for best sensitivity. On the sides of the mass, beams are 

configured to provide the compliance for the structure. The series of beams shown in the 

figures are often referred to as U-Springs, and are anchored at the ends to the substrate. 

The complete design problem of making functional accelerometers requires many 

goals and constraints, including the details of the corresponding circuitry and the 

manufacturability constraints. However, the basic difference in the variety of 

accelerometers made by Analog Devices is in the dimensioning of the accelerometer 

configuration shown in Figure 8.6. By changing spring stiffnesses, mass size and comb 
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finger lengths, different acceleration ranges can be achieved. The previous work of 

Mukherjee et al. (1999) and Zhou (1998) made strides in automating the dimensioning of 

components of an ADXL-style configuration so that custom accelerometers can be 

automatically designed to specific demands. 

The design problem that is posed to A-Design is to create novel configurations as 

opposed to the set topology used in the ADXL devices. It is believed that the evolution of 

this topology was performed under a number of design objectives, namely: minimize 

area, maximize sensitivity, maximize the maximum acceleration and minimize movement 

of the proof mass in the orthogonal direction by maximizing orthogonal stiffness. These 

four objectives will thus be used to guide the A-Design search process towards novel 

Figure 8.6: Configuration view of ADXL accelerometer. 
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accelerometer configurations. Because A-Design is formulated to minimize objectives, 

the objectives stated as “maximizations” will be inverted so as to minimize the reciprocal 

(e.g. maximize sensitivity, Sx, will become minimize the reciprocal of sensitivity, 1/Sx). 

In addition to formulating objectives, A-Design requires that the functionality of the 

accelerometer be specified by input and output FPs (see Figure 8.7). The input FP has a 

value of 0 to 10 in the across differential slot to designate an acceleration of 0 to 10 G. 

The output FP is in the electrical domain, and has an across variable goal of 0 to 5 volts.  

With the input and output description, and objectives in place, the catalog of 

components is all that remains in preparing the accelerometer problem for A-Design. In 

the MEMS domain, one can make a similar division of distinct components as that of the 

macroscopic electromechanical domain. Hence, we construct MEMS components using 

the FP-EB representation as a foundation. The basic Embodiments used in this 

accelerometer design and, in fact, the design of most MEMS devices are simply plate 

mass, beam and electrostatic gap. Our catalog contains only these Embodiments in 

horizontal and vertical forms as seen in Figure 8.7. 
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8.2.2 Evaluation 

The four objectives of this problem are not closed-form equations. The values for area 

(A), sensitivity (Sx), maximum acceleration (amax) and y-direction stiffness (Kyy) require 

additional analysis. Thus, some automated simulation of design states needs to occur as 

part of the larger automated design process. This is accomplished for the MEMS problem 

by invoking SABER (Analogy, Inc., 1995), a dynamic simulator that can handle mixed 

domain systems like MEMS. However, in order to use this application, an intermediate 

Figure 8.7: Description of accelerometer design problem as posed to A-Design 
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program was developed to automate the pre- and post-processing necessary to perform 

the simulation. This was done in a separate research project (Prakash and Cagan, 1999) 

and is part of the “evaluation” block of the A-Design flowchart as illustrated in Figure 

8.8. 

This automated analysis posed two new research challenges: the intermediate process 

must be robust enough to automate the analysis of the wide variety of configurations 

constructed by A-Design, and the evaluation of a single design state must be kept to a 

minimum amount of time as a result of the numerous evaluations required by A-Design. 

With these challenges, the research of Prakash and Cagan set out to develop a 

Figure 8.8: The additional computational demands of the evaluation process requires that 
external code be developed which is capable of further executing the SABER dynamic simulation.
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hierarchical method for approximating the analysis of MEMS accelerometers for the A-

Design system. This hierarchical method was structured to make large approximations at 

the beginning of the A-Design search process in order to reduce the computational time, 

and to increase accuracy of the evaluation as the search process begins to converge on 

successful solutions.  

The basic function of the automated analysis is to structure problems for SABER to 

solve by setting up the proper input files and parsing the output files. In setting up the 

input files the boundary conditions and design schematic (or “netlist”) are created for 

each of A-Design’s configurations. Then SABER is invoked to determine the dynamic 

properties of the designs. To extract the results of the SABER simulation, output files are 

parsed by searching for values at key nodes in the results. The values of the nodes are 

then used to construct objective function values. Unfortunately, the implementation of 

this hierarchical evaluation method did not permit any analysis beyond the most 

simplified analysis. The variability in the configurations created by A-Design caused 

problems for automating analysis to the level of detail performed by experienced MEMS 

designers. This simplification in analyzing designs lead to fairly erroneous objective 

values. 

8.2.3 Results 

Figure 8.9, 8.10, and 8.11 show MEMS accelerometers created by A-Design6. The 

search process follows the same model as the weighing machine problem with the 

exception that external analysis is used to solve the objectives. The three configurations 
                                                 
6 Like the weighing machine results, the figures are graphical renditions of the System Configurations 
produced by A-Design (examples shown in Appendix). In these figures, the input acceleration (FPinput) is 
applied at the I-label, while the output voltage (FPoutput) is measured at the O-label. The instantiated 
components are listed below the figures with dimensions in meters (1.0e-6 meters = 1 micron). 
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in the figures show how this truly open-ended design problem can lead to some diverse 

solutions. Accelerometer A (Figure 8.9) is created with no TODO or TABOO learning. 

The time saved in omitting the trend-finding routines of the Manager-agent allows the 

process to run for more iterations (300 iterations with a population of 150 design states). 

Design A makes use of several electrostatic comb drives to sense the movement of the 

central mass but appears to lack an effective spring structure to provide the proper 

compliance in the x-direction.  

The MEMS accelerometer shown in Figure 8.10 (Design B) was conceived by the 

process in the presence of TODO and TABOO learning (population of 150 for 100 

iterations). This design appears to utilize one long vertical beam as a useful strategy for 

making compliant structures in the x-direction while being relatively stiff in the y-

direction. The final accelerometer, Design C in Figure 8.11, is designed by the system 

under the influence of a user-defined TODO element (also population of 150 for 100 

iterations). At the beginning of the process, a U-spring design fragment is defined such 

that the search process has some domain knowledge of what features have previously 

been useful in accelerometer design. It appears that as a result of this clue about MEMS 

design, a more functional spring structure is created.
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Figure 8.9: Accelerometer A is created by the A-Design process with no learning. 
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5. H-ES-GAP-8 w=2.0e-6 l=10.0e-6 

overlap=6.0e-6 #teeth=24 
6. V-BEAM-2-5 l=5.0e-6 w=2.0e-6
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Figure 8.10: Accelerometer B is created by the A-Design process under the presence of TODO 
and TABOO learning. 
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Figure 8.11: Accelerometer C is created by initiating the TODO list with a U-Spring subsystem. 
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8.2.4 Discussion of Accelerometer Results 

Inspecting these design states reveals the wide range of devices possible in this 

representation. The elements in this representation are more fundamental than the 

elements for the weighing machines problem. Even though there are fewer components to 

choose from, there is more variety in the possible configuration of these components. 

In order to test the validity of these designs, an ADXL-style accelerometer was 

created for comparison through similar objectives. Using the optimization procedure 

outlined in Mukherjee et al., dimensions were chosen for the ADXL set topology7 

resulting in an accelerometer with a sensitivity (Sx) of 10mV/G and a maximum 

acceleration (amax) of 10 G (shown in Figure 8.12). This design and the three A-Design 

accelerometers were compared manually using a thorough dynamic simulator 

(SPECTRE, Cadence Design Systems, Inc., 2000) as well as the automated 

approximation method used during the search process (Prakash and Cagan with SABER). 

Figure 8.13 shows performance plots comparing all four designs under both 

evaluation methods. In this figure, each objective is multiplied by a normalization factor 

that scales the average for that objective to one. This is done to better visualize attribute 

tradeoffs because different attributes have very different ranges. For example, the areas of 

the four designs shown in this figure are: A=5.8x10-9m2, B=1.47x10-8m2, C=8.32x10-9m2, 

ADXL-style=2.38.8x10-7m2. The average of these values is 6.66x10-8m2. Therefore, each 

                                                 
7 This sizing can be run online at http://www.ece.cmu.edu/~mems/memsyn/accsyn/index.html. 
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point is divided by this average value so that the plotted values are A=0.09, B=0.22, 

C=0.12, and ADXL=3.56. 

In Figure 8.13a, the in-depth SPECTRE analysis shows the three A-Design 

accelerometers with similar values for the objectives, while the ADXL-style 

accelerometer values are quite different. In three of the four objectives, one of the A-

Design solutions performs best, however the ADXL performs extremely well on the 

sensitivity objective. In Figure 8.13b, the approximate method developed for A-Design 

shows very different values for the objectives. In fact, for each objective except area, the 

ordering of designs from best to worst differs between the two evaluation methods.  

Figure 8.12: ADXL-style accelerometer optimized using approach from Mukherjee et al. (1999). 
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Figure 8.13: Performance plot of the three A-Design accelerometers and the ADXL-style 
accelerometer according to (a) SPECTRE analysis done by hand, and (b) heuristic based 

automated analysis. 
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According to the evaluation used by A-Design, the performance of ADXL 

configuration is not unique or exceptional. The strength of the ADXL design is not 

evident from the approximate analysis in Figure 8.13b. However, the more thorough 

analysis in Figure 8.13a shows the ADXL accelerometer producing much more useful 

sensitivity than the remaining designs.  

In this example, the sensitivity objective turned out to produce highly erroneous 

results. While simpler objectives such as area are not complicated by varying 

configurations, the sensitivity objective was susceptible to such diversity. The evaluation 

interpreter did not include sophisticated enough preprocessing to handle the variety of 

configurations that A-Design passed to it. As a result many configurations left the 

evaluation process with default values because they could not be properly analyzed. In 

addition to analysis accuracy and robustness, there is the need to keep analysis times to a 

minimum. These challenges with evaluation demonstrate the difficulty in combining 

automated design with automated analysis. As the Introduction mentioned, computational 

analysis is at a more developed stage than computational design. However, as 

computational design advances and more ambitious design problems are addressed, a 

better understanding of how to assimilate the computational analysis with computational 

design becomes crucial. 

The designs made automatically by A-Design are quite different from the ADXL-

style accelerometers. Most notably the A-Design accelerometers have fewer components 

and lack symmetry. Part of this could be due to the lack of design insight provided in the 
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objectives. Experienced MEMS designers can immediately notice deficiencies in the 

three A-Design devices. These deficiencies relate to design constraints not stated in the 

design problem. Issues such as frequency modes of operation, and unexpected rotations 

may lead to erroneous or possible disastrous behaviors. Increasing the exactness of the 

functional representation or the evaluation might overcome these “second-order” effects 

not discernible from current analysis.  

The results in this section demonstrate A-Design’s ability to invent a variety of design 

solutions for the complex domain of MEMS devices. With better analysis, the inventive 

power of the process would ideally lead to more useful designs. While the inexactness of 

evaluation scheme leads to simplistic results, the present form of A-Design could serve as 

a design-aid to the MEMS designer by producing novel configurations from scratch or 

from previously learned examples.  

8.3 COMPARISON OF TWO DESIGN PROBLEMS 
In comparing the two design problems described in this chapter, we gain insight into 

several aspects of the A-Design process. First, learning in the system can do more than 

make the process more efficient. In other stochastic search processes, statistics from 

previous iterations are used to make the process less time-consuming. In A-Design, the 

Manager-agent together with the iterative search leads to a similar stochastic process to 

guide design construction. However, previous search steps are also used to store useful 

design features. In both the weighing machine problem and in the MEMS accelerometer 

problem learning leads to better design states. 



 129

Also, in one version of the MEMS accelerometer problem, a priori design knowledge 

(TODO = U-Spring) was introduced to guide the process from the start, thereby allowing 

the computational process to start where previous design innovations left off. When an 

engineering designer starts a new problem, he/she uses previous learned experiences as 

the foundation for building new designs. Learned instances are a large part of our design 

process, and this method of adding knowledge similarly provides a computational system 

with the head start that human design experiences. Unlike many expert system 

approaches to design automation, this design experience does not restrict solutions to 

conform to previous instances. Rather, the design knowledge can guide innovation to 

build on past experiences to create entirely new concepts, as can be seen in the spring 

structure in Figure 8.11 built from the U-Spring design fragment. 

The second insight gained is that different design domains challenge different areas of 

the A-Design methodology. In the weighing machine example, limitations of the current 

functional representation prevented the construction of even more realistic designs. 

However, in the MEMS test problem, the automated analysis proved to be the bottleneck 

to creating realistic designs. The reason for this could be the fact that MEMS offers 

simple component descriptions but complex behaviors for the sum of the components, 

while weighing machine components are complex in their immediate interactions but less 

complex in overall behavior.  

It appears that the challenges of these design problems are the representation and 

evaluation. Both representation and evaluation, which are the crux of engineering 

analysis, are necessarily simplifications of what happens in the real world. Modeling for 
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analysis purposes always involves some simplification. So, it is not surprising that 

through similar simplification, the results of the A-Design process appear somewhat 

naïve. 

Despite the limitations, the results of this chapter show that the implemented A-

Design system is able to invent solutions for two open-ended engineering design 

problems. The input and output specifications, the objectives, and the catalog of 

components are all that is required by A-Design to invent novel design configurations. 

The collaborative unstructured design activity in A-Design is founded on human 

properties of design, and similar to human design, leads to the development of creative 

and diverse designs. 
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Chapter 9 

Experimental Results 

The results shown in the previous chapter exemplify A-Design as an invention 

machine for solving open-ended design problems through the collaborative interaction of 

agents. This chapter sets out to explore the iteratively-guided and adaptive claims of the 

A-Design theory. A series of experiments on the weighing machine design problem 

determine how these constituent parts of the theory add to the overall inventive power of 

A-Design. 

9.1 SIGNIFICANCE OF RANDOM STARTING POINTS 
The first test addresses whether the randomness of A-Design’s stochastic nature is 

significant enough to prevent comparison of different runs. The randomness of initial 

starting points, or designs, might have a significant effect on the final results of the search 

process. Ideally, the starting points should have little effect on the end results, because 

the search process should find successful designs from any starting point in the process. 

To test this, a comparison was made of 20 runs all with the same initial population to 20 

runs with random initial populations. Each run consisted of 60 iterations of the A-Design 

process using a population of 100 designs. As shown in Figure 9.1a, these two sets of  
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Figure 9.1: Comparison of random vs. set initial design populations a) best design at each 
iteration for 20 runs, b) average of best design from 20 runs. 
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runs are compared by plotting the best design at each iteration for a set user preference. 

The gray dotted lines show runs containing the same initial population and therefore all 

have the same points at the first iteration, while the dark solid lines have very different 

designs in the first iterations. Although there is much fluctuation in the beginning of the 

processes, all runs converge to a fairly uniform value. Figure 9.1b clarifies the results 

shown in Figure 9.1a by averaging the runs to single line and plotting the standard 

deviation of the 20 runs by an error bar (+/- one standard deviation, σ). Here the average 

values and the standard deviation values are nearly identical at the end of the process 

thereby demonstrating that there is little difference in the data produced through random 

starting points as opposed to set starting points. The pruning of designs and the execution 

of guided agents quickly eliminate the effect of starting at different points in the design 

space. Therefore in the following tests it is assumed that the use of random starting points 

has little effect on the statistical results. 

9.2 ADAPTABILITY EXPERIMENTS 
Next, a series of tests were performed to analyze the design selection subsystem of A-

Design (see Chapter 3). The claim is made that A-Design is an effective mechanism for 

adapting to changing market demands or user preferences throughout the search for 

successful design states. In order to test this claim, a series of experiments were 

performed to test the importance of the Pareto population, the importance of the Good 

population and the adaptability of the process. 
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9.2.1 Good Set and Pareto Set Isolation 

The A-Design theory is based strongly on the design selection methodology of 

dividing the population into Pareto, Good and Poor sets. In order to observe the effects of 

this division, we isolated the Good and Pareto populations in separate runs and compared 

their ability to optimize the user’s objectives. Figure 9.2 shows the best designs at each 

iteration averaged over 20 runs as was done in Figure 9.1b. The three runs compared in 

this figure separate designs into two or more populations. The “Both Pareto and Good” 

run divides designs into three populations as described in Chapter 3, the “Pareto only” 

run divides designs into only Pareto and Poor solutions, and the “Good only” run divides 

designs into only Good and Poor solutions. Since the actual Pareto designs in this “Good 

Figure 9.2: Comparison of best designs from Pareto only, Good only and both. 
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only run” are not separated out, those Pareto designs that are preferred by the user 

preference are also included in this run’s Good population. 

In this figure, the “Good Population only” has a higher, and therefore inferior, lumped 

evaluation value than the runs containing a Pareto population. Comparing the final design 

from the “Pareto only” run with the “both Good and Pareto” run finds only small 

differences; both processes find a similar value for their best design.  

From this experiment we can draw the conclusion that the Pareto population 

contributes significantly to the process’ ability to find successful solutions. This was a 

surprisingly useful conclusion to draw since the Pareto population was originally 

preserved to allow an adaptability to changing user preferences. However, this conclusion 

shows the importance of saving diverse solutions even in the exploration of a static 

design problem. It is believed that preserving diverse design states allows the system 

better coverage of the search space of possible designs. In a sense, the unpreferred Pareto 

designs are equivalent to biological recessive characteristics that are transferred but not 

expressed. 

The results in Figure 9.2 do not prove the significance of the Good population in 

finding improved design states. Its inclusion in the “both Pareto and Good” run leads to 

slightly better solutions over the Pareto only run, however, not a substantial enough 

amount to validate the theory. There is, however, a substantially quicker convergence of 

the best design in the “both Pareto and Good” compared to the “Pareto population only” 

run seen in the earlier part of the process. Since the algorithm is run for an arbitrary 

number of iterations as decided by the user, quicker convergence may produce better 
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design states if the user stops the algorithm prematurely. Additionally, the results of the 

next experiment show how the Good population plays an important role in adapting to 

changes in user preference. 

9.2.2 Changing User Preference  

This experiment tests the true adaptive capability of A-Design by observing the effect 

of switching the user preference at the middle of a run of the search process. In the 

experiment, both Pareto and Good populations are in operation when the user preference 

changes at the thirtieth iteration (of 60 iterations). With this change, a new location for 

the Good population is defined with respect to the Pareto surface as is seen in Figure 

9.3a. The results shown at the bottom of Figure 9.3 are created through averaging over 20 

separate runs of the A-Design process and plotting the best design for a given user 

preference.  

In this experiment, three separate runs are compared. Figure 9.3a and Figure 9.3b 

graphically depict the various runs plotted in Figure 9.3c and Figure 9.3d. These plots 

show how the process reacts to switching from a preference favoring low-cost and low-

weight designs (W1, the same preference used to produce the weighing machine in 

Figure 8.2a) to one favoring minimal input displacement designs (W2, the preference 

used in Figure 8.2b and Figure 8.2c). Figure 9.3b shows a flowchart of how this 

experiment compares five sub-procedures; sub-procedure E is the focus of this 

experiment while A, B, C and D are the control for the experiment. Sub-procedures A 

and B are created under a constant user preference, W1, while sub-procedures C and D 

together represent the system under constant user preference of W2. After 30 iterations  
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Figure 9.3: Adaptability of A-Design: a) the change in preferences is viewed on two different plots 
to see the effect, b) flowchart of adaptability experiment, c) best designs viewed by W1,  

d) best designs viewed by W2. 
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under preference W1 (A) the process is stopped and sub-procedures B and E are initiated 

with the agent and design data last achieved in sub-procedure A. To view the results, all 

five sub-procedures are plotted as viewed under W1 preference (Figure 9.3c) and under 

W2 preference (Figure 9.3d). Therefore, by comparing the best lumped evaluation under 

these preferences we can determine how the process responds to optimizing the 

objectives under these preferences. It is important to note that while all five sub-

procedures are plotted in both Figure 9.3c and Figure 9.3d, each procedure concentrates 

on only one user preference. Thus, the plots are showing some procedures in a different 

preference than the preference governing the creation of the designs for that procedure. 

For example, C is created under user preference W2 despite the fact that in Figure 9.3c, 

C is plotted in reference to W1. It is for this reason that A and B have better values in 

Figure 9.3c while C and D have better values in Figure 9.3d.  

The switch in preference (A to E) occurs at the thirtieth iteration at which point the 

process stops optimizing designs for W1 and the Good population shifts focus to user 

preference W2. Although viewing sub-procedure E in Figure 9.3c appears to offer no 

improvement after the switch, there is a significant gain shown when viewed from the 

perspective of W2 (Figure 9.3d) as is expected since the process is now optimizing under 

W2. The switched run, E, begins at much lower value compared to run C. The 

“recessive” Pareto solutions developed in A allow the search in E to begin at an advanced 

stage as opposed to high values at the beginning of run C. In addition, run E almost 

completely recovers from the time spent developing designs for W1 as seen when 

comparing E with C and D. 
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Due to the Pareto-based conservation of diverse designs, the process was able to 

accommodate the switch to the W2 preference after spending half of the iterations 

concentrating on a completely different user preference. While it is believed that the 

recessive characteristics in the Pareto set allow the system to start at an advanced stage in 

the search process instead of starting from undeveloped design states, this experiment has 

shown that the Good population allows the process to concentrate on the current user 

preference. In this experiment, the use of the Good population in conjunction with the 

Pareto population has shown to be a successful way of handling changing user 

preference. The Good population provides focus for the process in searching under the 

current user preference, while the Pareto population allows flexibility if the preferences 

should change. 

9.2.3 Adding and Removing Objectives 

In addition to changing the relative importance of objectives, it can also be the case 

that the number of objectives in a conceptual design problem change. Outside influences 

can invoke the demand for new criteria, or perhaps previous design objectives become no 

longer important. This experiment seeks to understand how A-Design adjusts to such 

changes. 

Figure 9.4 shows the average of 20 control runs (40 iterations with a population of 

100 designs) of the A-Design process with both four objectives and three objectives 

(shown as black dots). Note that the value for four objectives is higher due to the fact that 

the linear weighted sum of four objectives has an extra term. After twenty iterations in 

the process, separate runs are initiated based on these control runs. A fourth objective is 

added to the control with three objectives, and the fourth one is omitted from the control 
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with four objectives. Again, this experiment involves the design of weighing machines. 

The fourth objective that is being added or subtracted in this experiment is the “minimize 

input displacement” objective.  

The first thing to note in this experiment is the large changes between iteration 20 and 

21. This is due to the fact that the addition or subtraction of the fourth objective causes 

the current population of designs in the process to be evaluated quite differently. The 

control runs in this figure are at an advantage in that they have 20 iterations of search 

over these newly adjusted runs. However, in the remaining 20 iterations, the runs with an 

added or removed objective are able to quickly adapt to the new utility function and find 

solutions with nearly the same quality as when the process starts from inception with a 

Figure 9.4: The addition and removal of an objective to further test the adaptability of A-Design. 

-�- The fourth objective is added. 
-�- The fourth objective is removed.
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static objective function. 

Also, one might be surprised to see a significant difference in objective values for the 

case when the fourth objective is removed in Figure 9.4. It is expected that the inclusion 

of a new design goal or objective would cause some setback in the design process, but it 

is not clear that the removal of design parameters would have a drastic effect. The reason 

for this effect is due to the competing objectives in this formulation. We mention in the 

Introduction how design problems often contain contrasting goals that lead to the 

compromise of design objectives. In the weighing machine problem, the minimization of 

input displacement presents a real challenge to the search process. When this objective is 

removed (as is the case between iteration 20 and 21 in Figure 9.4), observe how the 

remaining objectives have been compromised in solving the design problem. The agents 

quickly “realize” that this objective is no longer a concern for the design. The three 

remaining objectives can be improved more now that the constraint implied by this fourth 

objective no longer remains. 

In conclusion, the A-Design process is able to adapt to changes in the user 

formulation of the design problem. This is a crucial development in the advancement of 

automated conceptual design. No longer is the user's interaction with a design automation 

technique a static one. The process is able to adapt to changes that the user might 

introduce as a result of changes in personal user preferences or in larger changes such as 

market demands.  
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9.3 LEARNING EXPERIMENTS 
As shown in the previous chapter, the existence of learning in the system can provide 

the automated process with a better understanding of the design problem’s functionality 

and search space. Closely monitoring past design activity can lead to better future 

designs. The notion of gathering data on past design activity and learning from such data 

is the basis for the iteratively-guided subsystem of A-Design. This section seeks to 

understand how another learning mechanism, the TODO and TABOO lists, affect the 

process. 

Figure 9.5 shows three curves whose points represent an averaging of 20 separate 

runs of the A-Design system. Each run contains 40 iterations with a population of 100 

designs. The three curves show A-Design with no learning, with TODO learning, and 

with TABOO learning. The TODO and TABOO trends are stored on a queue of fixed 

size (12 elements in this experiment) that contains agent teams, and design fragments. 

When new trends are found, the oldest trends are removed from the set. 

Early on, there is not much difference in the three runs, but as the runs converge, the 

effect of TABOO learning leads to a much improved design state over the other two runs. 

Interestingly enough, the TODO learning, although the quickest process in the first 15 

iterations, begins to level off and experiences the same rate of improvement as when no 

learning is present; however, the end effect of the TODO learning still offers a significant 

improvement over the run with no learning.  

 



 143

Figure 9.6 compares some hybrid learning techniques that involve combinations of 

both TODO and TABOO learning. The runs in Figure 9.5 are shown lighter in this figure 

to accentuate the results of the hybrid approaches. This figure shows three TODO/ 

TABOO combinations: BOTH, KICK and UPDOWN. BOTH contains the exact TODO 

and TABOO list size as in the independent cases, and this list size is maintained for all 

iterations. The KICK and UPDOWN tests contain dynamic TODO and TABOO list  

Figure 9.5: A comparison of TODO, TABOO and no learning. 
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-����- TODO Learning 
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sizes. In KICK, a constant TODO list size is maintained, and the TABOO list is zero at 

all iterations except at every tenth iteration where it contains up to 15 members. The 

motivation for this strategy is to “kick” the process intermittently so as to avoid getting 

trapped in local optima. The UPDOWN procedure attempts to take advantage of the 

quick learning shown in the TODO and TABOO comparison of Figure 9.5. In the first 15 

Figure 9.6: A comparison of three learning techniques that involve a combination of TODO and 
TABOO. 
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iterations, TODO has a population size of 15 members then diminishes to zero, while 

TABOO learning is increased from 0 to 15 members at the fifteenth iteration.  

Upon examining the results in Figure 9.6, the system with simply TABOO learning 

performs better than any of the hybrid approaches. Interestingly enough, the hybrid  

approaches all fall somewhere between TODO and TABOO. The unadulterated TABOO 

learning appears to be the most successful feedback for these problems. This type of 

avoidance feedback is also the basis for Tabu search (Glover, 1989), which operates 

under a similar principle. The advantage in remembering bad design trends is twofold. 

First, it provides a means of tracking common mistakes that occur during design 

construction so that these can be avoided in future moves to make the process more 

efficient. Second, the avoidance of past moves can produce atypical designs or innovative 

search that allows the process to escape local optima. 

In addition to the comparison shown in Figure 9.6, a performance plot shown in 

Figure 9.7 compares the best final design found from the 20 runs in each learning 

technique. In this plot, the best design without learning appears to be deficient in nearly 

all comparisons. The three best designs from BOTH, KICK and TABOO are nearly 

equivalent, while the best solutions for the TODO and UPDOWN algorithms actually 

appear to find better values for the “minimize input displacement” objective. The reason 

for this is not well understood. It is possible that the early TODO learning in these two 

approaches provides insight into the most challenging design issues. TODO learning 

exploits the benefits of successful past solutions. This might not lead to design diversity 

but it does allow A-Design to concentrate on improving known successes. Conversely, 



 146

TABOO learning promotes the exploration of new avenues of invention by avoiding past 

trends. 

Future experiments with TODO and TABOO learning within various design domains 

might clarify the advantages of each learning technique. However, it is safe to say that 

the learning mechanism incorporated in the A-Design process better guides the process to 

successful designs, and makes strides towards incorporating the kind of human learning 

that is used in conceptual design. 

Figure 9.7: Performance plots for learning techniques shown in Figure 8.5 and Figure 8.6. 

-�- None 
-����- TODO  
-�- TABOO  
-�- BOTH  
-����- KICK  
-����- UP-DOWN

cost mass accuracy input dx.

N
or

m
al

iz
ed

 O
bj

ec
tiv

e 
Va

lu
e



 147

Chapter 10 

Conclusions 

10.1 SUMMARY 
This dissertation has introduced the A-Design automated approach to conceptual 

design. Through its implementation, A-Design invents solutions to open-ended design 

problems. The creation of designs occurs as a result of the interactions of a multitude of 

agents folded into a stochastic iterative process capable of adapting to changes in user 

preference. The innovations of A-Design are based on a number of related research topics 

including Stochastic Optimization, Genetic Algorithms, Artificial Life, Multi-Agent 

Systems, Qualitative Physics, Bond Graphs and Utility Theory. Table 10.1 provides a 

summary of these related research topics and the A-Design subsystems they influence. 

The table also shows how A-Design expands upon or diverges from these topics to create 

the unique constituents of the theory by including characteristics of human conceptual 

design. The goal of A-Design is to investigate and integrate qualities of the human design 

process into a computational algorithm. This has been accomplished by creating four 

subsystems that each embody different characteristics found in human conceptual design.  
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One of the key aspects in A-Design is the combination of optimization algorithms and 

knowledge-driven techniques. Knowledge-driven strategies are contained within software 

agents that interact iteratively to search the design space in a stochastically guided 

manner. This combination takes advantage of searching over numerous iterations while 

making sense of ill-defined problem spaces. 

Initial test examples help to demonstrate the effectiveness of the algorithm’s 

adaptability and search success. In the Manhattan Transfer test example, A-Design found 

solutions for a specific user preference and quickly adjusted when a change in preference 

occurred. The numerical optimization test example pits the A-Design theory against a 

traditional SQP algorithm. Although the SQP method runs faster than A-Design, it often 

Table 10.1: Derivation and innovations of the A-Design theory and the electromechanical 
implementation. 

A-Design 
Subsystems 

Agent 
architecture 

Search Process Design selection Functional 
Representation 

Human Design 
Characteristics Collaboration Iteratively-guided 

and Learning 
 

Adaptive Open-ended 

Related Work Artificial Life, A-
Teams, other 
Multi-agent 
Systems 

Stochastic 
Optimization, 
Genetic Algorithms, 
Tabu Search, 
Reinforcement 
Learning 

Pareto-optimality, 
Satisficing,  
Multi-attribute 
Utility Theory 

Qualitative 
Physics, 
Function 
Grammars  

A-Design 
Innovations 

Agents are goal-
directed and work 
within a 
framework where 
feedback and 
collaboration 
yield diverse 
design solutions. 

A-Design iteratively 
improves upon 
existing design 
alternatives and 
creates new ideas 
through management 
of Maker- and 
Modification-agents.

Designs are 
divided into 3 
unique 
populations that 
are used to add 
adaptability and 
diversity to design 
states. 

Two-tier 
representation 
describes both 
abstract and real 
components and 
allows for more 
general 
connectivity. 
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gets stuck in local optima while A-Design more consistently finds the global optimum. 

Agent interaction and Pareto design selection in A-Design allow solutions to be searched 

in the non-monotonic and multi-modal spaces of the test examples.  

To address electromechanical problems, A-Design is supplied with a description of 

the design problem in the form of inputs and outputs, a set of objectives to be optimized 

and a library of electromechanical components. The results from the weighing machine 

test problem display a diverse set of possible design alternatives that can be created. 

These design configurations depict a successful combination of the agent architecture and 

functional representation subsystem. The application of A-Design to the design of a 

MEMS accelerometer shows promise for A-Design in solving a very different design 

problem. Learning from past iterations allows for a better understanding and coverage of 

the design space, and hence better final design solutions. 

Experiments were performed to test the adaptability and learning in the system. These 

experiments validate the theory’s separation of designs into Pareto, Good and Poor 

subsets as an effective way to both optimize objectives and retain flexibility. Also, the 

TODO and TABOO learning guide the agents through both positive and negative 

exemplars. This learning leads to the creation of improved design solutions that are not 

easily attained in the absence of learning. 

10.2 DISCUSSION 
In the Introduction, the development of “computer as analyzer” compared to the 

development of “computer as designer” illustrated several of the challenges to the latter 

that have inhibited progress in this area. Understanding and overcoming these challenges 
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has been the motivation for researching and developing the A-Design system. The first 

challenge, incorporating traits of human design, has been the basis for the A-Design 

methodology, while the second challenge (investigating the foundation of design) and 

third challenge (integrating design and analysis) have been referenced intermittently 

throughout this dissertation. Each of these three challenges is discussed in the following 

sections. 

10.2.1 Automating Conceptual Design: Theoretical Claims of A-Design 

The results of the previous chapters show a computational system capable of 

conceptualizing innovative and interesting designs given merely a functional description 

and the metrics for measuring good designs. These results of the A-Design 

implementation provide a “proof of concept” for the underlying theory of A-Design that 

is implicitly stated throughout this dissertation. Explicitly, the underlying theoretical 

claim of A-Design is that by understanding the broad characteristics of the human design 

process, a computational process can be created to model these behaviors in order to 

invent, create, or solve conceptual design problems. The successful manner in which 

these human characteristics are incorporated within A-Design offers proof of the validity 

of A-Design’s theoretical claim. These proofs are tied to the development of the A-

Design subsystems, which are each discussed a final time below. 

10.2.1.1 Iteratively-Guided Search Process 

Quite possibly the most natural computational property, the concept of iteration 

affords us several advantageous qualities for conceptual design. In any human design 

problem, creation occurs as the result of several steps. These steps can be a development 

from the abstract to the concrete, as in the progression from identifying a need to 
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developing a prototype, or the critical steps that improve existing designs after the 

original conceptualization. Designs that have evolved over a series of improvements from 

previous instances are often the most robust. As stated in Jones (1980) in the analysis of 

traditional design methods, “This slow and costly sequential searching for the ‘invisible 

lines’ of a good design can, in the end, produce an astonishingly well-balanced result and 

a close fit to the needs of the user.” While product evolution can be measured in centuries 

for some human design problems, we can bank on the intrinsic speed of computational 

systems to iterate and evolve design concepts in a reasonable time.  

Given that objectives are definable for a design problem, iteration allows initially 

weak alternatives to progress to successful solutions. As is evident in the A-Design 

system, agents initially create unsuccessful solutions but as the design selection scheme 

isolates better alternatives and feedback is provided to the agents, the process improves 

designs to better meet the design specification. The iteration also allows parts of a design 

problem description to be expressed as objectives. For example in the weighing machine 

problem, accuracy of dial is an objective that partially defines the functionality of a 

device. Initially, agents may create solutions that do not even cause the output dial to 

rotate. As the process unfolds, solutions appear that better meet the accuracy objective, 

and feasible weighing machines are produced. 

While the iterative process alone can lead to a natural evolution of better designs, 

human design also learns from the successes or deficiencies of past designs to guide the 

modifications of future artifacts. One way that this guided iteration is implemented in A-

Design is with TODO and TABOO learning. It has been shown in the experiments of 
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Chapter 9 that this learning does not constrict search in future iterations but instead 

allows for more efficient search and more design innovation.  

10.2.1.2 Adaptive Design Selection 

The incorporation of adaptability into A-Design embodies two traits of human design. 

First, design takes place within a dynamic environment. While it is true that designs 

evolve to create improved design solutions, designs can also be modified to meet 

different product demands. Variations in consumer markets or the introduction of new 

technologies can change how a design is viewed (the utility of a design). Human design is 

capable of adapting, however current computational design strategies require reinitiating 

the process to solve a newly formulated design problem. Within A-Design, this 

reinitiation is avoided by a unique pruning of designs at each iteration of the process. 

This pruning stores key designs so that the process is capable of quickly adapting to 

changes in the relative importance of objectives as well as the addition or deletion of 

objectives. 

Second, this adaptability within A-Design allows a user of the process to understand 

the trade-offs among the objectives. By tracking the automated design procedure, the user 

can steer the process to meet the designer’s needs. In addition, the dialog of the Manager-

agent provides an interaction between the user and the search process so that the resulting 

design process is part human and part computer. 

As a by-product of storing the Pareto-set for adaptability, it also has been shown that 

the preserving of diverse design solutions leads to improved design activity for even 

static user preferences (shown by testing the effects of the Pareto set in Section 9.2). 
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Perhaps, human design also benefits from this storing of diverse design ideas. In her book 

on creativity, Margaret Boden (1990) cites the following Poincaré adage: 

Among chosen combinations the most fertile will often be those formed of elements 
drawn from domains which are far apart…Most combinations so formed would be 
entirely sterile; but certain among them, very rare, are the most fruitful of all. 

10.2.1.3 Open-Ended Representation 

Representing information in the human design process or, in fact, any human thought 

process is not a simple matter. The storing and manipulating of information to solve 

problems is the basis for the cognitive science study of procedural knowledge (see 

overview Holland et al., 1986). It is generally accepted that design is an open-ended 

problem-solving phenomenon that lacks a single correct answer. The analogy of 

conceptual design as search (see Section 1.2) provides a starting point for understanding 

how design can occur within a computational system. Other than this analogy, there is no 

general scheme for formalizing design problems. Therefore, the power of a conceptual 

design engine will depend upon the generality of the representation. With this claim, we 

are challenged to develop a representation to handle a wide variety of possible design 

solutions. The language that was developed in this dissertation for electromechanical 

devices provides the grammar for design construction without imposing large restrictions 

on the search space. This is demonstrated by observing the wide variety of designs in 

Chapter 8. While this representation is not capable of representing all possible design 

solutions for a given problem, it does provide a starting point for generating a significant 

degree of unstructured invention. 
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10.2.1.4 Collaborative Agents 

A theoretical claim of the agent subsystem is that many approaches are better than 

one. In human design teams, the interaction of various designers produces a more than 

additive effect. The total combined expertise and preferences of the designers are further 

compounded by the expertise and preferences resulting from interactions of the designers. 

This is confirmed in studies of Osborn (1963) where he states, “Most of us can work 

better creatively when teamed up with the right partner because collaboration tends to 

induce effort, and also to spur our automatic power of association.” The artifacts that 

result from the cooperation of numerous engineering designers are often more robust and 

effective than designs conceived by a single designer.  

In computational systems, it has been claimed on a number of occasions that 

collaborative or cooperative agent strategies lead to scale-effective computation 

(Talukdar, 1996; Lander, 1997). This means that the addition of new strategies only seeks 

to increase the capabilities of the system. With this in mind, agents are constructed in A-

Design with various unique strategies and preferences. While these strategies are 

somewhat constrained and deterministic, their stochastic interaction can produce a wide 

range of results. Again, this is shown by the resulting artifacts of Chapter 8. 

10.2.2 Investigating Conceptual Design 

The second challenge of computational design involves discovering the 

foundations of the design process. While it could be said that engineering is part design 

and part analysis, most of the past engineering research has focused on analysis. This is 

due to the nature of engineering analysis, which is founded on mathematical formalisms. 

In the last fifty years or so, cognitive psychology has provided a great deal of insight into 
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how the human mind operates. This research has blossomed as a result of computation, 

which has allowed models of cognition to be formalized and studied by artificial models 

of intelligence. The combination of cognitive psychology and engineering design has yet 

to be fully realized. While this project has assimilated four human design traits in a 

computational system, there is no restriction on integrating and investigating other human 

design traits.  

In addition to the computational research in cognitive psychology, there are also 

countless experiments seeking to understand the behaviors involved in solving design-

like problems. Through these psychological experiments, we gain insight into human 

qualities such as functional fixedness (Gick and Holyoak, 1980), representation of new 

knowledge (Clark and Karmiloff-Smith, 1993), and isomorphic representations 

(Kotovsky and Simon, 1990). There are also numerous historical accounts of design (see 

Weber, 1992; and Petroski, 1990) that touch on the cognitive details behind engineering 

invention. On the basis of the work described here, it is believed that the rigorous 

psychological studies and the historical texts could be combined to yield new insight into 

how design is accomplished both naturally and artificially.  

10.2.3 Uniting Automated Design and Automated Analysis 

One of the key issues of design, either human or automated, is the need for evaluating 

design alternatives. In our construct of design as search, we have found that evaluation is 

necessary in arriving at the objective functions used to compare alternatives. 

Unfortunately, conceptual design evaluation is not straightforward and can include 

qualitative effects and complex performance objectives. Simon (1969) confirms this 

challenge by laying out two issues in the evaluation of alternatives: 
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1. Utility theory and statistical decision theory as a logical framework for rational 
choice among given alternatives. 
2. The body of techniques for actually deducing which of the available alternatives is 
the optimum. 

He goes on to say, “Only in trivial cases is the computation of the optimum alternatives 

an easy matter. If utility theory is to have application to real-life problems, it must be 

accompanied by tools for actually making the computations.”  

The challenge of incorporating automated analysis with automated design is a very 

real theoretical challenge, and this challenge will only become more apparent as more 

complex engineering design problems are addressed by design automation. As is shown 

in the MEMS accelerometer example, the external computation involving the invocation 

of SABER presents challenges both in automatically solving a wide variety of designs 

and in balancing the trade-off between accuracy and time. Coincidentally, this challenge 

was also addressed in this researcher’s previous research with VLSI layout under heat 

transfer constraints (see Campbell et al. 1997). From these experiences, there seems to be 

three possible solutions in combining automated analysis as a subset of automated design. 

First, develop an automated analysis that increases in accuracy throughout the search 

process of design. Early in the search, states are coarsely evaluated to allow the coverage 

of a wide variety of design solutions similar to brainstorming in human design (Osborn, 

1963). Then, as the process continues and search becomes more focused, comparison of 

solutions requires a finer and finer evaluation and thus analyses are increased in accuracy 

to better distinguish design worth. This has been the approach used by Prakash and 

Cagan (1999) and in Campbell et al. (1997). However, if the coarseness is not well 

controlled early in the process, search may converge on erroneous areas of the space in 



 157

later iterations. Also, changes in the accuracy of the evaluation may lead to unexpected 

shifts in search. These shifts may result from different amounts of statistical error present 

at different levels of analysis. For example, if one level of analysis consistently 

underestimates attribute values by 20%, and the process shifts to a more accurate analysis 

with only a 5% error, then the coarsely evaluated solution will be erroneously favored. 

Therefore, it is not judicious to make comparisons of alternatives evaluated at different 

levels of analysis. 

Second, develop a means of evaluating similar to how human engineers evaluate. 

That is, develop computational analysis tools capable of the “intuition” that occurs when 

human designers rule out or approve design decisions. This development of human 

heuristics for evaluation can be a shortcut to more intricate computational analysis. 

Perhaps machine learning techniques can be developed to identify trends in designs and 

correlate them with infrequent computational analysis. This machine “intuition” could 

greatly benefit large conceptual design search processes requiring numerous or complex 

evaluations. 

Third, create a search process that is efficient in the choice of alternatives. Many 

stochastic approaches require numerous design states to be visited. However, if a less 

random search process is developed that follows well-formulated heuristics as is done 

here with the agents and similarly in Yin and Cagan (2000) and Storn (1995), then 

computational analysis does not need to sacrifice accuracy for time since fewer design 

states require analysis. 
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This discussion has presented the challenges of computational design. The 

innovations of A-Design have opened the door to understanding the limitations and 

realizing the possibilities of automating the conceptual design process. 
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Chapter 11 

Coda 

11.1 CONTRIBUTIONS  
The main contribution from the theory and implementation of A-Design is the 

production of an artificial process capable of invention. Several specific contributions can 

be identified in making a significant step towards automating conceptual design: 

• The construction of an adaptive process that can change to meet user needs or 

market demands during the search process thereby capturing the interactive nature 

of conceptual design, 

• The creation of a search process that can accommodate the most appropriate 

representations for a given problem via agent interfacing, 

• The combination of stochastic and knowledge-driven methods to create a unique 

stochastic search process capable of learning. 

• The development of a functional representation for electromechanical systems 

that includes a general connectivity of components, the ability to model 

incomplete design states and the inclusion of real components, 
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• The first automated topology generation of MEMS devices given only the 

functional specifications, 

• The classification of human design characteristics to provide a basis for 

computational design and to establish a computational testbed for investigating 

the behaviors of both the human and computational design, 

• The establishment of a design tool capable of searching infinite design spaces for 

component configurations to meet a user’s specifications. 

11.2 FUTURE WORK 
The development of the A-Design system allows for future work to proceed in a 

variety of different directions. The four subsystems each can be further investigated both 

in the context of A-Design and as separate research endeavors. 

The functional representation developed in Chapter 4 could be further developed and 

implemented to solve more complex designs than those developed here. These would 

include geometry transformations, operating range issues, and better dynamic modeling 

mentioned in the discussion of Section 8.1.2. The contents of the Functional Parameter 

and Embodiment structures have been created to represent electromechanical components 

with transformations of power, signal, and material (the three fundamental engineering 

classes constructed by Pahl and Beitz). In the current implementation, only power 

transformations are explored. More interesting design problems could be addressed if the 

representation is extended to include signal and material. For example, the input and 

outputs of a coffeemaker could be posed as produce coffee (material), given electric 

power (power), water (material), and coffee beans (material). These representation issues 
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could be investigated alone as a basis for, or in combination with, other engineering 

representations such as boundary or feature-based representations. 

The development of the adaptive subsystem demonstrated how the interaction 

between user and Manager-agent could lead to new ways of modeling user utility 

functions. Here, the dialog and approximation of utility is confined to cardinal rankings 

and simple matrix manipulation. More detailed dialog and models for utility have been 

developed for multi-attribute problems (see example in Thurston, 1991); future research 

could combine these approaches with search techniques to yield a more interactive multi-

objective design process. 

The Manager-agent strategy explained in Chapter 6 presents one possible way that 

guided search can lead to improved design activity. Instead of a single Manager-agent 

strategy, a multitude of interacting Manager-agents could be explored to represent 

different strategies for conducting design. The different learning approaches tested in 

Chapter 9 could provide a basis for the interacting Manager-agent strategies. 

Furthermore, the TODO and TABOO learning is a fertile area of future research. 

While agent teams and design fragments trends are currently determined from past 

experiences, other design characteristics such as phenomenological concepts (as 

discussed at the end of Chapter 4), or geometric similarities could greatly increase the 

learning and inventive power of A-Design. 

The future work possibilities in developing new evaluation methods are briefly 

discussed in Section 10.2.3. The need for automated analysis can pose a significant 

bottleneck for conceptual design. Future work in interfacing automated design with 
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automated analysis might require the development of sophisticated interpreters to handle 

the pre- and post-processing or heuristic approaches to make simplifications or judgments 

based on individual design state properties. 

Finally, the A-Design methodology is shown to have a general applicability to a 

wide variety of conceptual design domains. The implementation is developed to a 

significant level in this dissertation to show a proof of concept for the automated design 

theory. It would be exciting to further develop A-Design to address new design problems 

that may yield novel, or possibly even patentable, inventions. 

11.3 CONCLUDING REMARKS 
The A-Design theory presented here makes strides towards understanding conceptual 

design, automating conceptual design, and assisting a user with conceptual design. This 

dissertation provides a theoretical foundation for future design automation tools that 

could be developed to aid industries in innovating new concepts by bringing together 

human design and computational processes.  
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Appendix:  

Implementation  

A. GENERAL A-DESIGN PROCEDURE 
In the flowchart of Figure 2.2, the four subsystems of A-Design are combined in a 

process of interacting functions and agents. This section presents an overview to the 

general algorithmic procedure of A-Design through detailed pseudo-code. As can be seen 

by the top of Figure A.1, the main function, A-Design, is invoked with no arguments. The 

initiation of variables and the design problem description is implemented in the 

init.lisp file shown in Section C of this Appendix. Information on each step of the 

iterative process is outputted through the Write-design-data function which details the 

agent populations, design populations, and the best and average objective values found at 

each iteration. Data on the best final designs is written with the Write-Results function at 

the end of the process.  

In the following pages of pseudo-code, the nested functions show the subroutines 

within the main functions. The italicized phrases correspond to function names, and the 

phrases in parentheses denote the arguments to a particular function. Comments are 

indicated by double slashes. 
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A-Design () 
• Initiate variables and structures by loading init.lisp (see Appendix Section C) 
• Read in program files, agents, and catalog of components. 
• Begin iterative process 

o iteration := iteration + 1 
o configs := Create-and-Repair-Configurations (fragments, agent-stats, 

TODO, TABOO) 
o designs := Instantiate-Configurations (configs, agent-stats, TODO, 

TABOO) 
o Evaluate-designs (designs) 

// The routines to evaluate designs are unique to each design problem. For the 
accelerometer problem and the weighing machine problem, details can be found in 
Section C in the input file, evaluate.lisp. //. 

o [Pareto-designs, Non-Pareto-designs] = Find-Pareto-designs (designs) 
o [Good-designs, Poor-designs, TODO, TABOO, agent-stats]  

:= Get-Manager-agent-response (Pareto-designs, Non-Pareto-designs) 
// See pseudo-code for Manager-agent in Figure 6.1. // 

o Write-design-data (Pareto-designs, Good-designs, Poor-designs, 
iteration, agent-stats) 

o if (iteration = *tot-iter*)  
then break 

 else 
o fragments := Modify-Designs ((Pareto-designs, Good-designs), agent-

stats) 
o repeat 

• Write-Results (Pareto-designs, Good-designs) 
 
// The pseudo-code for the major functions of this main procedure are shown below. // 

Create-and-Repair-Configurations (fragments, agent-stats, TODO, TABOO) 
• for (each fragment) 

o Until design-is-complete (fragment) 
��Fragment := Create-from (fragment, agent-stats, TODO, 

TABOO) 
• for (number-of-new-configs = *design-pop* - number-of (fragments) ) 

o Until design-is-complete (config) 
��config := Create-from (config, agent-stats, TODO, TABOO) 

 

design-is-complete (config) 
• AND ( design-goals-are-met (config) ) 

    // checks to see that no more goal flags in input and output FPs. // 
    ( design-is connected (config) ) 

   // checks to see that a connection of EBs exist from input to  output FPs. This is 
       accomplished by a depth-first recursive search of the graph. // 
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Figure A.1: Pseudo-code for general A-Design procedure. Subroutines shown in nested frames. 

  Create-from (config, agent-stats, TODO, TABOO) 
// This is the main function that calls the c-agents and builds a configuration EB by EB. // 
• C-Agent :=Choose-agent (agent-stats, C) 
• [new-EB, connecting-FPs] := Invoke C-agent (config, TODO, TABOO) 

// The choice of the new-EB along with the FPs that it connects to are then passed to the 
update configuration routine. See pseudo-code from Figure 5.5 for operation of C-agent. // 

• config := Update-Configuration (config, new-EB, connecting-FP) 
// see pseudo-code from Figure 4.5 for update configurations. // 

Instantiate-Configurations (configs, agent-stats, TODO, TABOO) 
• for (each config) 

o Until all EBs are filled 
�� I-Agent :=Choose-agent (agent-stats, I) 
�� [EB, component] := Invoke I-agent (config, TODO, TABOO)

// The I-agent returns the EB it instantiates and the component that is 
chosen for the instantiation. The behavior of I-agent follows a model 
similar to the behavior in Figure 5.5, but with the preferences from the I-
agent column of Table 5.1. // 

��Instantiate-variables (config, EB, component) 
// replace variables in equations with values from the component data. // 

Find-Pareto-designs (designs)  
• for (each design) 

o for (all other designs) 
��if other-design is better than design on all objectives 

then design is not Pareto 
o if design was shown to not be worse than all other-designs 

then design is Pareto 
��return (Pareto-designs, non-Pareto-designs)  

Modify-designs (designs //both good and pareto //, agent-stats) 
• until (no more designs) 

o F-Agent :=Choose-agent (agent-stats, F) 
o [designs, frag-design] := Invoke F-agent (designs) 

// The F-agent chooses which design to modify and returns the original design and 
a fragmented version of the design. Currently, there is no learning passed to the F-
agent. The behavior of F-agents follows the model in Figure 5.5, but with the 
preferences from the F-agent column of Table 5.1. This includes the decision to 
remove components or EBs. // 

Choose-agent (agent-stats, agent-type)  
• Based on agent-type find appropriate statistics and invoke stochastic division of 

probablilities as seen in roulette wheel example of Figure 6.3. 
• Generate-random-number //spin roulette wheel.// 
• Return chosen agent 
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B. DIRECTORY STRUCTURE 
The code for A-Design is implemented in LISP and C and is divided into several 

directories as seen in Figure A.2. The codeGeneral directory includes files that maintain 

the basic workings of A-Design. The C-, I- and F-agents that are created for specific 

applications are stored in separated directories: codeEM contains agents for the weighing 

machine problem, and codeMEMS contains agents for the MEMS accelerometer problem. 

The catalog of components for A-Design are placed in a separate directory. For the 

weighing machine problem, the directory, libraryEM, contains electro-mechanical 

Embodiments and components used for building weighing machines. For the MEMS 

problem components are stored in libraryMEMS. 

The files init.lisp and evaluate.lisp are the input files for A-Design, and are 

described in the next section. Output files are stored in outputEM and outputMEMS for the 

weighing machine and accelerometer problems respectively. The details of these output 

files are shown in Section E of this appendix.
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Figure A.2: The directory structure of files used in the Weighing Machine and MEMS 
accelerometer problems. 

A-Design    

 init.lisp   

 evaluate.lisp   

 codeGeneral   

  design.lisp io.lisp 

  create.lisp magents.lisp 

  functions.lisp trend.lisp 

  update.lisp  

 codeEM   

  cagents.lisp  

  iagents.lisp  

  fagents.lisp  

 codeMEMS   

  cagents.lisp  

  iagents.lisp  

  fagents.lisp  

 libraryEM   

  Embodiments elec_valve.comps 

  battery.comps Inductor.comps 

  cable.comps lever1class.comps 

  capacitor.comps lever2class.comps

  gear.comps (etc., see Table 4.2) 
 libraryMEMS   

  Embodiments mass.comps 

  horiz_beam.comps horiz_comb.comps 

  vert_beam.comps vert_comb.comps 

 outputEM   

  iter.out topdesigns.out 

  pareto.out cagents.out 

  good.out fagents.out 

  poor.out iagent.out 

 outputMEMS   

  iter.out top_data.out 

  (etc., same files as outputEM) 
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C. INPUT FILES 
For the results in Chapter 8, the design problem is presented to A-Design in terms of 

the inputs and outputs of the design, the objectives of the design problem, and the catalog 

of components. In the LISP implementation of A-Design, each of these is stored in a 

separate file or files. The input and output descriptions are included in init.lisp. This 

file also includes all the data structures used in A-Design, and constants that can be 

adjusted by the user. The objectives of the design problem are created in a separate file, 

evaluate.lisp, which lists all the code for analyzing designs. These files are shown 

below. 

The catalog of components for A-Design are placed in a separate directory. For the 

weighing machine problem, the directory is called libraryEM because it contains electro-

mechanical Embodiments and components. Within this directory, one file, Embodiments 

contains all the EBs for the catalog. Separate files with for each EB contain the various 

components used to instantiate the EB. These are stored in filenames with a .comps 

extension to the EB they instantiate. 

init.lisp 

;;; INIT.LISP - Contains data structures and constants used throughout the 
;;; process.  This can be called with the (a-design) executable or loaded  
;;; beforehand to run a multitude of tests. 
 
 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;;; The following are constants used by the process.   
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
(sys:resize-areas :new 20000000 :old 40000000) 
;; this sets up the RAM needed to run this space-extensive program 
 
(setf *random-seed* (make-random-state t)) 
(setf *random-state* *random-seed*) 
;; seed the random generator so that no two runs are the same 
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;; save the initial seed in a separate variable such that it can be stored  
;; for a particular run. 
 
(setf *num-of-objectives* 4) 
;; the number of objectives in the design problem. 
 
 (setf *obj-constraints* '(1000.0 1000.0 100000.0 100000.0)) 
;; the ceiling of the design spaces, any designs above this are 
;; automatically eliminated from the process 
 
(setf *attempts-to-reconstruct* 15) 
;; after designs are fragmented sometimes they are impossible to repair. This 
;; constant sets how many attempts at reconstructing a design are performed  
;; before giving up on it. 
 
(setf *design-pop* 100) 
;; the maximum number of designs at any given time. 
 
(setf *designs-per-config* 4) 
;; the number of designs to instantiate per config in beginning. 
 
(setf *pareto-cap* (/ *design-pop* 3)) 
;; the maximum number of designs in the pareto before pruning. 
 
(setf *good-cap* (/ *design-pop* 4)) 
;; the maximum number of designs on good. 
 
(setf *tot-iter* 40) 
;; total number of iterations for the process. 
 
(setf *topdesigns-num* 25) 
;; the number of top designs reported for a completed run. 
 
(setf *iter_dump_designs*  50) 
;; the number of iterations at which to dump the design population 
 
(setf *percent-kept* 0.75) 
;; the approximate percentage of designs kept from one iteration 
;; to the next. Otherwise C-agents generate some from scratch. 
 
(setf *remove-similar-designs* t) 
;; boolean that determines whether or not to prune designs when 
;; the population caps are reached. 
 
(setf *min-agent-U* 0.1) 
;; the minimum value an agent population can have. 
;; if <= to min-agent-pop then = to min-agent-pop. 
 
(setf *num-of-discretize-points* 20) 
;; the number of points in the range that define the objective calc-range 
 
(setf *max-num-ebs* 15) 
;; the maximum number of ebs that can be put into one design 
 
(setf *gravity* 9.81) 
(setf *pi* 3.1416) 
(setf *pi/4* 0.7854) 
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;;; The following are structures used by the process.  
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;;; The FUNCTIONAL PARAMETER, FP describes the energy state used in all  
;;; connections and ports in all the systems.  Borrowed from the Welch&Dixon 
;;; representation but expanded with the interface character and direction 
;;; character.  By the way, the 9 variables that make up the FP are known 
;;; as characters or characteristics. 
;;; Create-fp is the constructor for making an FP.    
(defstruct (fp (:constructor create-fp  
        (&optional through across class domain coord  
     inter direct index))) 
  (THROUGH nil)             ;once effort, now through 
     ;it's a list of lists of lists 
     ;list of the through variable for each 
     ;connection in index repeated for each 
     ;domain in domain 
  (ACROSS nil)       ;once flow, now across  
     ;it's a list of lists of lists 
     ;list of the time differentiation of 
     ;the across variable for each 
     ;domain in domain 
  (CLASS nil)    ;class = {signal power material} 
  (DOMAIN nil)      ;energy domain  
     ;can be a list if more than one domain 
     ;= {trans, rotat, elect, hydra, therm} 
     ;= {trans-x, trans-y, rot-z, etc.} 
  (COORD nil)    ;4 x 4 coord frame position 
  (INTER nil)    ;interface = {any accepted interface  
     ;symbol eg. 9/16-in-bolt} 
  (DIRECT nil)    ;direction of energy flow  
     ;= {sink, source} 
  (INDEX nil)    ;index of comps connecting to this fp, 
  )  
 
;;; The CONSTRAINT PARAMETER, CP is a functional parameter for constraints  
;;; on component connections.  It identifies the bounds that a particular 
;;; FP must have to match a connection.  Any character of an FP can be  
;;; constrained.  In the through/across pair of FP is identified in TY, and 
;;; its maximum magnitude is identified by MG.  If TY = across, then MG is 
;;; a triple noting the maximum magnitudes of the (integral none derivative) 
;;; of the across variable. 
(defstruct (cp (:constructor create-cp (&optional throughrange acrossranges  
        oper class domain coord  
        inter direct))) 
  (THROUGHRANGE nil)          ;range of through var. 
  (ACROSSRANGES nil)          ;ranges of across vars. - triple list 
  (OPER nil)    ;time operator  
     ;= {deriv none integ} 
  (CLASS nil)    ;class = {signal power material} 
  (DOMAIN nil)    ;energy domain  
     ;= {trans, rotat, elect, hydra, therm} 
  (COORD nil)           ;4 x 4 coord frame position 
  (INTER nil)    ;interface = {any accepted interface  
      ;symbol eg. 9/16-in-bolt} 
  (DIRECT nil)    ;direction of flow = {source, sink}  
     ;not what is supplied by that 
  )     ;component but what is required 
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;;; The EMBODIMENT, EB structure is used to describe all components read in  
;;; by the catalog.  Borrowed form the W&D representation with a behavior 
;;; change, constraints and evaluations.  For simplifying the structure,  
;;; behavior is split into three things on this level: MG-change, PO-change,  
;;; and BG. 
(defstruct eb 
  data     ;characteristic data for the  
     ;following device 
  MG-change    ;matrix for overall change in  
     ;magnitude of component 
  PO-change    ;matrix for position change of  
     ;component 
  const-param    ;list = (DO MG-limit OT PO IT)  
     ;if not constrained 
     ;by one of these then nil 
  ) 
 
 
;;; The COMPONENT, COMP structure is used to describe all components read in  
;;; by the catalog.  Borrowed form the W&D representation with a behavior 
;;; change, constraints and evaluations.  For simplifying the structure,  
;;; behavior is split into three things on this level: MG-change, PO-change,  
;;; and BG. 
(defstruct comp  
  data                                  ;list of values of data in the EB's 
  evals     ;list = (cost weight efficiency etc.) 
  ) 
 
 
;;; The SYSTEM CONFIGURATION, SC structure holds a complete or possibly  
;;; incomplete design state.  The graph contains the information about the 
;;; systems components and connectivity including components and FP's.  The 
;;; c-agents holds the responsible maker-agents for the device.  The c-agents  
;;; holds the responsible fragment-agents for the device.  And evaluations 
;;; contains the final evaluations of the device as determined in the 
;;; evaluate stage of the process. 
(defstruct sc 
  graph     ;list of fps' involved in design 
  behavior-eq    ;list of functionality of inter- 
     ;acting component characters  
     ;in FP-ID found in graph 
  embodiments                           ;list of emobidments in the design 
  c-agents    ;list of conceptual agents  
     ;responsible for design 
  components                            ;list of components in the design 
  i-agents    ;list of instantiation agents  
     ;responsible for design 
  f-agents    ;list of fragment agents 
     ;responsible for design 
  evaluations                    ;list of evaluatable criteria 
  ) 
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;;; The interface-list contains the possible matches of interface types.    ;;; 
;;; If an interface doesn't match with any on the list than it is assumed to;;; 
;;; only match with itself.                                                 ;;; 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
(setf *interface-list* '(((belt pulley)) 
    ((gear-teeth gear-teeth) . gear-teeth) 
    ((shaft shaft-hole) . shaft) 
    ((male-pipe female-pipe)) 
    ((chain sprocket-teeth)) 
    ((dial dial)) 
    ((feet flat-user-interface)) 
    ((hand flat-user-interface)) 
    ((hand handle-user-interface)) 
    ((hand button-user-interface)) 
    ((bolt hole) . bolt) 
    ((bolt belt) . bolt) 
    ((bolt bolt) . bolt) 
    ((wire wire) . wire) 
    )) 
 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;;; The interface-list for MEMS is quite simple. Ends of components are     ;;; 
;;; described by their open faces.                                          ;;; 
;;; If an interface doesn't match with any on the list than it is assumed   ;;; 
;;; to only match with itself.                                              ;;; 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
(setf *interface-list-mems* '((east west)  
             (north south)  
             (up down))) 
          
         
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;;; The following are the files and design desicription used by the process.;;; 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
(setf *library-dir* '(:relative "libraryEM")) 
;; directory name of where the library of components/embodiments is stored 
(setf *code-dir* '(:relative "codeEM")) 
;; directory name of domain specific code mostly agent code 
 
(setf *gen-code-dir* '(:relative "codeGeneral/")) 
;; directory name of general code mostly agent code 
 
(setf *library-file*  
      (make-pathname :directory *library-dir* :name "Embodiments")) 
 
(setf *input-agents-file* (make-pathname :directory '(:relative "output") 
      :name "agents" 
      :type "out")) 
(setf *input-designs-file* (make-pathname :directory '(:relative "output") 
       :name "alldesigns" 
       :type "out")) 
(setf *input-optimal-designs-file* (make-pathname  
        :directory '(:relative "output") 
        :name "topdesigns" 
        :type "out")) 
 
(setf *input-agents-file* (make-pathname :directory *code-dir* 
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      :name "initagents" 
      :type "lisp")) 
(setf *input-designs-file* nil) 
 
(setf *input-optimal-designs-file* nil) 
 
 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;;; Load in the other lisp files involved in the process, 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 
(tenuring (load (make-pathname :directory *gen-code-dir* :name "design"))) 
(tenuring (load (make-pathname :directory *gen-code-dir* :name "create"))) 
(tenuring (load (make-pathname :directory *gen-code-dir* :name "io"))) 
(tenuring (load (make-pathname :directory *gen-code-dir* :name "functions"))) 
(tenuring (load (make-pathname :directory *gen-code-dir* :name "trend"))) 
(tenuring (load (make-pathname :directory *gen-code-dir* :name "update"))) 
 
(tenuring (load (make-pathname :directory *code-dir* :name "cagents"))) 
(tenuring (load (make-pathname :directory *code-dir* :name "fagents"))) 
(tenuring (load (make-pathname :directory *code-dir* :name "iagents"))) 
(tenuring (load (make-pathname :directory *code-dir* :name "equer"))) 
(tenuring (load (make-pathname :directory *code-dir* :name "evaluate"))) 
 
(tenuring (setf *eb-library* (read-library))) 
 
 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;;; Set the all-important grounds for the system 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
(setf *new-connects* 
      (build-fps 
       '((nil (((0 120) (0 120) (0 120))) power (elect) nil 
   three-prong-outlet source nil) 
  (nil ((0 0 0)) power (trans) nil bolt sink (ground)) 
  (nil ((0 0 0)) power (rotat) nil bolt sink (ground)) 
  (nil ((0 0 0)) power (rotat) nil shaft-hole sink (ground)) 
  (nil ((0 0 0)) power (hydra) nil female-pipe sink (ground)) 
  (nil ((0 0 0)) power (elect) nil wire sink (ground))))) 
 
 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;;; Finally, describe the design problem at hand in terms of inputs and 
;;; outputs of the system.  nil can be placed anywhere to denote 
;;; no particular specification.  
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
(setf *io-fps* 
  (build-fps  
   '((((0 297)) ((nil nil (goal (0 0)))) power (trans)  
      ((0 1 0 0) (-1 0 0 0) (0 0 1 0) (0 0 0 1)) feet source  
      (goal)) 
     (nil ((nil (goal bound) (goal (0 5)))) power (rotat) 
   ((-1 0 0 1) (0 1 0 5) (0 0 -1 0) (0 0 0 1)) 
   dial sink (goal)))))       
 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;;; MEMS design problem in terms of inputs and outputs of the system. 
;;;  nil can be placed anywhere to denote no particular specification.  
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 



 182

(setf *io-fps* 
  (build-fps  
   '(((nil nil nil nil)  
      ((nil nil (goal (0 0))) (nil nil (goal (0 1))) 
       (nil nil (goal (0 0))) nil) 
      power (trans-x trans-y rot-z elect) (0 0 0 1) (down) sink (goal)) 
     ((nil nil nil nil) (nil nil nil ((goal (0 25)) nil nil)) 
      power (trans-x trans-y rot-z elect) nil  
      (west north east south up down) source (goal))))) 

evaluate.lisp (for Weighing Machine Problem) 

;;; Evaluations.lisp for Weighing Machine Problem 
;;; Contains functions called in evaluate in design.lisp 
;;; These functions are specified in parameters 
 
(setf *evaluators* '(cost mass dial-accuracy input-dx)) 
 
;;; The following functions perform evaluate 
(defun evaluate-designs (designs eval-level)   
  (cond ((endp designs) nil) 
 (t (setf (sc-evaluations (car designs)) (evaluate-each-design  
       (eval (car designs))  
       *evaluators*)) 
    (evaluate (cdr designs) eval-level)))) 
 
 
(defun evaluate-each-design (design evaluators) 
  (cond ((endp evaluators) nil) 
 (t (cons (funcall (car evaluators) design) 
   (evaluate-each-design design (cdr evaluators)))))) 
 
 
(defun cost (design) 
  (apply '+ (mapcar #'(lambda (x) (first (third x))) (sc-components design)))) 
 
(defun mass (design) 
  (apply '+ (mapcar #'(lambda (x) (second (third x))) (sc-components design)))) 
 
(defun calc-ineff (design) 
  (- 1 (apply '* (mapcar #'(lambda (x) (third (third x))) 
    (sc-components design))))) 
 
(defun dial-accuracy (design) 
  (let* ((equation (find-if #'(lambda (x) (equal (car x) '(0 5))) 
       (sc-behavior-eq design))) 
  (answer (cond ((car equation) (discretize-interval (car equation))))) 
  (result (cond ((cadr equation) (solve-equation (cadr equation)))))) 
    (cond ((and result answer (and-list (mapcar 'numberp result))  
  (and-list (mapcar 'numberp answer))) 
    (/ (apply '+ (mapcar  
    #'(lambda (x y)  
        (* (- x y (- (car answer) (car result))) 
    (- x y (- (car answer) (car result))))) 
    (cdr answer) (cdr result))) 
       (1- (length answer)))) 
   (t (third *obj-constraints*))))) 
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(defun input-dx (design) 
  (let* ((equation (find-if #'(lambda (x) (equal (car x) '(0 0))) 
       (sc-behavior-eq design))) 
  (answer (cond ((car equation) (discretize-interval (car equation))))) 
  (result (cond ((cadr equation) (solve-equation (cadr equation)))))) 
    (cond ((and result answer (and-list (mapcar 'numberp result))  
  (and-list (mapcar 'numberp answer))) 
    (/ (apply '+ (mapcar  
    #'(lambda (x y)  
        (* (- x y (- (car answer) (car result))) 
    (- x y (- (car answer) (car result))))) 
    (cdr answer) (cdr result))) 
       (1- (length answer)))) 
   (t  (fourth *obj-constraints*))))) 
 
 
;;; Discretize-Interval 
;;; This function discretizes an interval by operator (third interval) which is 
;;; a unary function.  The number of discretized points comes from the  
;;; constant that it set *num-of-discrete-points*. Basically, for interval  
;;; (x0 xf), the results are return as 
;;;             (xn-x0) 
;;; yn = x0 + f(-------)*(xf - x0) 
;;;             (xf-x0) 
(defun discretize-interval (interval) 
  (do ((x0 (first interval)) 
       (xf (second interval)) 
       (operator (third interval)) 
       (spacing (/ (- (second interval) (first interval)) 
     *num-of-discretize-points*)) 
       (xn (first interval) (+ xn spacing)) 
       (y nil (backcons  
        (cond ((= xf x0) x0)  
       (operator 
        (+ x0 (* (- xf x0)  
          (funcall operator (/ (- xn x0) (- xf x0)))))) 
       (t xn)) 
      y)) 
       (i 0 (1+ i))) 
      ((> i *num-of-discretize-points*) y))) 
 
 
(defun solve-equation (eq) 
  (do* ((interval (find-if #'(lambda (x) (and (listp x) (numberp (car x)))) 
      (apply #'append  
      (mapcar #'return-state-vars *io-fps*)))) 
 (equation nil (subst (car points) interval eq :test 'equal)) 
 (values nil (backcons (ignore-errors (eval equation)) values)) 
 (points (discretize-interval interval) (cdr points))) 
      ((endp points) values))) 
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evaluate.lisp (for MEMS accelerometer Problem) 

;;; Evaluations.lisp for MEMS  
;;; Contains functions called in evaluate in design.lisp 
;;; These functions are specified in parameters 
 
(setf *evaluators* '(area Sy Kxx Amax)) 
(setf *global-ground* nil) 
(setf *C_para* 120e-9) 
(setf *V_m* 10) 
(setf *Vn_circuit* 0.1) 
(setf *Boltzman_K_b* 1.381e-23) 
(setf *Temp* 298) 
(setf *epsilon* 8.854e-12)   ;8.854 pF/m 
(setf *freq_range* 10000) 
(require :foreign) 
(load "./c_code/evaluate.so") 
(ff:def-foreign-call return_objs ((level :int fixnum) 
      (f :foreign-address array)) 
       :returning :int) 
(setf *objs-from-c* (make-array 4 :element-type `double-float)) 
 
 
;;; The following functions perform evaluate 
(defun evaluate-designs (designs level) 
  (cond ((endp designs) nil) 
 (t (format nil "Creating netlist...~%") 
    (create-netlist (add-joints-to-design (car designs))) 
    (format nil "calling c_code...~%") 
    (cond ((zerop (return_objs level *objs-from-c*)) 
    (setf (sc-evaluations (car designs)) *obj-constraints*)) 
   (t (format nil "return from c_code...~%") 
      (let* ((Kxx (aref *objs-from-c* 0)) 
      (Kyy (aref *objs-from-c* 1)) 
      (By (aref *objs-from-c* 2)) 
      (My (aref *objs-from-c* 3)) 
      (electro-params (find-electro-params  
         (sc-embodiments (car designs)) 
         (sc-components (car designs)))) 
      (A_c (car electro-params)) 
      (g0 (cadr electro-params)) 
      (C0 (cond ((zerop g0) 0) 
         (t (/ (* A_c *epsilon*) g0)))) 
      (Sy (calc-sensitivity-y My Kyy C0 g0))) 
        (setf (sc-evaluations (car designs)) 
       (list (calc-b-b-area (car designs)) 
      (/ 1 Sy) 
      ;(calc-a-min By My Sy) 
      (/ 1 Kxx) 
      (/ 1 (calc-a-max Kyy My C0 g0 Sy)) 
      ))))) 
    (evaluate (cdr designs) level)))) 
 
 
(defun calc-b-b-area (design) 
  (do* ((coords nil (mapcar #'eval (fp-coord (car fps)))) 
 (max-x 0 (cond ((and (numberp (car coords)) (> (car coords) max-x))  
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   (car coords)) (t max-x))) 
 (max-y 0 (cond ((and (numberp (cadr coords)) (> (cadr coords) max-y)) 
   (cadr coords)) (t max-y)))  
 (min-x 0 (cond ((and (numberp (car coords)) (< (car coords) min-x)) 
   (car coords)) (t min-x)))  
 (min-y 0 (cond ((and (numberp (cadr coords)) (< (cadr coords) min-y)) 
   (cadr coords)) (t min-y)))  
 (fps (sc-graph design) (cdr fps))) 
      ((endp fps) (* (- max-x min-x) (- max-y min-y))))) 
 
(defun find-electro-params (ebs comps &optional (A_c 0) (g0 0)) 
  (cond ((endp ebs) (list A_c g0)) 
 ((or (equal (car ebs) 'h-electrostatic-gap) 
      (equal (car ebs) 'v-electrostatic-gap)) 
  (list (+ A_c (* 2 2.0e-6 (third (cadar comps)) (fifth (cadar comps)))) 
        (fourth (cadar comps)))) 
 (t (find-electro-params (cdr ebs) (cdr comps) A_c g0)))) 
(defun calc-sensitivity-y  (My Kyy C0 g0)  
  (cond ((zerop g0) (/ 1 (second *obj-constraints*))) 
 (t 
  (/ (* 2 C0 My *V_m*) (* (+ (* 2 C0) *C_para*) Kyy g0))))) 
(defun calc-a-min (By My Sy) 
  (cond ((zerop Sy) (third *obj-constraints*)) 
 (t 
  (sqrt (+ (/ (* *Vn_circuit* *Vn_circuit*) (* Sy Sy))  
    (/ (* 4 *Boltzman_K_b* *Temp* By *freq_range*)  
       (* My My))))))) 
(defun calc-a-max (Kyy My C0 g0 Sy) 
  (cond ((zerop g0) (/ 1 (fourth *obj-constraints*))) 
 (t 
  (let* ((E0 (/ (* C0 *V_m* *V_m*) 2)) 
  (D (expt (- (* E0 g0 g0 g0 (sqrt (* Kyy Kyy Kyy))  
          (sqrt (+ E0 (* g0 g0 Kyy))))  
       (* E0 g0 g0 g0 g0 Kyy Kyy)) (/ 1 3))) 
  (R (sqrt (- (+ 1 (/ (* 2 D) (* Kyy g0 g0))) (/ (* 2 E0) D))))) 
    (cond ((or (= 1 R) (typep R 'complex)) 
    (/ 1 (fourth *obj-constraints*))) 
   (t 
    (abs (/ (* Kyy g0 R (- 1 (/ (* 4 E0) (* Kyy g0 g0 (- 1 (* R R)) 

(- 1 (* R R)))))) 
     My)))))))) 
     
 
 
;;; This function takes the linked list and actuator data and 
;;; creates a netlist of the format recognized by Analogy SABER 
;;; software. 
(defun create-netlist (design) 
This function and the remaining parts of this file, set up the A-Design configurations to 
be used with the external approximation method of Prakash and Cagan and SABER. 
  ) 
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D. SYNOPSIS OF PROGRAM FILES 

CodeGeneral 

• design.lisp 

This is the main file that contains the function, A-Design (), that begins the 

process, and Find-Pareto-designs function that separates designs into Pareto and 

non-pareto populations. 

• create.lisp 

This file contains functions to control the designs as they are being constructed by 

the C-agents and the I-agents. The functions from Section A in this appendix 

Create-and-Repair-Configurations, Create-from, and Modify-designs are 

included in this file. 

• update.lisp 

The updating of configurations and their instantiations is handled by functions in 

this file. The Update-Configuration function with the pseudo-code presented in 

Figure 4.5 is performed by functions in this file. 

• io.lisp 

The input and output functions are all contained in this file. Reading in the catalog 

of components, and writing output files are functions found in this file. The 

functions Write-design-data, and Write-results are found in this file. 
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• functions.lisp 

General functions, used by the process are stored here (e.g. sorting functions, 

random number generators, etc.). The design-is-complete, and choose-agent 

functions are found in this file.  

• magent.lisp 

Because the workings of the Manager-agent are independent of the functional 

representation, the Manager-agent functions are contained in this file in the 

codeGeneral directory. The pseudo-code shown in Figure 6.1 is implemented in 

this file. 

• trend.lisp 

Finding intersections in the detection of TODO and TABOO trends prove to be an 

intricate process. The functions in this file are invoked by the Manager-agent. 

codeEM & codeMEMS 

• cagents.lisp 

The details of the Configuration-agents described in Section 5.3 are included here. 

The pseudo-code from Figure 5.5 is implemented in each C-agent in this file. 

• iagents.lisp 
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Functions describing the Instantiation-agents and their workings are found in this 

file. The functions Instantiate-Configuration and Instantiate-variables are found 

here.  

• fagents.lisp 

Fragmentation-agents and their subroutines and found in this file which are 

invoked by the Modify-designs function.  

 

E. OUTPUT FILES 
Various output files have been created in testing the A-Design implementation. The 

graphs shown throughout the dissertation are the result of output files stored after 

executing the A-Design process. Data on the design process can be extracted from these 

files: iter.out (details the iteration data - how much process has improved, size of 

populations, etc.); pareto.out, good.out, and poor.out (list the members of these 

populations over the iterations); cagents.out, fagents.out, and iagents.out (list 

statistics on the agents as is similarly used by the Manager-agent); and topdesigns.out 

(the details of the top designs at the end of the search process). 

The following are two designs from the topdesigns.out file that are used in this 

dissertataion. The basic form of the design follows the SC structure shown in Figure 4.8. 

topdesigns.out (SC of weighing machine shown in Figure 8.3a) 

FPs: (Elements of these list corresponds to the slots in the FP structure. The first is 
through, the second is across, and so on. Note that the across variable slot has 
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three members. These correspond to across, across-differentiated, and across-
integrated.) 

 ((((BOUND) ((0 0 0)) POWER (TRANS) 
   ((-1 0 0 1) (0 1 0 5) (0 0 -1 0) (0 0 0 1)) BOLT SINK 
   ((4 1) GROUND)) 
  ((BOUND) ((NIL (GOAL-MET BOUND) (GOAL-MET BOUND))) POWER (TRANS) 
   ((-1 0 0 1) (0 1 0 5) (0 0 -1 0) (0 0 0 1)) BOLT SOURCE 
   ((7 0) (6 1) (5 0))) 
  ((BOUND) ((NIL (GOAL-MET BOUND) (GOAL-MET BOUND))) POWER (TRANS) 
   ((-1 0 0 1) (0 1 0 5) (0 0 -1 0) (0 0 0 1)) BOLT SOURCE 
   ((6 0) (5 1) (4 0) (3 0))) 
  ((BOUND) ((NIL (GOAL-MET BOUND) (GOAL-MET BOUND))) POWER (TRANS) 
   ((-1 0 0 1) (0 1 0 5) (0 0 -1 0) (0 0 0 1)) BOLT SINK 
   ((5 1) GROUND) 
  ((BOUND) ((NIL (GOAL-MET BOUND) (GOAL-MET BOUND))) POWER (TRANS) 
   ((-1 0 0 1) (0 1 0 5) (0 0 -1 0) (0 0 0 1)) NIL SOURCE 
   ((3 1) (1 0))) 
  ((BOUND) ((0 0 0)) POWER (ROTAT) 
   ((-1 0 0 1) (0 1 0 5) (0 0 -1 0) (0 0 0 1)) BOLT SINK 
   ((2 1) GROUND)) 
  ((BOUND) ((NIL (GOAL-MET BOUND) (GOAL-MET BOUND))) POWER (ROTAT) 
   ((-1 0 0 1) (0 1 0 5) (0 0 -1 0) (0 0 0 1)) NIL SOURCE 
   ((2 0) (1 1) (0 1))) 
  ((BOUND) ((NIL (GOAL-MET BOUND) (GOAL-MET (0 5)))) POWER (ROTAT) 
   ((-1 0 0 1) (0 1 0 5) (0 0 -1 0) (0 0 0 1)) NIL SINK ((0 0) GOAL)) 
  (((0 297)) ((NIL (GOAL-MET BOUND) (GOAL-MET (0 0)))) POWER (TRANS) 
   ((0 1 0 0) (-1 0 0 0) (0 0 1 0) (0 0 0 1)) NIL SOURCE ((7 1) GOAL))) 
 
EBs: (The order in this list is important to the connection of the configuration.)  
 (DIAL PULLEY BEARING-ROTAT BELT SPRING LEVER1STCLASS SPRING FOOTPAD) 
 
C-agents: (Each C-agent in this list has a direct correspondence with the EBs list 

above. The list of numbers represents the agent’s preference for the terms of the 
evaluation function.) 

((AGENT-TRANS-SINK-PARALLEL-GROUND (0.6 0.1 0.1 0.1 -0.1)) 
  (AGENT-ROTAT-SOURCE-PARALLEL-DANGLE (0.1 0.1 0.6 0.1 -0.1)) 
  (AGENT-ELECT-SOURCE-PARALLEL-GROUND (0.1 0.1 0.6 0.1 -0.1)) 
  (AGENT-TRANS-SINK-SERIES-CONNECT (0.1 0.6 0.1 0.1 -0.1)) 
  (AGENT-ROTAT-SOURCE-PARALLEL-CONNECT (0.1 0.6 0.1 0.1 -0.1)) 
  (AGENT-TRANS-SOURCE-SERIES-DANGLE (0.1 0.1 0.6 0.1 -0.1)) 
  (AGENT-TRANS-SINK-PARALLEL-CONNECT (0.2 0.2 0.2 0.2 -0.2)) 
  (AGENT-ROTAT-SOURCE-PARALLEL-DANGLE (0.1 0.1 0.6 0.1 -0.1))) 
 
Components: (The components that correspond with each of the EBs above.) 
((IMAG-DIAL-1 (0) (1.5 0.01 0.99)) 
  (PULLEY-FBS-A1-11 (0.0127 0.00635 0.00318) 
   (4.47 0.004 0.99 5.08e-5 1.27e-5)) 
  (BEARING-ABS-A2-23 (1.9999999e-4 0.00635 0.015875) (7.21 0.03 0.99)) 
  (BELT-FAM-A1-7 (0.638 0.00318) (3.06 0.009 0.97)) 
  (SPRING-ERS-A1-26 (1874 0.00476 0.0381 7.3700005e-4) 
   (0.93 0.012 0.98)) 
  (IMAG-LEVER1ST-5 (0.001 0.005) (1.2 0.001 0.95)) 
  (SPRING-ERS-A1-7 (2557 0.00317 0.00635 4.0600002e-4) 
   (0.78 0.003 0.98)) 
  (IMAG-FOOTPAD-1 (0) (1.5 0.1 0.99))) 
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I-Agents: (Each I-agent in this list has a direct correspondence with the Components 
list above.)  

 (AGENT-CHEAP-UPPER-MG-LEAST-USED-DATUM 
   AGENT-LIGHT-MIDDLE-MG-LEAST-USED-DATUM 
   AGENT-LIGHT-UPPER-MG-MOST-USED-DATUM 
   AGENT-LIGHT-MIDDLE-MG-LEAST-USED-DATUM 
   AGENT-CHEAP-UPPER-MG-LEAST-USED-DATUM 
   AGENT-LIGHT-UPPER-MG-LEAST-USED-DATUM 
   AGENT-LIGHT-MIDDLE-MG-LEAST-USED-DATUM 
   AGENT-LIGHT-MIDDLE-MG-LEAST-USED-DATUM) 
 
F-agents: (The list of F-agents that have modified design in past iterations.) 
(AGENT-CHEAP-CHEAPER-IN-COMPS) 
 
Evaluations: (The list of attributes determined for this design.) 
(20.650002 0.169 1.441736e-2 2.78708e-3)) 

topdesigns.out (SC of MEMS accelerometer C shown in Figure 8.11) 

FPs:  
((((NIL NIL NIL NIL) 
   ((NIL NIL (GOAL-MET BOUND)) (0 0 0) (NIL NIL (GOAL-MET BOUND)) 
    (0 0 0)) 
   POWER (TRANS-X TRANS-Y ROT-Z ELECT) (4.4999996e-5 1.2799999e-4 0 1) 
   (UP) SOURCE ((2 0))) 
  ((NIL NIL NIL NIL) 
   ((NIL NIL (GOAL-MET BOUND)) (0 0 0) (NIL NIL (GOAL-MET BOUND)) 
    (0 0 0)) 
   POWER (TRANS-X TRANS-Y ROT-Z ELECT) (4.4999996e-5 1.23e-4 0 1) NIL 
   SOURCE ((3 0) (2 1))) 
  ((NIL NIL NIL NIL) ((0 0 0) (0 0 0) (0 0 0) (0 0 0)) POWER 
   (TRANS-X TRANS-Y ROT-Z ELECT) (4.8e-5 1.23e-4 0 1) (SOUTH EAST WEST) 
   SINK ((8 0) GROUND)) 
  ((NIL NIL NIL NIL) 
   ((BOUND NIL (GOAL-MET BOUND)) (0 0 0) (NIL NIL (GOAL-MET BOUND)) 
    (0 0 0)) 
   POWER (TRANS-X TRANS-Y ROT-Z ELECT) (4.8e-5 5.2e-5 0 1) (NORTH WEST) 
   SOURCE ((8 1) (6 0))) 
  ((NIL NIL NIL NIL) ((0 0 0) (0 0 0) (0 0 0) (0 0 0)) POWER 
   (TRANS-X TRANS-Y ROT-Z ELECT) (3.8e-5 5.2e-5 0 1) (EAST) SINK 
   ((7 1) GROUND)) 
  ((NIL NIL NIL NIL) 
   ((BOUND NIL (GOAL-MET BOUND)) (0 0 0) (BOUND NIL (GOAL-MET BOUND)) 
    (0 0 0)) 
   POWER (TRANS-X TRANS-Y ROT-Z ELECT) (4.4999996e-5 5.2e-5 0 1) NIL 
   SOURCE ((7 0) (6 1) (4 0) (3 1))) 
  ((NIL NIL NIL NIL) 
   ((NIL NIL (GOAL-MET BOUND)) (0 0 0) (NIL NIL (GOAL-MET BOUND)) 
    (0 0 0)) 
   POWER (TRANS-X TRANS-Y ROT-Z ELECT) (4.4999996e-5 5.0e-6 0 1) NIL 
   SOURCE ((4 1) (2 3))) 
  ((NIL NIL NIL NIL) 
   ((NIL NIL (GOAL-MET BOUND)) (0 0 0) (NIL NIL (GOAL-MET BOUND)) 
    (0 0 0)) 
   POWER (TRANS-X TRANS-Y ROT-Z ELECT) (6.5e-5 7.9999995e-6 0 1) NIL 
   SOURCE ((1 0) (0 1))) 



 191

  ((NIL NIL NIL NIL) 
   ((NIL NIL (GOAL-MET BOUND)) (0 0 0) (NIL NIL (GOAL-MET BOUND)) 
    (0 0 0)) 
   POWER (TRANS-X TRANS-Y ROT-Z ELECT) (6.5e-5 5.0e-6 0 1) NIL SOURCE 
   ((1 1) (0 3))) 
  ((NIL NIL NIL NIL) 
   ((NIL NIL (GOAL-MET BOUND)) (0 0 0) (NIL NIL (GOAL-MET BOUND)) 
    (0 0 0)) 
   POWER (TRANS-X TRANS-Y ROT-Z ELECT) (5.5e-5 0 0 1) NIL SOURCE 
   ((2 4) (0 2) GOAL)) 
  ((NIL NIL NIL NIL) 
   ((NIL NIL (GOAL-MET BOUND)) (0 0 0) (NIL NIL (GOAL-MET BOUND)) 
    (0 0 0)) 
   POWER (TRANS-X TRANS-Y ROT-Z ELECT) (3.5e-5 0 0 1) NIL SOURCE 
   ((5 0) (2 2))) 
  ((NIL NIL NIL NIL) 
   ((NIL NIL (GOAL-MET BOUND)) (0 0 0) (NIL NIL (GOAL-MET BOUND)) 
    (0 0 0)) 
   POWER (TRANS-X TRANS-Y ROT-Z ELECT) (1.0e-5 0 0 1) NIL SOURCE 
   ((5 1) (0 4))) 
  ((NIL NIL NIL NIL) 
   ((NIL NIL (GOAL-MET (0 0))) (0 0 0) (NIL NIL (GOAL-MET (0 0))) 
    (0 0 0)) 
   POWER (TRANS-X TRANS-Y ROT-Z ELECT) (0 0 0 1) NIL SINK 
   ((0 0) GOAL))) 
 
EBs:  
(MASS V-BEAM H-ELECTROSTATIC-GAP H-BEAM MASS MASS H-BEAM MASS V-BEAM) 
 
C-agents:  
 ((AGENT-SINK-SERIES-CONNECT-1 (0.2 0.2 0.2 0.2 0.2)) 
  (AGENT-SINK-SERIES-CONNECT-4 (0.1 0.1 0.6 0.1 0.1)) 
  (AGENT-SINK-PARALLEL-DANGLE-1 (0.2 0.2 0.2 0.2 0.2)) 
  (AGENT-SINK-SERIES-DANGLE-3 (0.1 0.6 0.1 0.1 0.1)) 
  (AGENT-SINK-SERIES-CONNECT-4 (0.1 0.1 0.6 0.1 0.1)) 
  (AGENT-SINK-SERIES-CONNECT-4 (0.1 0.1 0.6 0.1 0.1)) 
  (AGENT-SINK-SERIES-CONNECT-4 (0.1 0.1 0.6 0.1 0.1)) 
  (AGENT-SOURCE-PARALLEL-GROUND-2 (0.6 0.1 0.1 0.1 0.1)) 
  (AGENT-SINK-SERIES-CONNECT-1 (0.2 0.2 0.2 0.2 0.2))) 
 
Components:  
 ((MASS-10-5 (1.0e-5 5.0e-6)) 
  (V-BEAM-2-17 (1.7e-5 2.0e-6)) 
  (H-ES-GAP-5 (2.0e-6 10.0e-6 4.0e-6 12)) 
  (H-BEAM-3-3 (3.0e-6 3.0e-6)) 
  (MASS-15-25 (1.5e-5 2.5e-5)) 
  (MASS-15-25 (1.5e-5 2.5e-5)) 
  (H-BEAM-3-17 (1.7e-5 3.0e-6)) 
  (MASS-30-7 (3.0e-5 7.0e-6)) 
  (V-BEAM-2-3 (3.0e-6 2.0e-6))) 
 
I-Agents:  
 (AGENT-2-MIDDLE-MG-MOST-USED-DATUM 
  AGENT-3-MIDDLE-MG-MOST-USED-DATUM 
  AGENT-2-MIDDLE-MG-MOST-USED-DATUM 
  AGENT-3-UPPER-MG-MOST-USED-DATUM 
  AGENT-2-MIDDLE-MG-LEAST-USED-DATUM 
  AGENT-3-MIDDLE-MG-LEAST-USED-DATUM 
  AGENT-3-MIDDLE-MG-MOST-USED-DATUM 
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  AGENT-1-MIDDLE-MG-LEAST-USED-DATUM 
  AGENT-3-UPPER-MG-MOST-USED-DATUM) 
 
F-agents:  
NIL 
 
Evaluations:  
(8.32e-9 4679.943142077555d0 1.811013219321773d-5  636.022287028054d0) 
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