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2.5

Human progress is composed on rational and irrational components. Maslow’s

"Hierarchy of Needs’ provide some of the foundations that explain the
mechanism behind human progress, which is rooted to human motivation
- a balancing game of satisfying basic, psychological and higher needs [17].

Evolution of design and landmarks of human progress are portrayed on a
timeline. The urge of satisfying basic needs and fulfilling higher needs rela-
tively unchanged since early ages. However, process/strategies of designing
has continuously evolved parallel with the changes in human motivation.
Today, Contemporary Design embraces a body of collective knowledge and
expertise accumulated since the Prehistoric era. Evolution of design shares
some similar pathways with "Engineering-in time’ discussed by Harms [18].

Natural system embraces all entities that make up the human-made sys-
tem. Design artifacts are initially created within human-made systems
and then becomes part of the natural world. Design ecosystem encom-
passes all multi-dimensional entities that are part of the natural system,
including abstract ones. . . . . . ... ..o

Modern design is a synthesis of multi-disciplinary domains. Various do-
mains interact during product development process. Human-in-the-loop
design framework makes connections with these domains through integrat-
ing engineering design, industrial design and human factors disciplines.
Outer domains show generalized /abstract disciplines that have relatively
loose connections with human-in-the-loop design framework, whereas in-
ner disciplines are more concentrated and reflect direct relations. A robust
human-centered design methodology should consider collective existence
of these multi-disciplinary domains. . . . . . . . . . . .. .. ... ...

An engineering design study demonstrates how multi-disciplinary domains
(Computational Fluid Dynamics, CAD modeling, Occupant packaging and
Virtual Reality) are integrated for a race car cockpit development. Empha-
sis is given to the functional attributes of the design process. Final form is
a synthesis of all functional attributes that make up the end-product. Yet,
form aspects of the end-product have strong connections with the perfor-
mance and/or functionality of the overall system (e.g., aerodynamics of
therace car). . . . . .. ...
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Figure

2.6

2.7

2.8

2.9

2.10

An industrial design concept study shows how abstract ideas are trans-
formed into three-dimensional (3D) models through surface and free-form
modeling. . . . ...

Venn diagram summarizes interacting disciplines within HFE domain. The
main focus of the HFE is design of optimal products and systems. HFE
design content makes connections to engineering and industrial design
through physical and cognitive human factors. . . . . . . .. ... ...

Contribution of design engineers and industrial designers depend on the
context of the design project. Despite the difference, each domain shares
similar ambition and concerns towards human-centered design problems.
The slider represents a virtual fulcrum between form and function aspects
of the product design. Designers should incorporate expertise and tools
from each domain interchangeably. . . . . . . . ... ... ... ....

HFE is often conceived as a method of post-processing ergonomics evalua-
tion. In contrast, HF'E design principles should be concurrently integrated
to earlier design process. Considering HFE principles at later stages of
product design is associated with higher costs of design modification. A
parallel approach enables discoveries of design errors earlier in comparison
to conventional serial design process. . . . . .. ... ... L.

Human aspects of design process is either neglected or omitted. A ro-
bust product design system must be pursued to incorporate human needs,
abilities and limitations systematically. . . . . . . .. .. ... ... ..
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Figure

2.11

2.12

Modern vehicles are designed around the motivation of fuel economy. Gas
mileage depends on the coefficient of drag, which is directly related to the
overall topology /surface geometry of the vehicle. As the vehicles become
more streamlined (lower drag coefficient), cabin space becomes tighter and
confined, which has severe affects on driver’s posture. Drivers often take a
posture where lumbar area is not supported. The gap between lumbar area
and the seat causes chronic pain. Unless bucket seats or lumbar support
systems are provided, drivers take a reclined position. Poor posture results
in high compression forces occur between 4" and 5 lumbar section of
drivers due to awkward (extreme reclining) sitting angles. As the drag
coefficient (Cy) decreases, driver’s posture becomes poorer (high Fr4/15).
This may not be a critical problem on a short distance highway cruising.
However, when the effects of road bumps and longer cruising are combined,
poor posture not only creates discomfort but also results with a prolong
back-pain. In addition, poor posture leads to severe back and neck injury
in case of a traffic accident. Without the presence of a human-centered
systematic design framework, it could be highly infeasible to predict the
connection between equations governing the aerodynamics flow and its
effects on driver safety, comfort and performance. . . . . . .. . . ...

Design process includes trade-off between various design parameters. As
a result, a group of ideas are refined and reduced into best ideas (from
abstraction to concrete). This process can be imagined as a filtration
operation, where conceptual (coarse) ideas are filtered and refined into
implementations (fine). Reaching to a future meta model from idea(s)
today require a systematic filtration process. This can be conceptualized
as a funnel model, which refines best ideas amongst a group of alternatives,
systematically. . . . . .. ..o
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Figure

3.1

3.2

3.3

DHM includes visualizations of the human with the mathematics and sci-
ence in the background. This figure shows identical manikins with sur-
face and skeletal model separately. Surface human model includes overall
topology that represents body sections with realistic rendering. Skele-
tal human model shows musculoskeletal relations, kinematics properties,
physiological attributes, and embedded equations thats run biomechanics
calculations. Analysis modules can include force and moment distributions
associated with upper and lower limbs, which are linked to anthropometric
libraries. Kinematics related data can either retrieved from pre-recorded
motion data or directly obtained from a motion capture system. Pop-up
window on the right demonstrates forces and moments associated with a
generic lifting task. A 10kg virtual vector load is assigned palm centers
of each hand. Analysis output shows moment and force distributions on
the lower 4 and 5™ section of the lumbar section (L4/L5). Analysis
incorporates applied load, anthropometric attributes and associated pos-
ture. The capability of blending mathematics/science with visual aspects
of human body creates abundance of opportunities for designers to gener-
ate evaluation techniques that can go beyond the traditional coverage of
human-centered design strategies. . . . . . . . . ... ... ...

DHM can be used not only as an ergonomics evaluation tool but also a
method to embrace form and function during product development. A
hospital code cart design study shows how biomechanics assessment pro-
cess can be integrated to test product design alternatives (Current cart
model vs. Improved cart model). This approach integrates form aspects
of industrial design with functional aspects of engineering design early in
the product development phase. Financial costs and excess time required
for physical prototyping can be reduced. This approach allows generating
ergonomics analysis in a fraction of less time. . . . . . . . .. ... ..

DHM can reduce cost associated with physical prototyping or mockups
[101]. In addition, identifying problems of human-product interactions
early in design phase can reduce additional costs arises from product in-
compatibility. If errors reduced early in the design phase, cost associated
to product modifications at later phases can be further reduced. Thus,
DHM provides additional cost savings on top of cost savings established
by CAE strategies. Solid red arrow indicates estimated cost savings when
concurrent engineering tools (e.g., CAE) used without DHM. Dashed red
arrow shows further savings when DHM is integrated to concurrent design
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Figure

3.4

3.5

3.6

3.7

Virtual Build design methodology integrates DHM, MoCap and VE for
ergonomics evaluation of products [112]. Similar to VB, various traditional
design methodologies are often used as ergonomics evaluation methods.
This approach (post-design ergonomics assessment) is associated with high
cost and extended time-to-market when design modifications are addressed
at later stages of product development. . . . . . . .. ... .. .. ...

A macro-level view of the human-in-the-loop design. The framework inte-
grates early stages of design framework with modeling and analysis phases.

In conventional design strategies, HFE design principles are often applied
sequentially at later stages of product development as a post-evaluation
method. This approach is associated with high costs and excessive time-to-
market. In contrast, human-in-the-loop design framework offers a parallel
approach, which considers human-element early in product development
phase. Within human-in-the-loop design framework, conceptual design
ideas iteratively modified through DHM and CAE in a parallel sequence -
before ever getting into prototyping phase. This way, human needs, abil-
ities and limitations are considered early in the design process. Design
errors or human-product incompatibilities can be captured before proto-
typing begins. . . . . ... Lo

Human-in-the-loop framework expands through modular integration of
multi-disciplinary disciplines. A design methodology should not solely
consider technical aspects of design process. Design embraces various
domains, disciplines and methodologies. This multi-disciplinary nature
brings a holistic approach into the product design process, which builds
connections with a wide range of professions from marketing, policy-making,
engineering to business. Each entity that represents a specific discipline
is integrated into the framework through different mechanisms. Techni-
cal entities (engineering, technology) can be integrated via multi-physics
simulation applications. DHM can work back-and-forth with various CAE
packages, where it can share data with multi-physics applications such as
Finite Element Analysis, Fluid Dynamics, Photo-realistic rendering. Non-
technical entities can be integrated through user-questionnaires (market-
ing), quality standards (e.g., ISO), policies (policy-making), and photo-
realistic rendering (arts). . . . . . . ... ..o
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technologies in a modular fashion. Each toolkit can be added/plugged to
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Image shows extended overview of the human-in-the-loop design frame-
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ing human needs, abilities and limitations at focus throughout the design
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The need for full-scale modeling or full-simulation in a design project
is shown in a continuum. Depending on the complexities of human-
product/process interactions, DHM simulations can either be used as
stand-alone (simulation) or linked to data capturing tools (prototyping)
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ergonomics analysis were conducted to evaluate human-product interac-
tions. Manikins that represented different percentile of populations were
tested for their capabilities in pushing-pulling the cart with various load-
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ABSTRACT

Demirel, Hasan Onan Ph.D., Purdue University, November 2015. Modular Human-

in-the-loop Design Framework Based on Human Factors. Major Professor: Vincent
G. Dufty.

Human-in-the-loop design framework introduced in this dissertation utilizes Digi-
tal Human Modeling (DHM) to incorporate Human Factors Engineering (HFE) design
principles early in design process. It embodies scientific methods (e.g., mathematics)
and artistic approaches (e.g., visualization) to assess human well-being and overall
system performance. This framework focuses not only on ergonomics assessments
but also actual design process including, but not limited to, concept development,
structural integrity and digital prototyping. It addresses to three major limitations
found in HFE literature and practices:

1. Poor HFE communication between product designers
2. Poor HFE practice inside product design cycle

3. Lack of HFE awareness in systems approach

The efficacy of the framework is tested through a design study, where an au-
tomobile pillar design with see-through gaps was evaluated for its potential in re-
ducing look-but-failed-to-see obscuration errors. Two human-subject experiments
and a simulation experiment were conducted to examine the fidelity and value of
this framework. A blend of statistical (ANOVA/MANOVA), and visual (heat-maps)
studies were performed to analyze eye-tracking data. Statistical results obtained from
subjects’ feedback (questionnaires, Cooper-Harper test) and structural data (finite el-
ement analysis) were combined with eye-tracking data analysis. Results show that

human-in-the-loop design framework: 1. demonstrates high test-retest reliability, 2.
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has potential to overcome HFE design problems associated to conventional design
methodologies, and 3. can detect safety and reliability related problems early in de-
sign process. Key findings about the design study include: 1. proposed pillar model
provides improved visual field to drivers and 2. subjects rated visibility, safety and
aesthetics related design attributes of proposed pillar model higher than current pillar
models.

Design is an integrative mechanism of scientific methods and artistic approaches,
which has been the major driver of human prosperity. Everything is done by, for,
or against humans through the inherent activity of design. Thus, considering hu-
man needs, abilities and limitations in design process is inevitable. However, this is
either neglected or not equally considered when compared to other design contribu-
tors. Human-in-the-loop design framework germinates a hybrid design environment
to integrate form (industrial design) and functional (engineering design) requirements
of product development - from conception to creation - with human element at the

focus.



1. INTRODUCTION

Design is considered as one of the central activities in engineering [1]. It is often
associated with creation and making [2,3]. It is a primary human endeavor, and
inextricably linked to human progress. Design occupies our lives, from dawn to dusk,
everything is designed by humans - intentionally or not [4,5]. Today, sustaining a
modern society would be unimaginable without design [6,7].

This thesis is based upon the historical foundations that design is one of the most
important factors that not only fuels but also drives the human progress. Human
element is at the center of all design activities. However modern design methods have
shortcomings in embodying human needs, abilities and limitations into design pro-
cess [8-13]. With the ever increasing complexities associated to designing products,
processes and environments, consideration of human element early in design process
becomes more prominent.

Human-in-the-loop design framework described in this thesis provides a systematic
approach on how to integrate human element early into design process. It encapsu-
lates scientific (engineering design), artistic (industrial design) and human-centered
(human factors) nature of design process. In contrast to human-centered design guide-
lines, human-in-the-loop framework provides actual design platform, which blends
engineering design and industrial design methods/tools together. It focuses on multi-
physics simulations to incorporate human needs, abilities and limitations through
Digital Human Modeling approach. The main goal is more to motivate and inspire
than exhaustively cover every research article on human-centered design process. To
that end, the primary emphasis is to explain the general principles of human-in-the-
loop design framework, and demonstrate its theoretical and practical contributions

on how to integrate human aspects early into the design process.



This chapter will start with a brief review on historical foundations and importance
of design in human progress. Then, a detailed literature review will be provided about
what human-centered design is - including human factors, engineering, and industrial
design aspects associated with product development process. Finally, a section on
shortcomings in human factors design process will be explored. The motivation is
to inspire the field as a whole, not just from a sense of scientific curiosity, but from
an engineering excitement on how to transfer findings of the experiments to practi-
cal designs. Human-in-the-loop design framework brings substantial theoretical and
practical contributions to scientific community, which, eventually, could contribute to

human well-being and prosperity.



2. LITERATURE REVIEW
2.1 Historical Foundations of Design in Human Progress

Life is a progress. The urge towards attaining well-being and prosperity is in-
evitable. Historical landmarks of human progress show that the central tendency of
civilizations is primarily not a statement of being, but evolved around the quest of
doing (making and creation) [1,14]. There is a tremendous value proposition given to-
wards making or creating something new that brings potential benefit to society [15].
That something new could be a product and a process (engineering), an artistic work
(arts), a body of knowledge (science) or combination of both [16].

The tendency of progress through making something new is different than the
philosophical or intellectual pursuit of existence. It excludes theological or spiritual
search of finding meaning of life in general. It is about the aggregated will, which
instinctively pushed societies forward, towards improvement in the human condition.
That is, humans can become better in terms of quality of life through progression. One
other alternative to progression is stagnation, which eventually leads to extinction.
Whether it is explained best by scientific approaches (e.g., theory of evolution) or
perceived within system of beliefs (e.g., optimism), the well-being of humans as well
as the prosperity of humankind depends on progression.

Part of human progress is very systematic and rational. Amongst all the drivers
of human progress, scientific methods (through engineering) has been the most in-
fluential on creation of modern societies. Today, human progress highly depends on
how we utilize body of techniques to investigate a phenomenon, acquire knowledge,
falsify and integrate previous knowledge, then transferring knowledge to set of prob-
lem solving methodologies, products, environments or processes. In contrary, a part

of the human progress is unstructured and ambiguous, which is rooted to attributes
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Figure 2.1. Human progress is composed on rational and irrational
components. Maslow’s "Hierarchy of Needs’ provide some of the foun-
dations that explain the mechanism behind human progress, which is
rooted to human motivation - a balancing game of satisfying basic,
psychological and higher needs [17].

of human psychology such as existence, happiness, belongingness (Figure 2.1). Ar-
chaeological studies uncovered that early people designed primitive homes (caves)
as a method of protection and shelter [2,3]. They also designed wall paintings and
various ornaments to communicate and make their shelters more comfortable, where
they feel belonged and content. Even at the early ages, design activities showed a
tendency of blending rational and irrational motivations to satisfy human needs. As
the time progresses, from prehistoric ages until today, people reflect on new ideas

and alter their process of making. Yet, the motivation of satisfying basic needs and



fulfilling higher needs still hold paramount. Given the same motivation exists today,
people design structural members of high-rise buildings and decorate interiors with
wall paintings. The inner-dynamics of human progress has been relatively unchanged,
but the processes associated with designing evolves dynamically [4]. Thus, the mo-
tivation of blending rational (e.g., basic needs - protection) and unstructured (e.g.,
higher needs - peace) needs is an inseparable part of human progress, which also con-
stitutes the driving force behind designing. Maslow’s 'Hierarchy of Needs’ perhaps
provides one of the most intuitive approaches in portraying the mechanism behind
human progress, which is deeply rooted to the theory of human motivation (Figure
2.1). Maslow’s hypothesis suggests that once basic needs of survival (safety, food,
shelter) are satisfied, the mechanism shifts towards more intrinsic and higher level of
needs such as belonging, esteem, and self-actualization [17]. Thus, human motivation
towards progress is an amalgamation of basic and higher level of needs, which are
synthesized within our physiological and cognitive worlds, and bounded by the laws
of nature.

The art of synthesizing this collective knowledge and expertise to satisfy our basic
to higher needs define the aptitude of human progress. Thus, this art is design,
which is inextricably link to making and creating [2,3]. It is a ubiquitous character
of every human [3]. From a cook preparing a fine tasting dressing, to an engineer
manufacturing a high temperature cooking utensil - all are part of designing. Design
controls our whole life, affects everybody, at all times, perpetually [19]. We live in
it. Our efficiency at work, comfort at living spaces, speed of traveling, chance of
survival in a surgery, our prosperity depends on it. Entire human history is built on
the process of ’designing’, not only tools and shelter for survival but artifacts: from
the most tangible items - compasses, refrigerators, airplanes - to the most abstract
forms - plans, problem-solving, hypotheses [20].

In summary, design is a reflection to human motivation. A greater part of human
progress depends on the activity of design (Figure 2.2). Throughout the history,

humans, both as individuals and societies, have made progress through design [18].
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Figure 2.2. Evolution of design and landmarks of human progress
are portrayed on a timeline. The urge of satisfying basic needs and
fulfilling higher needs relatively unchanged since early ages. However,
process/strategies of designing has continuously evolved parallel with
the changes in human motivation. Today, Contemporary Design em-
braces a body of collective knowledge and expertise accumulated since
the Prehistoric era. Evolution of design shares some similar pathways
with ’Engineering-in time’ discussed by Harms [18].

Results have not always been smooth or positive, and the path often been painful
and inadvertent. Progress is not autonomous and does not guarantee to a direct
improvement. However, aside all the struggles, widely accepted improvements have
attained from increasing life expectancy to faster and safer transportation. The good
news is that scientific and engineering knowledge is in a geometric growth. With
the turn of the millennium, the developed world has seen the healthiest, safest and
most productive civilization in history [21]. Unimagined breakthroughs attained in
a large measure to scientific discoveries and advancements in engineering. Now, the
inconvenient truth is that the world becomes more connected, crowded, and resource

limited than ever - which challenges the efficacy of current design methodologies.



2.2 On Holism, Emergence and Modularity

The fundamental complexity associated with human-centered design arises from
the emergent and holistic nature of human progression. Humans make connections
with every facet of life. The vast array of entities that has relations with human pro-
gression is ultimately composed of natural and human-made systems. Human-made
systems are those in which humans created through synthesis of resources found in
nature. Natural systems are those that existed by natural processes. All human-made
systems becomes a part of the natural world once they are brought into existence.
Thereby, human progression is perpetually evolving within a continuously expanding
ecosystem. This ecosystem embraces all entities (natural and human-made) associ-
ated with human progression, which are embedded in a complex hierarchy (Figure
2.3). The ecosystem is composed of smaller sub-systems that are modularly inte-
grated. Human progression takes a place within this complex coupled ecosystem. To
that end, design is about wholeness. It works in harmony with entities of the ecosys-
tem, embraces a wide range of domains to develop solutions (e.g., methodologies,
products, processes) that serve benefit to people. In the context of design process,
these entities can range from resources (e.g., raw material) and tools (e.g., computers,
machines) to information (e.g., engineering requirements), stakeholders (e.g., users),
and policies (e.g., environmental policies). Each entity exists independently, mod-
ularly interlinked, and collectively makes up the ecosystem. Due to its complexity
and inseparable nature, we assign random properties and explain the ecosystem in
statistical terms. Thus, the modular system can not be entirely simplified or fully-
understood but reasonably structured and predicted.

For traditional craft-based societies, designing was not different than making.
Basic needs were often satisfied through unstructured processes that did not require
the consideration of interactions between multi-dimensional entities. Psychological
and higher needs were only an interest of significantly fortunate classes (e.g., royal-

ties, clerics), but a common concern of society. Thus, designing process was highly
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Figure 2.3. Natural system embraces all entities that make up the
human-made system. Design artifacts are initially created within
human-made systems and then becomes part of the natural world.
Design ecosystem encompasses all multi-dimensional entities that are
part of the natural system, including abstract ones.

specific across a single or few entities, which only possessed small number of inter-
actions with other entities. These interactions were relatively easy to observe and
their realization did not necessitate any scientific method (e.g., experimentation and
probabilistic theory). Thus, design process did not require any thorough planning,
conception and/or modeling. Any tool or equipment that gets the job done in favor
of the user could fulfill the design objectives. The process of making a clay pottery
was solely based on the skills and expertise of a single craftsman, who often did
not work in strict timelines of delivery nor concerned about the product’s life-cycle.
The craftsman did not worry about socio-ethical (e.g., environmental effects) impli-
cations of his end-product. Throughout the human progress, motives of human needs
have shifted from modest propositions (basic needs) to multi-dimensional complex

schemes (higher needs). In modern industrial societies, activities of designing become



a balancing game of decision making under uncertainty. Today, designing an aircraft
is utterly different than a craftsman making a clay pottery. Entire design process,
from raw material selection to recycling, top-level goals as well as component level
attributes, must be considered before committing to production. Modern design in-
volves significant intellectual and technical preparation, which incorporates planning,
conception and realization of various entities from resources (e.g., humans, finance,
time, raw material) and technical knowledge (e.g., economics, engineering, logistics)
to environmental policies and marketing [22-25]. Today, designers need take a holis-
tic approach and consider of a wide range of entities that independently exist, and
must work in harmony [26,27]. Complex design projects often require a good blend
of scientific knowledge (e.g., probabilistic theory) and artistic skills (e.g., aesthet-
ics), as well as consideration of limited resources (finance, time, materials) with their
socio-ethical implications (e.g., sustainability).

In summary, managing such a complex embedded ecosystem require an inclusive
approach with the capability of concurrently monitoring what goes in and out of the
system. Without considering holistic, emergent and modular characteristics of this

complex ecosystem, design solutions are inadequately realized.

2.3 What is Design?

Design is neither a pure science, nor a true representative of arts, perhaps combi-
nation of both or a synthesis of scientific and artistic approaches [2,3]. Many authors
have tried to explain what design is. Often, efforts failed to provide a well-rounded
definition. In fact, this is all expected because design involves both objective and
subjective pursuits towards realization of ideas into tangible (e.g., products, environ-
ments) and/or intangible (e.g., problem solving methodologies, plans) entities. It is
a six letter word with so many meanings, which explains why looking for a unique
definition may not be helpful to grasp what design is - yet, could be impossible to

state what it is not. Whether it is practiced by a craftsman or an engineer, design
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is ubiquitous to everyone. It is fueled by the human motivation, executed by hu-
mans and serves for humanity - both the designer and the user are humans. This
multifaceted nature requires not only taking functional (e.g, sciences) and form (e.g.
arts) aspects into account, but also focusing on the human well-being and the overall
system performance [28].

Design is human centered (e.g., physiology and cognition) and addresses to our
multi-dimensional level of needs (Maslow’s Hierarchy of Needs). It is composed of
structured (e.g., scientific - power output of an engine) and unmethodical (e.g., artistic
- styling of a vehicle) worlds. It defines parameters of economical growth (e.g., creativ-
ity and innovation), creates new cultures (e.g., social media), connects resources (e.g.,
raw material), translates ideas to products (e.g., cars, airplanes), improves well-being
of humans (e.g., assistive technologies), and provides solutions to grand challenges
(e.g., sustainability) [29-32].

Design can be thought as an integrative mechanism of scientific methods and artis-
tic approaches, which utilizes combination of technical, cognitive and social processes
to respond our problems [2,3]. It is a quest of searching for the most creative and
exclusive solutions to a problem, and make sure that each solution satisfies boundary
requirements to make it safe, useful, practical, and reliable [33].

Design is a goal directed reasoning, which can be methodologically schemed, but
cannot be universally formulated [34]. It is a melting pot of objective and subjective
pursuits. Successful designs need to be not only functional, reliable and safe but
also creative, novel and fulfilling. This perspective makes design a holistic field,
where one requires to gather complex bodies of knowledge to solve a specific problem
[6,35,36]. Thus, curiosity and skillset of a versatile person (Renassaince man or
polymath) is appreciated within design process. This is often correlated to a person
who possesses a profound knowledge and expertise in at least few or more fields
related to design (e.g., engineering, arts, biomechanics, architecture). Individuals
who can demonstrate technical competence of an engineer with aesthetics concerns

of an artist are often referred as good designers. Notable names such as Shen Kuo,



11

Leonardo da Vinci, Mimar Sinan, Nasuh Al-Matraki, Isambard Kingdom Brunel,
Benjamin Franklin, Nikola Tesla, James Dyson and Jonathan Ive are some of the
pioneers and known figures who drew technical expertise in multiple fields with keen
interest in creating/making artifacts.

Design in 21 century is a different phenomenon than what polymaths were in-
volved in past centuries. Today, designers work in coherence with multi-dimensional
sectors with strict turnover times, high quality expectations and financial constraints.
Solution space is designated by the effective understanding and utilization of not only
scientific and artistic expertise but also technical communication, resource manage-
ment, economics and environmental policies. Designing better products heavily rely
on systematic realization of knowledge and collective expertise of design teams, rather
than based on individual skills or talent of a virtuous (polymath). However, expertise
in multiple fields are still essential character what makes a good designer. Holistic
perspective still has paramount importance and only gained more significance.

Since design covers such a vast array of multi-disciplinary domains, combining
every entity under a single framework is relatively out of reality. However, one can
focus on the inner domains that have direct interactions with design process, and
expands as the design scope enlarges. This dissertation focuses on design in the more
limited sense - designing human-centered products. Figure 2.4 demonstrates some
of the multi-disciplinary domains that have loose and direct relations with human-
centered design.

In this dissertation, the exposition of design rationale is split into a troika struc-
ture: Engineering Design, Industrial Design and Human Factors Engineering. The
unique integration of these three domains contribute to development of a new design

methodology called "human-in-the-loop design framework’.
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Figure 2.4. Modern design is a synthesis of multi-disciplinary do-
mains. Various domains interact during product development pro-
cess. Human-in-the-loop design framework makes connections with
these domains through integrating engineering design, industrial de-
sign and human factors disciplines. Outer domains show general-
ized /abstract disciplines that have relatively loose connections with
human-in-the-loop design framework, whereas inner disciplines are
more concentrated and reflect direct relations. A robust human-
centered design methodology should consider collective existence of
these multi-disciplinary domains.

2.3.1 Engineering design

Design activities in the field of engineering is mostly regarded as the analytic

processes (mental work) [37,38]. It is a game of decision making and optimization,
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where engineers contemplate on what should be built and which strategies should
be sought among several alternatives. The goal is to satisfy customer needs through
well-directed engineering requirements within a resource limited environment. It is a
collective envelope of planning, modeling, analysis and manufacturing to determine
the final form given the functions defined by stakeholders [28,39]. In engineering
design domain, emphasis is given to the functionality of products. Functions are often
defined by technical, economic, safety, social, environmental or regulatory constraints,
which shape the boundaries of the design process [40].

Drafting and sketching are often referred as standard tools of engineering design
process. Engineers use drafting techniques for generating concepts and communicat-
ing ideas. However, design work in engineering discipline is heavily based on mental
work [4,41]. Although drafts are important part of the design practice, they are not
the end-product of engineering design, rather tools for generating the intended design
tasks. Engineering design uses a structured methodology, which can be iteratively
modified, systematically improved and replicated with precision. Modeling and anal-
ysis activities dominate engineering design process [42]. Instead of an artist’s or a
craftsman’s intuitive approach, scientific methods rely on the investigation of potential
paths for error and failures before making actual products. Numerous what-if scenar-
ios related to safety, structural integrity, comfort and cost of products are assessed
through physical mockups or digital prototypes. Often, cost, quality and time to mar-
ket are the most common measures of an effective design. These multi-disciplinary
measures require a systematic control of the design interventions from conception to
recycle [39,43].

In modern engineering design applications concurrent approach dominates con-
ventional practices. Digital design software are utilized as common components of
engineering design process. Computer Aided Design (CAD) tools form the backbone
of design process (Figure 2.5). There are numerous digital methods (e.g., Product
Life-cycle Management) provide systems approach on product design from concep-

tion to recycling. Scope of such tools differ depending on the nature of design (e.g.,
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Figure 2.5. An engineering design study demonstrates how multi-
disciplinary domains (Computational Fluid Dynamics, CAD model-
ing, Occupant packaging and Virtual Reality) are integrated for a
race car cockpit development. Emphasis is given to the functional
attributes of the design process. Final form is a synthesis of all func-
tional attributes that make up the end-product. Yet, form aspects of
the end-product have strong connections with the performance and/or
functionality of the overall system (e.g., aerodynamics of the race car).

apparel vs. aerospace design), the size of the project (e.g., coffee maker vs. airplane)
and stakeholders (e.g., small firm vs. large company). Systematic design procedures
increase the likelihood of reaching rational solutions through the optimization of var-
ious parameters that contribute to design process.

In summary, engineering design use scientific principles, tools and technology to

create products in the definition of structure, machine or system to perform opera-
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tions safely with minimum resources and maximum efficiency [44,45]. It focuses on
generating final form based on functions driven by customer needs and engineering

requirements.

2.3.2 Industrial design

Industrial design is mostly associated with artistic and creative side of the design
process. It provides benefits to users in terms of product aesthetics and ergonomics.
Industrial design is an important component of value-added process. It primarily
affects the uniqueness (product differentiation) of the product [46-48]. The degree of
uniqueness often arises exclusively from the appearance (form/shape/topology). Di-
mensions, proportions, flow and geometry exclusively reflect visual cues of a product,
which has direct interactions with how a product is perceived by customers [6,49-51].
Industrial designers require a sound technical understanding of materials, manufactur-
ing processes and user needs. Industrial design process heavily relies on the subjective
judgment of individuals to generate creative solutions [52].

A good industrial design process improves product appeal and customer satisfac-
tion through adding desirable features, minimizing ergonomics problems and provid-
ing higher usability outcomes (better human-product interactions) [53]. These bene-
fits not only affect the market share but also creates a consistency with the corporate
identity [54]. Within industrial design domain, emphasis is given to form aspects of
products. Often the most influential factor that attracts customers to a product is
aesthetics, which is a collective body of form attributes such as: topology, geometry,
color, shape, textures, and dimensions (Figure 2.6). Together, these qualities cre-
ate perception of appreciation or criticism. Customers are inclined to products that
are functionally sound and aesthetically pleasing. Aesthetics attributes can generate
emotional and logical satisfaction (or repulsion). Emotional qualities are composed
of subjective attributes of ’likes” and ’dislikes’, which are closely related to enjoyment

or appreciation. Similarly, features that do not play along with customers’ subjective
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perception may create repulsion [33]. Logical qualities are often related to universal
perception, which are rooted deeply to cultural or learned behaviors. A red sports

car often evokes perception of speed. Rounded shapes reflect dynamism and flow.
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At low speeds, Nitro Solaris's unique jet chamber is powered solely by nano-crystal solar
cells When high speeds are needed, it extracts nitrogen from air through nitro-electrolysis
system. Extracted nitrogen runs the scram jet. Thanks to its silent scram jet technology and
3D-vector-thrust capability, Nitro Solaris offers a comfortable journey at extreme speeds.

Figure 2.6. An industrial design concept study shows how abstract
ideas are transformed into three-dimensional (3D) models through
surface and free-form modeling.

Higher quality of a product also depends on how industrial design practice is
represented within the product development process [50,51,55-58]. Today, with the
common use of CAD software, industrial design aspects of products can be integrated
directly into concept development phase. Designers can generate surface models and
three-dimensional representations of products on a computer environment and rapidly

generate design alternatives. A typical concept product development process includes
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investigation of customer needs, conceptualization, refinement of concepts, digital
prototyping, and finally integration to engineering/manufacturing. Before concept
models are integrated to engineering/manufacturing, a great deal of time and hu-
man resources are dedicated to prototyping phase. Prototyping in the context of
industrial design assists designers to discover the perception of actual dimensions and
hidden ergonomics aspects of human-product interactions. Today, some of the pro-
totyping is done on computers, which eliminates expenses associated with physical
prototyping. Even though digital tools dominate design process, hand drawings (e.g.,
quick sketches) and physical prototyping (e.g., clay modeling) are still required and
practiced in various industrial design applications.

In summary, industrial design is a creative pursuit on aesthetics and ergonomics
[59]. Form, proportion, style, composition, balance and harmony define visual appear-
ance of a product. Ease-of-use, positive emotions and safety are vital components of
industrial design practices. Together, they play a major role in overall product quality

and market success.

2.3.3 Human factors engineering

Human Factors Engineering (HFE) is a multi-disciplinary domain with a broad
scope and wide range of applications. It is the primary discipline that consider human
element in engineering systems. HF'E contemplates on human interactions with other
humans, artifacts and the environments [60]. The discipline is different than most
of the human-centered scientific disciplines (e.g., anthropology, cognitive sciences,
psychology...etc.), which often focuses on human physiology and cognition. Purpose
of these disciplines are to understand and model human behavior. HFE utilizes the
knowledge gained from these disciplines to design and evaluate products, services,
tasks, environments and systems. Therefore, HFE is both a theoretical and an applied
discipline, and mostly associated with engineering and industrial design domains due

to its design emphasis [61-66]. Despite the historical differences in the context and
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application areas, "Human Factors Engineering’ and 'Ergonomics’ often reflect a very
similar subject matter and used without distinction [44,67).

The main focus of HFE is design of optimal products and systems [68]. This
involves developing both research and application framework to build a knowledge
base about human needs, abilities and limitations, then apply this knowledge to the
design of human-machine systems that are safe to operate and comfortable to use [69].
In the context of HFE design, compatibility between human and artifact defines the
functional requirements. HFE design principles play a major role in mapping these
functional requirements to overall system requirements (design constraints, cost, time,
safety).

HFE provides opportunities for multi-disciplinary collaboration with other dis-
ciplines (e.g., engineering, industrial design). It gathers data from sciences, arts,
technology and biomechanics to provide design solutions to problems relating to man
and the machine [70, 71].

In summary, HFE has direct affects on well-being and quality of life [12,68,70,72,
73]. Within the design context, improving human well-being and quality of life are
usually achieved by reducing hazard, discomfort and fatigue while maximizing utility,
usability, safety, etc. of systems and/or products, which all share a medium with
humans [44,67]. Today, HFE theory and practice not only require to include human
physiology and cognition, but also embrace design parameters such as functionality,
form, cost, time, and regulations. This extends the scope of HFE from a contemporary
design approach to a more hybrid form of a design, which requires a holistic coverage
of numerous design entities (Figure 2.7). In this context, the very top-level goals are
to increase human well-being and quality of life by optimizing interactions between

the human and the artifacts.
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Figure 2.7. Venn diagram summarizes interacting disciplines within
HFE domain. The main focus of the HFE is design of optimal prod-
ucts and systems. HFE design content makes connections to engi-
neering and industrial design through physical and cognitive human
factors.

2.4 Shortcomings in Design from Human Factors Stand Point

Over the years, global marketing competition, range of technologies and sophis-
tication of products increased considerably. In parallel to these changes, customers
are inclined to an innovation driven purchasing perspective. Today, products that
go into market are expected to gather a good blend of appealing form and robust
functionality with ease of use, cost effective maintenance, high level of safety and
comfort [74]. These design attributes are all correlated with human needs, abilities

and limitations. However, due to complexities and variations of the human element,
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additional complications arise in the design process. To that end, understanding the
actual human needs, abilities and limitations are an essential component of the prod-
uct design practice, which plays a crucial role with other success indicators such as
time to market, cost reductions, safety, and comfort/usability [74-77]. Designers are
known for their ambition to consider of human element during design process. How-
ever, academic and practical evidence shows that human factors of product design
is either neglected or omitted during design process [8,10,11,68,78,79]. In contrast,
consideration of human element must be a top priority. Ignoring human aspects of
design brings costly human error and poor performance. As means of providing a
summary of HFE related shortcomings, fundamental problems are broken-down into

three sub-sections, where each sub-section addresses a specific HFE related problem.

2.4.1 Poor human factors communication between product designers

The needs, abilities and limitations of humans may carry some rational (objec-
tive) and irrational (subjective) attributes depending on the product of interest [78].
Therefore, design engineers and industrial designers need to communicate within an
integrated medium. Both disciplines are highly concerned about human element when
it comes to human-centered product design [33,80,81]. However, due to differences in
curriculum, social norms and field practice, a seamless integration is missing. Artistic
judgment of industrial designers and/or structural approach of design engineers are
either missing or dominating each other in product design process [52,67,82].

There is a need of a collective effort from both sides, which directs technical,
cognitive and social expertise to address challenging design problems [65,83]. HFE
provides a common ground for both disciplines [6,33]. Engineering and industrial
design focus on the human element with a mutual interest but within a compartmen-
talized environment. Each domain has its own field of interest in safety, reliability
and usability attributes of designs process [30]. However, there is a gap exist be-

tween two worlds - even though human element is a common interest. Engineering
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Figure 2.8. Contribution of design engineers and industrial designers
depend on the context of the design project. Despite the difference,
each domain shares similar ambition and concerns towards human-
centered design problems. The slider represents a virtual fulcrum
between form and function aspects of the product design. Designers
should incorporate expertise and tools from each domain interchange-
ably.

and industrial design professionals must work in harmony to address human needs,
abilities and limitations in their product design practices. This approach assures a
holistic and well-rounded design coverage, which allows consideration of ergonomics
principles early in design process [84]. It has potential to increase the successful syn-
thesis of form and function while making connections to other design contributors

(e.g., management, manufacturing) (Figure 2.8).

2.4.2 Inadequate human factors practice in product design process

Studies and expertise show that good ergonomic practice is important for an

effective and a safe working environment. Poor ergonomic practice can result in not
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only physical injuries but also significant financial and reputation losses. However,
the literature review reveals that most of the designers do not regard HFE principals
during design of products [67,68,74,75]. Often, designers consider HFE principles
at late stages of product design as a post-evaluation method (Figure 2.9). Also,
not enough fundamental interest is paid to HFE principles comparing to mechanical
engineering or software programming [77,85]. However, if designers employ a better
design practice through HFE and follow a human-centered design approach, failures

due to poor design practice would decrease [68,77,85].
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Figure 2.9. HFE is often conceived as a method of post-processing
ergonomics evaluation. In contrast, HFE design principles should be
concurrently integrated to earlier design process. Considering HFE
principles at later stages of product design is associated with higher
costs of design modification. A parallel approach enables discoveries
of design errors earlier in comparison to conventional serial design
process.
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Studies show that only two percent of decisions taken during design process follow
a systematic decision making, and the rest 98% were decisions based on past experi-
ence and intuition. This evidence points out that most of the time designers follow a
case-based trial-and-error procedure. They work with unmethodically driven design
ideas, and then see if they work for a specific design problem [44,67]. Later, they make
slight design changes and evaluate results to see any progress is made. During this
associative and negotiating cognitive work, human needs, abilities and limitations are
sometimes omitted or not get sufficient attention. The nature of subjective decision
making do not allow a systematic control of how decision will affect design process
(e.g., manufacturability), satisfaction of users (e.g., comfort, safety) and profitability
(e.g., cost, recycling).

Although, design characteristics regarding human element are not easy to classi-
fied universally, it is still possible to put many human aspects of design attributes
(comfort, fatigue, vision, etc.) into a much systematic and structured order. This
may eliminate some of the irrational /erroneous decisions taken in conceptual design

phase.

2.4.3 Lack of human factors awareness in systems engineering

Systems Engineering (SE) is a fairly new discipline comparing to other tradi-
tional engineering disciplines such as civil and mechanical engineering. Therefore,
the role and the practice of HFE (especially in terms of product design) inside sys-
tem engineering approach is not clearly defined [86,87]. Systems approach is initially
developed in biological sciences and further refined by engineers. The popularity of
systems approach increased during World War II when it was recognized as a tool for
logistics and operations management. It also served as a tool for modeling complex
human behavior in military environment. This discovery gave a rise to recognition of

systems approach in engineering domain, especially in HFE. Its integration to human
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factors domain holds paramount, however its utilization as a design approach is still
subject to question [44,68].

In addition, HFE domain has traditionally been treated as a separate domain from
engineering and have not fully integrated inside design cycle. However, the domain
covers very important aspects of product design (e.g., anthropometry, biomechan-
ics, industrial /mechanical engineering, industrial design, kinesiology, physiology and

psychology) and must be fully integrated into design cycle [44,77].

Methods and tools that considers Human:
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40

Human Centered |
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Figure 2.10. Human aspects of design process is either neglected or
omitted. A robust product design system must be pursued to incor-
porate human needs, abilities and limitations systematically.

The fundamental tenet of HFE is to integrate knowledge about physiological and
cognitive aspects of humans to the optimal design of products. Instead of focusing
on a particular system component or element in isolation, HFE offers a synergetic
(holistic) approach to recognize the overall efficiency of the system by optimizing

human-well being and overall system performance [44, 88| (Figure 2.10). This is the
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pursuit of creating an effective symbiosis between human and the system components
so that system members can work in a complementary fashion.

The holistic characteristics of HFE naturally provides a multi-disciplinary col-
laborative approach, which considers not only human-artifact interactions but also
embraces entire life-cycle of products. It can also provide a systematic monitoring that
covers conception and disposal of products. Meanwhile, systems perspective builds
connections with stakeholders functional, physical and operational performance re-
quirements as well as economics, logistics and marketing constraints.

Although systems theory shares a great interest with human well-being and overall
system performance, understanding and practicing the HFE design principles within
systems engineering has not fully realized. Inside systems engineering cycle HFE
methods are mostly used as check points or evaluation steps rather than design guide-
lines. Since the main objective of HFE is to consider needs, abilities and limitations
of products, then, systems principles should be integrated early in the design cycle of

products.

2.5 The Need for A Systematic Human-Centered Design Process
2.5.1 Embracing form and function centered on human element

It is natural to conceive that human-centered design domain positions itself on
the foundations systems concept, which is deeply rooted to philosophy of holism and
emergence. In contrast to reductionist approach, the systems thinking recognizes that
the whole is more than the sum of its parts. This approach is driven by the necessity
to understand the interactions between integrative levels of nested entities. Biological
sciences had a long history of inquiring nature as a body of collective entities that
work together to accomplish a greater purpose - survival (existence). Hegel was
amongst the first who recognizes that the unity that exists in a complex system
can not be predicted or deduced from behavior in the lower-level of components.

Even though every sub-level parts of a system are linked to each other, whether in
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a weak or strong emergence, their performance require consideration of the whole.
This perspective does not devalue the sub-system level importance. Specialization
at sub-levels of the system, such as component level expertise, is still required and
hold paramount interest in design process. In contrast, systems perspective provides
a top-down approach to recognize the comprehensive functionality of collective body
of sub-systems (components or entities). In other words, focusing solely on each nut
and bolt that goes into the airplane assembly does not guarantee the prediction of
aerodynamic coefficient. One needs to consider not only sub-level components, but
also synthesis of components that makes the whole airplane. The unique behavior
(e.g., aerodynamic coefficient) of the finished airplane is independent (or loosely-
coupled) from the surface topology of a single bolt, but directly related to the assembly
of thousands of bolts, which their collective existence affects the overall topology,
so the aerodynamics coefficient. Thereby, systems approach provides both synthesis
and decomposition, from bottom-up and top-down, at component and assembly level.
Figure 2.11 shows a comphrehensive example of how form and function aspects of a
design study could effect human well-being and the overall system performance.
Within design process, a system can be summarized as aggregation of entities
organized in structured ways to accomplish design objectives. In general sense, a
system is formed through interactions of entities (e.g., raw material, machines), have
external boundaries (e.g., environmental policies) and work for a common design
goal /purpose (e.g., design objectives). All of these entities communicate and interact
to achieve systems goals with in an environment that is formed by boundaries and
should respond to changes [44]. This approach focuses on the effectiveness of the
system as a whole, while still considering the harmony of sub-system level components.
The process is decomposed in an interactive fashion, from general macro functions, to
molar functions and then to micro functions. At each stage, constraints that bound

the design process are cross-checked with the design objectives.
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Figure 2.11. Modern vehicles are designed around the motivation of
fuel economy. Gas mileage depends on the coefficient of drag, which is
directly related to the overall topology /surface geometry of the vehi-
cle. As the vehicles become more streamlined (lower drag coefficient),
cabin space becomes tighter and confined, which has severe affects
on driver’s posture. Drivers often take a posture where lumbar area
is not supported. The gap between lumbar area and the seat causes
chronic pain. Unless bucket seats or lumbar support systems are pro-
vided, drivers take a reclined position. Poor posture results in high
compression forces occur between 4 and 5* lumbar section of drivers
due to awkward (extreme reclining) sitting angles. As the drag coef-
ficient (Cyq) decreases, driver’s posture becomes poorer (high Fr,/z5).
This may not be a critical problem on a short distance highway cruis-
ing. However, when the effects of road bumps and longer cruising are
combined, poor posture not only creates discomfort but also results
with a prolong back-pain. In addition, poor posture leads to severe
back and neck injury in case of a traffic accident. Without the pres-
ence of a human-centered systematic design framework, it could be
highly infeasible to predict the connection between equations govern-
ing the aerodynamics flow and its effects on driver safety, comfort and
performance.
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2.5.2 Systematically filtering best idea(s) to reach meta model(s)

The process of designing requires systematic (structured and methodical) ap-
proach to manage a complex body of entities. Although one can argue that structur-
ing the design process is a way of suppressing creativity. On the contrary, structured
approach supports creative pursuits in design process without sacrificing imagination
and inspiration. It provides a structural road-map to consider both mechanics and
management aspects of the product development and methods to monitor growth and
decline of assets throughout a system’s entire life-cycle [86]. This approach assists
designers to reduce error and increase safety, efficacy and marketability of products.
Best ideas from a pool of alternatives can be systematically evaluated and then filtered
according to attributes (design goals and constraints). Without the presence of a such
systematic procedure, subjective judgement can rarely be effective in complex design
environment (Figure 2.12). One can think of systems approach as a top-down prob-
lem solving methodology, which focuses on the overall purpose of the problem area
with emphasis on mechanics, management and organizational skills [87,89]. It could
be also proposed as a bridge between many disciplines (e.g., mechanics, operations)
to monitor the life-cycle of products. In modern design processes, any procedure that
dwell in unstructured processes for the sake of creative pursuits are destined to fail.
The sheer complexity of technical, operational, logistic and resources of product de-
sign process require concrete course of actions [36,90]. Systematic design process can
only serve to improve the successful decision making rates, which eventually increase
the creativity of a talented designer. Without a structured approach, design process

is obsolete.
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Figure 2.12. Design process includes trade-off between various design
parameters. As a result, a group of ideas are refined and reduced
into best ideas (from abstraction to concrete). This process can be
imagined as a filtration operation, where conceptual (coarse) ideas are
filtered and refined into implementations (fine). Reaching to a future
meta model from idea(s) today require a systematic filtration process.
This can be conceptualized as a funnel model, which refines best ideas
amongst a group of alternatives, systematically.
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3. HUMAN-IN-THE-LOOP DESIGN FRAMEWORK

The main objective of Human Factors Engineering (HFE) is design of optimal prod-
ucts and systems [68,91]. The domain is concerned about the interactions between
humans and the entire system - including all entities that make up the system (e.g.,
products, machines, computers). It focuses on human needs, abilities and limita-
tions to sustain, or ideally improve, human-system interactions. It is hard to imagine
any scientific discipline rather than HFE that has better overlapping interest and
objectives with human-centered design strategies.

Human Factors Engineering domain has diverse knowledge base and supports
a wide range of disciplines. It provides ergonomics assessment methods and tools,
which can assess safety, comfort, performance, and compatibility of human-product
interactions. One of the advanced HFE methods that could create a paradigm shift in
design domain is Digital Human Modeling (DHM). It has the potential to be a merger
between form and functionality aspects of product design process with focusing on
human needs, abilities and limitations.

In this thesis, DHM is proposed as a middle-ware to integrate Design, HFE
and Systems Engineering/Approach. The primary objective is to develop a human-
centered design framework that introduces HFE principles early in product design
phase. Secondarily, the framework forms a holistic design scope through embracing
emergent design methodologies and tools. In combination, the design framework con-
templates on form and function aspects of design process from conception to creation

with human needs, abilities and limitations are being central interests.
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3.1 What is Digital Human Modeling?

Complex functions of the human body, both physical and cognitive aspects, can be
digitally represented, simulated and/or analyzed through DHM tools [77,92]. DHM
uses digital humans as representations of workers inserted into a simulation or virtual
environment to facilitate the prediction of performance and/or safety. DHM includes
visualizations of the human with the mathematics and science in the background
[7,10,11,77] (Figure 3.1). It helps organizations design safer and efficient products
while optimizing the productivity and cost [93]. Engineering design practices that
utilize DHM have the potential to enable engineers to incorporate HFE principles
earlier in the design process [74,77,94,95]. One of the advantages of DHM applications
is their integration flexibility with Computer-Aided Engineering (CAE) packages and
digital design technologies such as motion capture, eye-tracking and virtual reality
[10,11,77,96].

Traditionally, DHM applications have been utilized by manufacturing and design
industry. One of the first DHM applications was implemented by the U.S. military for
cockpit design in which virtual drivers were used to assess the safety and the perfor-
mance of the prototype vehicles. The use of DHM reduced the need of expensive and
bulky physical mockups [74,97-99]. Popularity of DHM applications has increased
in past decade and many companies have realized the effectiveness of DHM tools for
ergonomics evaluation [100]. Recently, technological developments and advancement
in the CAE software expanded the application areas of DHM [92,101]. There are mul-
tiple DHM platforms introduced as part of CAD and CAE packages, which include
digital ergonomics and biomechanical assessment tools to evaluate injury, safety and

comfort related design attributes [102-104].
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Figure 3.1. DHM includes visualizations of the human with the math-
ematics and science in the background. This figure shows identical
manikins with surface and skeletal model separately. Surface human
model includes overall topology that represents body sections with
realistic rendering. Skeletal human model shows musculoskeletal re-
lations, kinematics properties, physiological attributes, and embedded
equations thats run biomechanics calculations. Analysis modules can
include force and moment distributions associated with upper and
lower limbs, which are linked to anthropometric libraries. Kinematics
related data can either retrieved from pre-recorded motion data or
directly obtained from a motion capture system. Pop-up window on
the right demonstrates forces and moments associated with a generic
lifting task. A 10kg virtual vector load is assigned palm centers of
each hand. Analysis output shows moment and force distributions on
the lower 4" and 5™ section of the lumbar section (L4/L5). Analysis
incorporates applied load, anthropometric attributes and associated
posture. The capability of blending mathematics/science with vi-
sual aspects of human body creates abundance of opportunities for
designers to generate evaluation techniques that can go beyond the
traditional coverage of human-centered design strategies.
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Figure 3.2. DHM can be used not only as an ergonomics evaluation
tool but also a method to embrace form and function during product
development. A hospital code cart design study shows how biome-
chanics assessment process can be integrated to test product design
alternatives (Current cart model vs. Improved cart model). This
approach integrates form aspects of industrial design with functional
aspects of engineering design early in the product development phase.
Financial costs and excess time required for physical prototyping can
be reduced. This approach allows generating ergonomics analysis in
a fraction of less time.

3.2 How does Digital Human Modeling Provide an Integration between

Building Blocks of the Framework

The proposed design framework not only integrates Design, Human Factors and
Systems Engineering, but also provides a systematic understanding of human element
inside the product development process. It embraces cross-functional knowledge and
expertise through building connections with various disciplines (such as anthropom-
etry, biomechanics, industrial engineering, mechanical engineering, industrial design,

kinesiology, physiology, psychology and others) [105]. This multidisciplinary approach
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allows modular integration to second and third party design methodologies and tech-
nologies (Figure 3.2).

One of the advantages of DHM applications is in their integration flexibility
with concurrent engineering methodologies such as Product Life-cycle Management
(PLM), Virtual Product Development (VPD), and Computer-Aided Engineering (CAE)
packages [96]. Trial-and-error on physical prototypes may resolve some of the design
complexions, however it has limiting factors such as visualization, simulation, time
and cost. Time-to-market and cost of a product are critical for success in global
competition [77]. These versatile group of multi-faceted factors must be considered
early in the design process to have a safe, efficient and profitable product [106-108].
It is important for designers (and manufacturers) to accomplish a competitive edge
during creation and marketing of products through reducing design timescales, over-
all costs and time to market [74,95]. These complex goals need systematic product
development strategies, which embraces mechanics and aesthetics of design process
while considering manufacturing, marketing, management and recycling phases of the
product development. In this context, absence or poorly consideration of HFE princi-
ples can result in poor quality standards, which may lead to customer dissatisfaction,
safety and hazard concerns. Companies often end up in product recalls and lawsuits,
which eventually result in reputation loss. Concurrent engineering tools provide an
integrated platform to monitor technical and managerial aspects of the product de-
velopment [109], however fail to consider human element early in the design process.

DHM integrated with concurrent engineering tools enable designers to check if
people of different age, gender, size and strength characteristics can safely and effec-
tively perform tasks inside computer simulation environment. Furthermore, Virtual
Reality (VR) tools could be used inline with DHM to provide a higher level of fidelity.
Through VR environment, user-product interactions can be assessed regarding com-
fort and safety without the need of full-scale physical prototypes [74,110,111]. A de-
sign platform that allows direct connections to DHM can assists designers to evaluate

both aesthetics (visualizations - concept sketching and rendering) and functionality
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(mathematics - simulation and analysis) of product innovation. DMH can also pro-
vide a common medium to connect subjective judgment and divergent (inspirational)
nature of industrial designers with objective and convergent (structural) nature of
the design engineers [67,105].

DHM forms an ideal medium for integrating designers and engineers early in the
design process. It also promotes a more holistic design approach through embracing
emergent design methodologies and technologies, which can assist designers to con-
sider human element throughout the design-cycle. Thus, DHM can bring additional
time and cost savings on top of the savings associated to concurrent design methodolo-
gies. Figure 3.3 shows cost associated with conventional, CAE and DHM integrated
engineering design methodologies. Because of its interdisciplinary focus, quantitative
nature and flexibility of integration with other design platforms, DHM becomes a

potential problem solving tool to various multi-disciplinary design challenges.

3.3 Theoretical Building Blocks of Human-in-the-loop Design Framework
3.3.1 The framework is holistic and emergent: Virtual Build Structure

A structure called "Virtual Build” was first proposed by Ford Automotive Com-
pany [112]. Virtual Build (VB) methodology demonstrated a promise on integrating
research on DHM, Motion Capture (MoCap) and Virtual Environment (VE) for er-
gonomics evaluation of products and processes. The methodology is composed of a
physical or a virtual environment that represents a real workstation or a product.
Human motion data either comes from MoCap system, a motion prediction model
or a manikin posture through manual anthropometric setup [77]. If MoCap method
is used, actual representation of subject’s motion and posture can be captured and
attached to a representative manikin created on computer environment. This method
allows capturing actual human motion data without the need of predictive modeling.

If motion capture system is not used, then information related to descriptive task
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Figure 3.3. DHM can reduce cost associated with physical prototyping
or mockups [101]. In addition, identifying problems of human-product
interactions early in design phase can reduce additional costs arises
from product incompatibility. If errors reduced early in the design
phase, cost associated to product modifications at later phases can be
further reduced. Thus, DHM provides additional cost savings on top
of cost savings established by CAE strategies. Solid red arrow indi-
cates estimated cost savings when concurrent engineering tools (e.g.,
CAE) used without DHM. Dashed red arrow shows further savings
when DHM is integrated to concurrent design tools.

parameters (e.g., push-pull distance, lift-lower height, external loading) needed to be
input through manually or via predictive models. [77,113,114].

There are various virtual design methods similar to VB structure. However, often
these methods are solely used for post-design ergonomics evaluation of products.
Thus, VB methodologies can be regarded as ergonomics approaches - not as direct
design methods. Human-in-the-loop design framework demonstrated in this thesis
study is a modified version of VB structure, which does not only function as an
ergonomic assessment tool but also acts as an actual design methodology. Figure
3.4 shows a generic framework where flow of human motion data is connected to

ergonomics assessment tool.
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Figure 3.4. Virtual Build design methodology integrates DHM, Mo-
Cap and VE for ergonomics evaluation of products [112]. Similar
to VB, various traditional design methodologies are often used as er-
gonomics evaluation methods. This approach (post-design ergonomics
assessment) is associated with high cost and extended time-to-market
when design modifications are addressed at later stages of product
development.

Through human-in-the-loop design methodology product/process design can be
analyzed prior to production. This approach provides an expansion to Virtual Build
structure used by Brazier towards a more global design platform with human-centered
focus [112]. The framework not only integrates DHM, MoCap and VE, but also
allows building connections with emerging HFE design tools/methods such as CAD,
CAE, PDM and PLM. These technologies are known for their individual potential
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in resolving HFE related design challenges, however, their integration with a global

design framework is still require further research and development [77].

3.3.2 The framework is built around human needs, abilities and limita-

tions: Human-Centered Design

Human-Centered Design (HCD) integrates various technical and non-technical
fields of design expertise to enhance well-being of humans through improving product-
user interactions. Results often include improved usability, safety and performance.
Definition of HCD may differ depending on the context, however the domain focuses
on methods that continuously improve the product-human interactions based on users
needs, abilities and limitations [67,105]. Although above definition shares similarities
with HFE, HCD is not a scientific domain but a design methodology. It captures vari-
ation between users and accommodate these differences efficiently in product design
with the goal of satisfying users from different physical and cognitive backgrounds.

In addition to the above, the growing interest in human-centered design practices
reiterate the importance of human safety, usability and performance. This motivates
engineers to understand human needs, abilities and limitations to design products,
services, and experiences people truly value as individuals and as a culture [77].
Researching to find better analytic models to address human variability in design
process is also a core challenge for designers. Incorporating human variability into
the design process creates design alternatives that serves to accommodate a diverse
human needs [115].

The backbone of the human-in-the-loop design framework is supported by DHM
tools which provide a human-centered focus for designing products and services. Phys-
iological and cognitive human needs, abilities and limitations can be modeled in DHM
environment. In addition, DHM provides a seamless integration with CAE tools to
assess ergonomics adequacy of products and services. This approach supplies a con-

tinuous monitoring capabilities to designers. User attributes could be cross-checked
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Figure 3.6. In conventional design strategies, HFE design principles
are often applied sequentially at later stages of product development
as a post-evaluation method. This approach is associated with high
costs and excessive time-to-market. In contrast, human-in-the-loop
design framework offers a parallel approach, which considers human-
element early in product development phase. Within human-in-the-
loop design framework, conceptual design ideas iteratively modified
through DHM and CAE in a parallel sequence - before ever getting
into prototyping phase. This way, human needs, abilities and limi-
tations are considered early in the design process. Design errors or
human-product incompatibilities can be captured before prototyping
begins.
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with design requirements. Figure 3.5 shows a macro-level of the human-in-the-loop
framework, from conceptual design to manufacturing. Figure 3.6 shows a more de-
tailed meso-level outlook of the human-in-the-loop framework with DHM and CAE

simultaneously applied to the design process.

3.3.3 The framework is emergent: Modular Integration

Product design domain highly depends on physiological and cognitive needs of hu-
mans, and expands through the dynamic trends in technology, engineering, economics,
arts and social interactions. This broad perspective brings the need of considering
both technical and non-technical aspects of the product development, which embraces
form and function, as well as non-technical design attributes.

A successful design platform need to allow the utilization of previous method-
ologies and expertise while providing means of integration with technical and non-
technical parameters from engineering aspects of design to artistic concerns, and from
technological advancements to resources and finance. [52,109,116]. Because of the
holistic and complex nature of the design process, one can not come up with a single
equation or a universally accepted rule for a good design strategy. Instead, the goal
in the context of human-centered design is to provide a synergic design framework,
which encompasses available tools and methods and continue to expand as new tools
and methods emerge. This approach provides flexibility of allowing additional new
technologies, design tools and methods on top of existing ones (Figure 3.7).

Human-in-the-loop design framework is built in a way to allow modular integration
of different tools and methods from various scientific fields, non-technical domains,
technologies and design methods. Some of these entities are demonstrated in cur-
rent DHM tools, however access to most of them are limited [117,118]. Each tool
can be integrated in different stages of the design cycle (e.g., conception, modeling,

simulation....etc.) to enhance different stages of product development. These tools
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can be integrated to the framework through multi-physics platforms (Finite Element
Analysis, Computational Fluid Dynamics, Photo-realistic rendering packages.)
Therefore, the modular structure approach accommodates different design method-
ologies and technology tools at different stages of product development. Figure 3.8
shows how design entities can be integrated as modular blocks for under different
categories. Content of each category may differ depending on the technological and
domain requirements as well as context of the design of interest. The key here is
that most of these entities can be simulated /integrated into DHM software packages.
With the advancement in DHM research, additional HFE methods (physiological and

cognitive) can be added to design framework.

3.4 Fundamentals of Human-in-the-loop Design Framework

Human-in-the-loop framework is a modified verison of "Virtual Build” structure,
which brings HFE design principles earlier to product design process (Figure 3.5) [94].
Previous Virtual Build studies focused solely on ergonomics evaluation and human
factors assessment of products and/or systems [113,114]. This framework focuses
not only ergonomics assessments but also actual design process including, but not
limited to, concept development, structural integrity and digital prototyping. It pro-
vides scientific insight (ergonomics, biomechanics) and artistic approach (rendering,
visualization) on product-user interactions.

Data related to human attributes can come from manual or digital sources. For
example, human posture data can either come from a manual antropometric setup
or from various digital systems (MoCap, eye-tracker, a motion prediction model).
If manual methods are used, descriptive task parameters (e.g., push-pull distance,
lift-lower height) are inserted manually to generate ergonomics evaluations. CAD
model can be updated parametrically depending on the changes required after each
ergonomic and structural assessments. Affects of changes on CAD model in terms of

ergonomics and structural integrity can be cross-checked simultaneously.
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Figure 3.7. Human-in-the-loop framework expands through modular
integration of multi-disciplinary disciplines. A design methodology
should not solely consider technical aspects of design process. De-
sign embraces various domains, disciplines and methodologies. This
multi-disciplinary nature brings a holistic approach into the prod-
uct design process, which builds connections with a wide range of
professions from marketing, policy-making, engineering to business.
Each entity that represents a specific discipline is integrated into the
framework through different mechanisms. Technical entities (engi-
neering, technology) can be integrated via multi-physics simulation
applications. DHM can work back-and-forth with various CAE pack-
ages, where it can share data with multi-physics applications such as
Finite Element Analysis, Fluid Dynamics, Photo-realistic rendering.
Non-technical entities can be integrated through user-questionnaires
(marketing), quality standards (e.g., ISO), policies (policy-making),
and photo-realistic rendering (arts).
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Figure 3.8. Human-in-the-loop design framework embraces various
tools, methods and technologies in a modular fashion. Each toolkit
can be added/plugged to the framework. DHM acts as a merger

between modular entities.

Each toolkit communicates back-and-

forth, iteratively, to realize a product - from sketching to ergonomics
assessments, structural integrity and prototyping. Figures demon-
strates how various toolkits can be integrated to the human-in-the-
loop framework under different design context.
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There are few variants of VB structure that bridge DHM and MoCap for ergonomic
research [111,119]. Different than those studies that use DHM as a method of post-
processing analysis tool, this framework utilizes DHM to bring human needs, abilities
and limitations earlier into design process. DHM is used as an actual product design
tool rather than as a method of ergonomics evaluation executed at the very late stages
of product development.

In this study, human-centered design approach forms the foundation of the design
strategy. It is composed of four product development phases (Understand, Concep-
tualize, Create and Realize) and four Constraints (Costumer Requirements, Human
Capabilities and Limitations, Physical Requirements and Process Requirements). De-
sign flow works in clockwise (from Understand to Realize) and in ascending order
(from 1 to 4) respectively, to establish a design hierarchy. This hierarchy provides
a systematical process flow to understand customer requirements, generate concept
ideas, then create digital models and finally realize a high-fidelity digital model. The
framework utilizes this hierarchal strategy to map user requirements with engineer-
ing constraints and find potential pathways to satisfy overall design goals (Figure
3.9). Each building block acts like an individual part of an embedded system, where
ascending blocks provide design decision filters to the information sent from lower
blocks.

Human-in-the-loop design framework functions similar to an Quality Function
Deployment (QFD) system, where Customer Attributes (WHATS) are mapped to
Engineering Requirements (HOWSs) [120]. In QFD, WHATS provide customer’s (sup-
plier’s, maintenance personnel’s) desires and HOWSs provide engineering (design and
supplier) characteristics to satisfy (or ways to achieve them) WHATSs within available
resources. These elements (WHATSs and HOWSs) eventually define goals and con-
straints of the design system, which together form the available design space [121,122].
Goals are different than constraints. Goals define the ultimate design objectives (all
potential design alternatives) and constraints draw up the boundaries, which form

the feasible design space. Not all initial goals can be achieved. In other words what
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Figure 3.9. Image shows extended overview of the human-in-the-loop
design framework, from macro-level to micro-level. At micro-level
the framework functions similar to the VB methodology discussed in
previous chapters. In contrast to VB, human-in-the-loop framework
does not only functions as a post-processing ergonomics analysis tool.
It is actually an integrated part of a concurrent product design and
development system (macro-level). This approach creates a holistic
coverage of design entities while keeping human needs, abilities and
limitations at focus throughout the design process.

customer’s wish can sometimes be misleading or technically not feasible. Often, En-
gineering Requirements form the boundaries that shape up all feasible/alternative
ideas. In this context, DHM defines human-aspects of Engineering Requirements.
Without the use of DHM techniques, engineers utilize manual checklists or expert
opinion, which often fail to systematically generate a list of realistic Engineering Re-

quirements. How people interact with products, both physiologically and cognitively,
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goes beyond the scope of simple checklists and expertise. The use of DHM as a
core member of design cycle assists engineers in iterating various what-if scenarios
parametrically without the need of extensive use of physical prototypes or mockups.
Without such design strategy, decision making during design process would be mis-

leading and erroneous, which often resulted in high costs, hazard or dissatisfaction.

3.4.1 Phases of the human-in-the-loop design process

Product design process starts with identifying or understanding consumer needs,
abilities and limitations. Understanding the problem area is essential to create sound
design requirements. After this step, engineering requirements are linked with knowl-
edge base where each requirement can guide designers to generate necessary design
alternatives. Later, alternative (concept) models can be modeled and simulated to
check various design specific what-if scenarios. Best model(s) from pool of alternatives
can be refined to create the most feasible prototype model(s) that meet engineering
requirements while satisfying as much customer needs [120]. Finally, concept prod-
uct is selected and beta product for manufacturing and production are finalized at

Realization stage. More information is provided below for each design phase.

e Understand: This is the initial product development phase where user needs,
abilities and limitations are identified and checked with the knowledge base.
This phase is the most critical amongst other stages, which requires at most
attention to carefully identify design challenges. Designers often omit or ignore
human aspects of design process at the earlier stages of design process, which

ends up being a cost driver at the later stages of product development.

e Conceptualize: After design requirements are identified, concept models can

be generated. These models should reflect designers’ creativity while satisfying
design requirements. At the end of this phase, concept models should be filtered
to obtain prototype model(s), which represent the best models amongst a pool

of design alternatives.
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e Create: Prototype model(s) further go into more refinement process, which in-
cludes structural modeling and multi-physics simulations. If higher fidelity can
not be achieved with available multi-physics simulations, physical prototyping,

field tests and experiments should be sought.

e Realize: At this stage final prototype should be further refined to meet manu-
facturing, maintenance, production and packaging requirements. Depending on
the complexity of a product or the nature of the design project, a final prototype
can be a fully digital model, a physical prototype or a combination of both.

3.4.2 Goals and constraints

Within human-in-the-loop framework, upper blocks function as a filter for the
lower blocks. In Customer Requirements step, customer attributes are identified by
designers. These attributes may exceed physical and cognitive capabilities of users.
Therefore, Human Capabilities and Limitations block acts like a filter for the design
alternatives generated in previous stage. This step only allows attributes that are
capable to be performed by users. Later, qualified customer attributes are mapped to
Physical Requirements, which are used to generate the form and functions associated
with conceptual design model. At this stage of the design process, only human-
product interactions that are feasible pass to the next stage. In Process Requirements
stage concept model is further refined and working prototype is finalized. More

information is provided below for each phase.

e Customer Requirements: The foundation of the design development is to under-

stand customers wants and needs. This step provides a vast number of customer
needs and desires on a new product or modifications for an existing product.
Human centered products should be designed to reflect customers’ needs while
satisfying engineering requirements. This is also a very important step to define
the design scope. Surveys show that poor product design definition is a factor

in 80% of market delays [43].
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e Human Capabilities and Limitations: This step filters customer requirements

and provide limitation to those that exceed human physiology and/or cognition
(e.g., control button distance exceed maximum reach of 75% male). Ignoring
or omitting the human aspects of design is a costly mistake and should be
avoided with all the cost. Products that do not reflect human capabilities and
limitations are not appreciated by customers and result in compatibility issues,

safety problems and market failures.

e Physical Requirements: In this step customer attributes and human character-

istic are mapped to each other to provide a conceptual design that satisfies users
characteristics from a wide range of population. Also, technical attributes such
as form, functionality, and material selection are generated and checked with

compatibility requirements.

e Process Requirements: After generating the conceptual models (or working pro-

totypes), products are further refined by usability studies and experiments. In
this step, available resources (suppliers, marketing...etc.) are mapped and the

working prototype is finalized for production.

3.5 How Does Human-in-the-loop Framework Function?

At the core of the framework DHM functions as an analytical design/analysis
tool as well as a communication medium between contributors of each stages of the
design. In this study, HCD approach retains user needs, abilities and limitations at
sight throughout the design cycle. Goals and Constraints link HFE knowledge and
methods with design requirements. Varying HFE methods and technology tools are
added to adequate stages of the product development through modular approach.
Variations and combinations of methods and technologies used inside the framework
depend on the nature of the design study. A consumer product design may not
require advance simulations. On the other hand, an aircraft design may demand

multi-physics simulations, as well as extended physical experiment and prototyping.
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Thus, the domain of interest dictates what tools to be integrated to the framework.
In either case, DHM blends form and function of aspects of products with humans at
the center, and builds connections with other design entities.

Human subject data either comes from digital libraries or collected through man-
ual methods. Digital libraries include kinematics, anthropometrics and posture re-
lated human attributes. If manual methods are used, attributes can be linked design
framework through various data collection methods (MoCap, eye-tracker, sensors).
Similarly, environment input could be a fully digital CAD model, immersive VR en-
vironment, a physical prototype or a hybrid model (a physical model with limited dig-
ital probes). DHM blends human data and environment input and generate analysis
that constitutes mathematical (e.g., biomechanics) and visualization (e.g.,rendering)
outputs.

Within human-in-the-loop design work-flow concept model(s) go in digital test
that iteratively forces what-if design scenarios. This portion of the design framework
uses multi-physics simulation tools to answer what-if scenarios. In case multi-physics
tools are not capable of providing required answers to what-if questions asked by
designer, physical experiments and field tests should be conducted for further un-
derstanding and refinement, if necessary. The need for physical prototyping often
results due to complexity of design projects where product or process requires higher
levels of human-product interactivity [111]. At this stage designer should make the
decision of either fully relaying on simulation tools or collecting human subject data
through physical experiments. The choice of either method or degree of relaying
on one method depends on the level of human product interaction. If multi-physics
simulation tools provide sufficient fidelity, then digital prototypes would be a sound
strategy. At this stage, DHM can be utilized without the need of physical experi-
ments or full-scale prototyping. When simulation tools loses the fidelity, then human

subject experiments through physical models becomes an ideal path to follow (Figure

3.10).



ol

Design Project

Full Protot . Q . Full Simulati
ull Prototype ull Simulation
yp ] L

When human-product interactivity is complex When human-product interactivity is simple

Figure 3.10. The need for full-scale modeling or full-simulation in a de-
sign project is shown in a continuum. Depending on the complexities
of human-product/process interactions, DHM simulations can either
be used as stand-alone (simulation) or linked to data capturing tools
(prototyping) [111]. The degree of the using either full or a moderate
simulation /prototyping depends on the nature of the design project.

The need for digital prototypes or full-scale models also define the scope of the
design project. Often, one can split design projects as either industrial design or
engineering design oriented. In the case where abstraction and conceptualization are
concerned, industrial designers heavily involve with the generation of design ideas,
which are often require low fidelity models that rely on form aspects of design. In
contrast, engineering design projects require high fidelity models that are based on
functionality of products with validation (proof). DHM has the advantage of working
back-and-forth with either extremes, and can accommodate form and functionality
requirements of design projects (Figure 3.11).

Within human-in-the-loop design approach, contributors of the product develop-
ment, whether it’s a group of industrial designers, design engineers or managers, can
interact with the design process in any given time. The framework connects technical
(engineers) and non-technical experts (managers) as well as third party contributors
(suppliers) together. It allows parametric modification of dimensions, tasks and en-
vironments. Results due to changes on CAD models and CAE simulations can be
simultaneously updated, and changes on ergonomics and structural evaluations can
be monitored accordingly. This work-flow creates opportunities for optimizing design

alternatives through iterative changes (what-if scenarios). In addition, holistic cov-
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Figure 3.11. Depending on the design study, either Industrial De-
sign or Engineering Design can dominate each other. In product de-
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aspects of design attributes centered at human needs, abilities and

limitations.
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erage of design disciplines and modular integration of various tools and technologies

can provide unexplored spaces for creativity (Figure 3.12).

There are three design studies summarized in following section. Each study focuses

on different design objectives that require integration of distinctive human subject

data (either manually, automated or through hybrid methods). Experimental pro-

cedures of these studies are not covered in details. Only figurative design story is

demonstrated to provide a breadth of the human-in-the-loop design framework, and

to demonstrate how it could be applied to different design studies. First design story

represents a reverse engineering of a hospital code cart design, which follows a de-

tailed visual design story in the order of: schematic layout, product design phases
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DHM provided tools to validate ergonomics and visualization aspects
of the human-product interactions.
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and summary. Second study provides a concise visual synopsis of a Formula-1 race
car cockpit design, which blends form aspects with functional development. Final
study focuses on the conceptual development of a futuristic vehicle with emphasis
given to artistic conception. Figure 3.13 provides a summary of human-in-the-loop

studies with associated design content.

‘ Design Studies ’

[ ]

‘ Study #1 ’ ‘ Study #2 ’ ‘ Study #3 ’
Hospital Code-Cart Formula-1 Cockpit Futuristic Vehicle

Llal 1 1 1 | " T T N I | I T B N T U
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Figure 3.13. Three design studies summarized to show how human-in-
the-loop design framework could work in projects with different design
scope. Each project represents different levels of industrial design and
engineering design contribution. Design scales and design compasses
reflect information about the level of contribution.

3.5.1 Reverse engineering a code cart

This design study embodies two theme areas: product design and design research.
Main objective of this project was to design a better code cart and to integrate haptic
feedback into design process (Figure 3.14). Although it seems that the study had two

separate areas of focus, human-in-the-loop design framework was used as a testbed
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to evaluate design research (haptic feedback) through a practical design study (code
cart design).

Product design in this study focused on reverse engineering a hospital code cart
according to needs, abilities and limitations of nurses. Emphasis was given on creating
a light-weight, maneuverable and a versatile code cart (Figure 3.15). The main HFE
objective was to test whether new design proposes an improved L4/L5 compression
force readings on lumbar section during a push-pull task. In addition, subjective
feedback of users about the cart design was collected to further accommodate design
attributes (e.g., bi-directional drawers, adjustable handle) that nurses were expecting
on an ideal code cart design [77].

The design research question focused on integrating a haptic feedback mechanism
(sensory-force feedback) for ergonomic evaluation of products during design phase
(Figure 3.16). Ultimately, the above methodology was evaluated through a push-pull
experiment (a physical and a virtual push-pull experiment) in which two different
product designs (a market available code cart and the prototype code cart) were
evaluated for ergonomic adequacy under different loading conditions (Figure 3.17).
Also, a questionnaire was given to subjects to assess their subjective opinion on
whether the prototype cart was more preferred than current cart [77].

Human-in-the-loop design framework integrated haptic-feedback and motion cap-
ture with a digital and a low-fidelity physical prototype model. DHM modules were
used for generating percent capable, compression and comfort evaluations. CAD code-
cart model went through several multi-physics assessments including: FEA for top
loading scenario, weight estimation and center-of-gravity calculations (Figure 3.18).
After defining parameters that satisfies user needs and engineering requirements, a
photo-realistic rendering of the concept cart model was generated (Figure 3.19). Fig-
ure 3.20 and Figure 3.21 provide a human-in-the-loop design summary. Starting by
next section, information about how human-in-the-loop framework was applied to

this project was provided in details.
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Figure 3.14. Human-in-the-loop design framework merges MoCap,
haptic devices (sensory force-feedback) and subject questionnaire
(user studies) data with a full scale CAD model and a low-fidelity
physical prototype to generate three different outcomes: motion, er-
gonomics and visualization. Through this approach both objective
(motion and pressure) and subjective (questionnaire) aspects of de-
sign data were integrated to realize a concept code cart model that
reflects user needs, abilities and limitations. DHM provided tools
to validate ergonomics and visualization aspects of human element
within design process. Human-in-the-loop design framework provide
multi-disciplinary creative pursuits for industrial designer and design
engineers to work together on the same design project without iso-
lation. Form and functional aspects of product development can be
monitored, modified, tested and furthered refined in a parallel se-
quence, with human needs, abilities and limitations are kept at the
center. In addition, qualitative nature of design process can also be
integrated through user feedback, questionnaires and field studies.
This approach offers a more systematic method to evaluate of what
customer wants.



Product design stages
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Figure 3.15. Design process started with identifying key features that
are essential for nurses. These features were gathered after on-site
observations and questionnaires data collected from nurses. This ap-
proach reflected what was missing in current code carts and what
could be included in the concept design in terms of improving nurses’
comfort and performance. Features such as retractable handles and
dual-way access drawers, as well as swivel defibrillator and AC plug
were amongst the most that provided versatility and ease of use to
nurses. These conceptual ideas were further refined through QFD,
functional decomposition and Pugh’s charts. Finally, a representative
conceptual model that includes surface and solid models were devel-
oped as a CAD assembly. After this stage, CAD model was linked
to DHM to get validation in terms of its ergonomics compatibility.
Meanwhile, structural tests were conducted on multiple what-if sce-
narios. After running various biomechanics and FEA simulations,
conceptual features were modified, some features were disregarded,
and new features were added.
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Figure 3.16. At this stage haptic (force-feedback data) and motion
data were integrated to create digital representation of users in com-
puter environment. Low-fidelity prototype cart model was used as
physical probe to gather realistic information about push-pull forces
required by nurses. Data collected were sent to DHM for conducting
ergonomics analysis.

58



Ergonomics Evaluation
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Figure 3.17. After haptic and motion data were incorporated with
CAD model, various ergonomics analysis were conducted to evalu-
ate human-product interactions. Manikins that represented different
percentile of populations were tested for their capabilities in pushing-
pulling the cart with various loading scenarios. Performance of nurses
between current code cart model and concept design were compared in
terms of ergonomics adequacies. In this figure percentage capability
analysis was performed for 50" percentile female when pushing cur-
rent and concept cart with identical external loads. Once can see that
current cart model created a wider range of accommodation. Almost
every nurse can conduct a pushing task without exerting a large force
readings on their joints. In contrast, only few nurses can complete
the same push test when they used current code cart.
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Figure 3.18. Structural analysis demonstrates lower center of gravity,
weight reduction and good structural integrity in top-loading scenario.
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Figure 3.19. CAD model and digital manikins used in engineering
design analysis were also used for design visualization purposes to
enhance industrial design process.
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3.5.2 Integrated cockpit design of Formula-1 race car

Main objective of this study was to develop a cockpit design for a Formula-1
car through human-in-the-loop design process (Figures 3.22). Driver’s cockpit was
the central theme in the design process, where driver’s joint angles were optimized
to sustain a comfortable posture inside a confined space (cockpit) (Figures 3.23).
This project demonstrates capabilities of human-in-the-loop design framework in a
full-digital environment. Figure 3.24 shows overall summary of human-in-the-loop
framework from conceptual development to photorealistic rendering, which encapsu-

lates functional as well as the form aspects of design process.
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Figure 3.22. Human-in-the-loop framework merges anthropometrics
data with 2D vehicle blueprints and a full-scale CAD model. Major
outcomes are summarized under motion, ergonomics and rendering.
DHM blends function and form aspects of vehicle design and provides
tools to validate ergonomics as well as visualization aspects of human
element in cockpit development.
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3.5.3 Futuristic transportation design

Formula-1 design project represented a fully-digitized engineering design study
without any subject data collection. Digital anthropometric data and vehicle blueprints
were used to generate driving postures. This study does not include any human data
collection. Manikin and the monocoque cockpit data from Formula-1 study was used.
The design objective in this study was creating an artistic conceptual model of a
futuristic vehicle (Figures 3.25). Emphasis was given to industrial design (Figures
3.26). This project demonstrates how human-in-the-loop design framework can func-

tion even with artistic development of products (Figures 3.27).

Digital Human Modeling
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Figure 3.25. Digital manikin and CAD model from Formula-1 study
was carried to this project. Digitized posture data from anthro-
pometric libraries were linked with CAD model and surface model
to generate a futuristic vehicle concept. CFD simulation was con-
ducted to evaluate aerodynamics performance of the concept vehicle.
Major DHM outcomes were mostly visualization focused, however,
ergonomics and biomechanics outcomes can also be generated - if
needed.
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4. DESIGN STUDY

A systematic design framework that captures human needs, abilities and limitations
has been missing in design research. Although few platforms offer some limited DHM
based human-simulation coverage, utilization of these methods as part of product
design framework has some limitations. Often, DHM is used a post-design ergonomics
evaluation tool. Utilization of DHM as a direct design tool (similar to CAD or CAE)
has not been at the central interest of designers. This dissertation proposes DHM as a
direct design tool, rather than a post-processing ergonomics evaluation methodology.
Human-in-the-loop design framework is built based on DHM. It integrates design
(industrial and engineering), HFE and systems approach. Some of the details of
this approach has been introduced through three design studies covered in Chapter
2: code-cart design, F-1 cockpit design and futuristic vehicle design (Figure 2.13).
These studies provided a brief information about the capabilities of human-in-the-
loop design framework and how the framework can be used for systematically blending
industrial and engineering design principles with human-element at the center.

This chapter introduces a more comprehensive design research method, which not
only demonstrates capabilities of human-in-the-loop framework in product design but
provides a scientific validation to the framework. In this experiment, human-in-the-
loop framework is proposed both as a testbed to integrate human element into design
research and to validate the use of DHM toolkits in product development. Design

methods used in this study are:

e Human subject data collection through an eye-tracker device

e Human subject data collection through user input, Cooper-Harper test and

questionnaires
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e Finite Element Analysis for structural integrity assessments

In this experiment, a combination of different design approaches, technologies and
data collection methods were integrated within human-in-the-loop design framework.
This multi-disciplinary design approach demonstrates holistic, emergence and mod-
ular characteristics of the framework. This experiment involves an automobile pillar
design study, which makes connections with form and functional aspects of indus-
trial and engineering design process. DHM was used as a bridge to connect form
and functional attributes of automobile design with needs, abilities and limitations
of humans. Efficacy of human-in-the-loop design framework was validated through
human-subject data collection. Chapter 4 and Chapter 5 provide a detailed intro-
duction to the design study, which includes statement of design problem, objectives,

hypothesis and measures.

4.1 Statement of the Design Problem

The importance of occupant safety is one of the most vital aspects of product
development and marketing in automotive industry. Today, it is a must to have to
meet minimum safety requirements (EURO NCAP, SAE...etc.) to ensure protection
of occupants, pedestrians and other traffic elements [123]. Within a very competitive
technology driven environment, focusing solely on minimum requirements is not a
smart way of winning a substantial reputation in the market. Companies strive to
establish strict safety standards to sustain a high safety reputation, which leads to
large market share. Since 1970’s, manufacturers, private institutions and academia
have introduced new technologies to increase the overall safety of ground transporta-
tion. Some of the well-known ways of increasing automobile safety (crash worthiness)
are applying high strength steel to the chassis, introducing multiple airbags and de-
veloping advance body structures.

State of art energy-absorbing and/or energy-dissipating techniques are well-known

for their success in reducing occupant injuries. However assisting technologies in re-
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ducing the risk of having a collision have not been successfully integrated to vehi-
cle design when compared to energy-absorbing and/or energy-dissipating techniques.
Majority of new safety technologies are focusing on minimizing the injury to the occu-
pant during accident actually occurs. It is very important to decrease the severity of
injuries and casualties through these techniques, but preventing vehicular accidents
before they even occur should be a high priority item [123]. One of the important
ways of improving safety of ground transportation is to offer a block-free or an opti-
mized visual field, which can increase driver’s reaction time for positive identification
of other vehicles, road alerts and pedestrians [123,124]. Literature review and current
vehicle design trends show that visual field obscuration is a major problem and pillar
geometry is a critical design element in vehicle packaging [125]. In this context, not
sufficient attention is paid for improving visual obscuration due to pillar geometry
when compared to improvements in cockpit entertainment, efficient engines, alterna-
tive fuels, and weight reduction. Literature review shows that A-pillars (also B, CD
pillars) provide a visual block and may lead to accidents [126,127]. However very

limited research has was done on this topic.

4.2 Literature Review on Automobile Pillars
4.2.1 Safety and product design connections to driver’s visual field

This design study focuses on methods for ensuring driver’s field of vision to reduce
obscuration related discomfort and accidents. Unobstructed field of forward, side
and rear vision is essential to see other vehicles, pedestrians, road signals, bends
and curves, road conditions, and other important information. Ability to see these
information as quick as possible without misdoubt is critical for reacting on time.
On-time-reaction (or reacting as quick as possible) is vital for increasing chances of
accident prevention through proper steering, breaking and/or maneuvering [123].

One of the vital and essential characteristics of vehicle packaging is providing a

good field of vision to the driver. Presence of any obscuration zones (steering wheel,
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mirrors, pillars, dashboard...etc.) should be minimized to increase visual quality and
comfort [124]. Design of cockpit environment as well as other parts of the vehicle that
reduces driver’s field-of-vision should be carefully evaluated before the vehicle is ever
launched to market. At this point, ignoring visual needs, abilities and limitations of
people would clearly decrease the safety and performance of the overall vehicle.
When field of vision is concerned, opaque objects near to eye provides the most
potential dangerous occlusions through generating a permanent blockage. The frame
surrounds the driver and passengers called 'pillars’ are the primary obscuration el-
ement in an automobile. Drivers mostly eliminate the occlusion generated by such
blockage elements by moving the head on lateral plane. However, this technique does
not necessarily circumvent or reduce the potential loss in visual field. The permanent

presence of pillars exerts a continues blockage and threaten safety [123,124,126,127].

4.2.2 Functionality of pillars
Safety for occupants

Pillars provide the structural frame that surrounds the occupant in a vehicle.
Glass surfaces between pillars provide a shell for outside environment and permit good
view of the road. Pillars provide a structural barrier between occupants and outside
environment, which protects the driver and passengers if involved in an accident
[124,126]. Some luxury cars are also occupied with additional airbags hidden in A,
B and CD pillar zones to provide extra protection to occupants when involved in a
collision. Soft padding on and around pillars provide comfortable ingress and egress

of vehicles.

Structural integrity

The overall forces act on a vehicle in case of a head-on collision and a roll-over

accident directly absorbed by pillars. Pillar design has direct contributions on overall



73

crash-worthiness of vehicles, especially in head-on collisions and roll-over (roof-crush).
The crumble zone in front section of a vehicle is directly related the strength absorp-
tion capability of A-pillars. Pillars also have minor impacts on handling since they
contribute the overall height of the vehicle. Differences in height and chassis design
have effects on inertia of the vehicle, which becomes a an important handling factor

in cornering and high-speed maneuvers [123,124,126, 127].

Aerodynamics

The overall exterior design of cars are getting streamlined in past decades to reduce
aerodynamic coefficient, noise and vibration. This is a much common practice as the
price of fuel becomes a major concern. Also, streamlined cars are becoming more
popular with the introduction of hybrid and electrical vehicles. These vehicles rely
on low drag resistance to increase performance (total distance driven with a single
charge). Pillars provide smooth surfaces for easing the air flow [123,124, 126, 127].
Therefore, A-pillar dimensions are getting larger in lateral plane as the overall vehicle
body design gets more streamlined. In addition, shape of CD pillars are getting
smoother to minimize the drag caused by trunk geometry. This becomes more visible
in hatchback type vehicles, where engineers use wider pillars to accommodate trunk

space under the rear window.

Aesthetics and style

One of the important marketing and cultural norm of vehicle design is aesthetics
and styling. For many car enthusiast styling is the most important aspect of buying
a new car. Pillars contribute a big portion of styling cues through providing a section
formation between lower and upper part of the vehicle as well as between front and
rear doors. Shape and curvature of glass surfaces are direct factors that define location

and geometry of pillars.
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4.2.3 Types of automobile pillars

There are four major pillars (A,B,C and D) associated with today’s automobile
design. Among those A and B pillars are most important in structural integrity and
passenger safety in head-on, side and roll-over accidents. Most of the commuter cars
have A, B, C pillars (Figure 4.1). D pillars are found in station wagons, large family
cars and in Sports Utility Vehicles (SUV). Style, shape and size of pillars depends
on overall geometry of the design, crash-worthiness and aerodynamics needs of the

vehicle.

B-Pillar

CD-Pillar

A-Pillar

Figure 4.1. There are three major pillars (A, B and C) found in a
family (sedan) car. The very last column found on station-wagon cars
is named D-pillar. In this study, the very last column is represented
by 'CD pillar’.

4.2.4 Review of obscuration problems caused by pillars

The major sensory input used by drivers to maneuver and control their vehicle
is the visual perception. It was estimated that vision provides 90% of the sensory
input during driving [127]. Haslegrave discusses that binocular vision can have a
considerable affects on obscuration caused by objects in the near field of the view

[128,129]. Studies show that if binocular vision is 40% or less, the risk of accidents
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increase due to loss in correct detection and identification of objects. Poor binocular
vision decreases the ability of avoiding obstacles or making correct maneuvers [127].

It was also pointed that peripheral visual field loss significantly contributes to
real-world accidents and risk of having accidents increases with severity of visual field
loss [130]. In this context, subjects with peripheral field loss show the tendency of
compensating visual looses with lateral eye movement. This may also include lateral
movement of the neck to increase the visual field, which may increases the reaction
time [129,130].

Literature review also showed that peripheral visual detection distances decrease
considerably as the peripheral visual angle away from fovea (or line of sight) increases
[130]. This is important in cases when early detection is needed, such as negotiating
a curve or detecting a vehicle in intersection point [131].

It was also observed that incorrect identification of road environment or looked-
but-failed-to-see-errors are also a common causes of accidents. The term defines that
the driver had actually looked in the direction where the other parties were (cars,
pedestrians, road signs..etc.) but failed to see or correctly identified them. Perma-
nent obstacles close to eye can cause loss of visual field or provide lapse of cognitive
expectation (failure to scan for a particular class of road user). This eventually con-
tribute to incorrect identification of information while driving [127].

A-pillars have been identified as the main obscuration to the visual field for the
driver. Body pillars on transportation vehicles propose the issue of vision obscuration
during lane changes, in city driving, parking and cornering. Recent studies show that
pillar size and pillar angle have significant effects on obscuration during lane changes,
which have fatal and/or financial consequences (lawsuits, hospitalization) [125].

A study by Matthew Reed’s showed that A-pillars that are closer to the forward
line of sight result in high-obscuration regions that are close to the vehicle travel
path. This is linked to increased risk of crashes involving pedestrians during vehicle
cornering and turning maneuvers [132]. It was also noted, but not finalized, A-pillar

geometry may influence the turning trajectory, which can be a contributing factor
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for pedestrian accidents at intersections and/or curves [130,132]. A similar study
also showed that passenger cars have blind spots on the left side due to A-pillar
and concluded that there are visibility requirements currently in place for passenger
cars [133].

It was found that A-pillars potentially restrict essential visibility of road signs,
other vehicles, and pedestrians [126]. A similar study showed that detection of distant
targets are effected by pillar width greater than the observers inter-ocular distance
[133].

Also, a recent study provides some initial assessments on potential safety im-
portance of the location of B-pillars during lane-change crashes. It was found that
B-pillars located near for-aft position of the driver tend to be over-involved in lane-
change crashes [127,134].

According to the studies done by the Department of Transport of UK, look-but-
failed-to-see accidents are contributing 20% of all road accidents. Unfortunately,
contribution of A-pillar obscuration on failed-to-see accidents was not specified in
this study. However, it was suggested by experts that motorbikes were often obscured
from view by nearside A-pillar. In theory, A-pillars should be designed in a way to
allow optimum vision to avoid looked-but-failed-to-see accidents [135].

It was also found that thickness of the pillars have effects on failing to see an
object. Some manufacturers offer slim pillar design to increase the field of vision. It
was noted that slim A-pillar can provide better field of vision in comparison to thick
A-pillars [123,124].

In summary, one can find that pillar obscuration (especially in A-pillars) are of
potential importance in situations where the vehicle is closing in to another vehicle
in the intended line of travel and manuvering/cornering at in-city traffic [125]. B and
CD pillars may also decrease the range of visibility during in-city driving, parking,
cornering and backing-up. In each case, increase in thickness as well as lateral pillar

angle causes obscuration zones.
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4.2.5 Types of pillar obscuration

Figure 4.2 represents the obscuration zones formed by A, B and CD pillars of
a generic passenger car [123]. D pillar obscuration zone is not presented in this
image, however the very last pillar (C-pillar) in SUVs or station-wagons propose a
D-pillar-like obscuration problem. Angles between eyelipse centroids are referenced
to industry recommendations documented in SAE J941 manikin setup. According to
the SAE J941 manikin, each pillar forms a pillar obscuration angle denoted as Ay, By
and Cy [136]. It should be kept in mind that each pillar zone would have be different
angles and locations depending on overall vehicle geometry, as well as anthropometric

differences of drivers and driver’s seat location (forward-backwards, height).

A-pillar obscuration

According to the EEC 77/649 (European Economic Committee), the A-pillar angle
of obstruction should not exceed 6° [137]. This regulation strictly questions the safety
of operating vehicles when obstruction angle is bigger than 6°. Studies note that only

one-third of production vehicles meet this standard [123,124].

B-pillar obscuration

Although awareness on B-pillar obscuration is relatively insignificant when com-
pared to A-pillar obscuration, manufacturers try to eliminate wide obscuration zones
by optimizing B-pillar thickness through high strength steel frame construction. Stud-
ies show that B-pillar obscuration is more common in four-door type vehicles when
comparing to two-door vehicles, due to shorter A-B pillar distance. In other words, B-
pillars of four-door cars are much closer to drivers compartment than two-door ones,
which create larger obscuration zones. This finding gets more prominent if front seat

is adjusted backwards, which is a common practice for tall drivers [125,134].
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)
i . B-Pillar

Figure 4.2. At Top View, shaded areas on each pillar zone represents
portions of the pillars that obscure driver’s line-of-sight. The primary
parameter that affects the size of obscuration is the thickness of the
pillar. Secondarily, the angle that pillar makes with the lateral plane
has minor affects on obscuration. Thus, obscuration zone is a vari-
able phenomenon, which reflects combined affects of seating location,
posture of driver and overall vehicle design. SAE J941 manikin of-
fers recommended design standards and dictates pillar obscuration as
being a critical packaging parameter. In SAE J941, obscuration an-
gles associated with each pillar zone are denoted as Ay, By and Cy.
Location of the head-turn associated with each pillar is referred as
Ay, By and Cy. The size of each angle depends on the dimensions of
pillar thickness. Thus, each vehicle has different field of obscuration
associated with the vehicle packaging.

CD-pillar obscuration

The field of vision research in automobile design mostly focuses on forward vision

of the vehicles. Literature review shows that C and D pillar obscuration did not
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take much attention as safety and design concern. Few studies show that there is no
clear prediction of a relationship between the location of C-pillars and lane change
crashes. However, more data should be collected before coming up with a conclusion.
There is still a concern about the potential relevance of C-pillars and lane change
crashes in situations where the vehicle’s intended lane of travel is closing to another
vehicle [123,125,129].

When it comes to rear field of vision, C and D pillars are especially important
in parallel parking and backing up. This becomes a major concern while trying to
see small objects and pedestrians close to rear section of the vehicle. Large vehicles
(SUVs) with thicker pillars create a more prominent problem. Although rear field
cameras found in luxury vehicles assist driver while backing up, they still lack of
monitoring rear left and right sections of the vehicle. Even though a true rear view
coverage is provided through a camera system, this method can add extra cognitive
challenges to drivers. One need to look at a back up camera and need to be aware of

what is going on around vehicle perimeter, simultaneously.
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5. METHODOLOGY
5.1 Why is This Experiment Needed?

Literature review outlined in Chapter 1 and Chapter 2 showed that a systematic
consideration of human element in design system with a holistic coverage is either
ignored or only recognized with limitations. There are limitations in engineering
design literature in terms of integrating HFE design principles early into product
development process. Often, HFE design principles are not truly regarded as direct
contributors of the design process when compared to other contributors such as com-
puter science, graphics design and mechanical engineering. DHM offers an extended
coverage to the problem area through introducing HFE principles early in the design
process, however utilization of DHM as a design package is not fully explored. In
contrast, most of the designers consider DHM as a post-processing method for er-
gonomics evaluation of products. One of the major limitations that extenuates the
adoption of DHM as a design package is the absence of a design framework that can
link human needs, abilities and limitations with other design contributors.

Chapter 3 provided a detailed literature review on pillar obscuration problem. It
is one of the indicators of poor HFE practice in automotive design domain. Some of
the shortcomings of the obscuration problem arise from the fact that human needs,
abilities and limitation are either neglected or not thoroughly considered in vehicle
packaging. Among all the visual field related problems in vehicle packaging, pillar
obscuration found to be the most problematic, which may lead to serious injuries
and fatal accidents. However not much attention has been paid in comparison to
recent technology improvements such as entertainment consoles, engine upgrades,

alternative fuels, weight reduction and navigation.
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This experiment focuses on visual analysis of obscuration phenomena caused by
automotive pillars. A detailed study that explores the affect of pillar design on drivers
performance is conducted. Human-in-the-design framework is used a testbed to pro-
vide a high-fidelity design work-flow to incorporate form and functional aspects of
design process centered on physical and cognitive needs, abilities and limitations of
humans. Human-in-the-loop design framework is proposed as a method to link HFE
design principles early in the design process through DHM. Pillar design experiment
is conducted as a real-life design study to validate the design approach introduced in

human-in-the-loop design framework.

5.2 Design Objectives

This study provides a brief introduction to the pillar obscuration problem and
proposes an alternative design solution. The proposed design is intended to decrease
looked-but-failed-to-see errors and provides additional reaction time to drivers to
avoid possible collisions with other vehicles, traffic objects or pedestrians. There are
three main objectives proposed in this study. Each design objective is represented

through three separate experiments. Key items to meet design objectives are:

1. Identify Obscuration Problems through Eye-tracking Experiment:

Obscuration zones associated with front field will be evaluated for current and
proposed pillar designs through an eye-tracking experiment. Improvements on
field of vision will be measured in terms of accumulated number of eye-gazes,

total duration of eye-fixations and success of detecting of traffic objects.

2. Develop Driver’s Questionnaire:

Traffic Object Detection form will be filled up by subjects as they go through
static driving simulation. The goal is to detect performance of subjects in
correctly detecting traffic objects. Cooper Harper test and pillar design review
questionnaires will be distributed to subjects to measure which pillar model

gets higher (better) reviews from subjects. Results (user ratings) associated to
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proposed pillar model will be compared to ratings of current pillar model in

terms of visual, safety and aesthetic attributes.

3. Construct Finite Element Analysis to Check Structural Integrity:

A Finite Element Analysis (FEA) will be constructed to check the structural
integrity current and proposed pillar models under roof-crush loading test. Re-

sults (maximum stresses and displacements) of pillar models will be compared

with benchmark values of Federal Motor Vehicle Safety Standards (FMVSS).

5.3 Hypotheses

Design objectives in this thesis formed around four hypotheses that explore the
validity and reliability of the human-in-the-loop design framework. These hypothe-
ses also investigate effects of proposed pillar model on traffic object detection and
structural integrity of the overall vehicle. Details about hypotheses will be covered

in Chapter 5. Hypotheses associated with human-in-the-loop framework are:

1. Hypothesis #1 (H1) = For visual field analysis, correlation of visual field re-

sults (within subjects) between six trials should be at least in high correlation
(’Good’ or "Excellent’), where Intra-Class Correlation (ICC) index falls in range

of 0.6<ICC<1.0.

2. Hypothesis #2 (H2) = For each subject, visual detection of road elements with
Proposed Pillar (New Pillar) design and with Current Pillar (Old Pillar) design

are significantly different.

3. Hypothesis #3 (H3) = Proposed Pillar (New) design is significantly better than

Current Pillar (Old) design in terms of concept design criteria; forward (A-

pillar), side (B-pillar) and rear field (CD-pillar) visibility.

4. Hypothesis #4 (H4) = Mean values of maximum forces and displacement val-

ues for front, side and rear loading on Proposed Pillar (New) design are not

significantly different than Current Pillar (Old) design.
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5.4 Overview of Experimental Setup

There were three experiments performed in this study (Figure 5.1). Experiment-I
and Experiment-II use the same simulation components with a slightly different data
collection strategy. Experiment-I is a visual detection/obscuration zone experiment,
which includes subject data collection through an eye-tracking device. In this ex-
periment, subjects performed visual detection tasks of traffic objects in a stationary
driving simulator environment, where static images of an automobile interior (driver’s
point-of-view of windshield) and a traffic scene were projected on a LCD monitors.
Specifically, subjects were asked to detect traffic objects (pedestrians, bicycles and
motorcycles) on A-pillar obscuration zone for two types of pillar models: Old Pillar
and New Pillar. Old Pillar model represents solid pillars that drivers see in regular
cars. New Pillar model represents a modified version of solid pillars with see-through
gaps. In Experiment-II, same static traffic objects and images represented the sim-
ulation environment were projected on LCD display. In contrast, subjects asked to
detect traffic objects for A, B and CD pillars with two different pillar models (New
and Old Pillar) without an eye-tracker device. Subjective feedback and driver’s per-
formance related data were collected through three assessment methods: Object De-
tection Form, Cooper-Harper Test and User Questionnaires. Finally, Experiment-II1
was conducted to evaluate structural differences between Old and New Pillar model.
Finite Element Analysis (FEA) study was used as a method to validate the structural
integrity of the vehicle frame according to Federal Motor Vehicle Safety Standards
(FMVSS) of roof-crush resistance test (article No-216) [138]. Experiment-IIT did
not include any subject data collection. It was executed in a computer simulation

environment with digital manikins representing 95" percentile of male population.

5.5 Common Components of the Experiment

This study proposes a novel pillar design model to increase driver awareness and

reaction time for positive identification of other vehicles, pedestrians and other road
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Design of Experiment

[ ]

Expriment - | Experiment - Il ‘ Experiment - IlI ’
(eye-tracker) (traffic object detection) (structural integrity)

Figure 5.1. This study includes three types of experiments: Eye-
tracker subject-data collection, Questionnaires subject-data collec-
tion and structural integrity. Experiment-I includes human subject
data collection through a static simulator and an eye-tracker device.
Experiment-II uses various subjective data collection methods to cap-
ture subject’s perception and performance related data without the
eye-tracker device. Experiment-III is a FEA to validate the structural
integrity of New Pillar design under FMVSS roof-crush test.

elements. A see-through pillar design is conceptualized with openings that let drivers
to see pillar obscuration zone found in solid pillars. Proposed pillar model provides
visibility improvements through minimizing obscuration zones. In theory, the con-
cept idea has the potential to be a successful pro-active safety feature in modern cars,
however validation is required to assess the fidelity of the theory and implementation.
A set of objective and subjective experiments are designed to gain a thorough un-
derstanding about the pillar obscuration phenomena and its physical and cognitive
affects on drivers performance. The goal is to provide a see-through-space for drivers
to improve their visual zone, which would ultimately have positive affects on driving

safety.
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5.5.1 Reference vehicle, pillar models and body frame

Throughout this experiment two pillar models are used: Old Pillar and New
Pillar. Old Pillar model represents a generic solid pillar found on regular cars. New
Pillar model is a modified (reverse-engineered) version of Old Pillar with see-through
spaces providing a minimized obscuration area to driver. Each pillar has exactly same
dimensions and surface finish. The only difference is the holes that were cut-out on

New Pillar model.

Reference Surface Model

Solid Body Frame

Figure 5.2. Body frame that acts as a chassis was constructed based on
referenced CAD surface geometry. Image shows inner skeletal section
(body frame) and outer surface model.

The shape of the see-through holes could be different depending on the functional
and form aspect of vehicle packaging. In this experiment a four-door family sedan is
used as a reference vehicle. CAD model of the car was based on a Volkswagen family
sedan named 'Phaeton’. Pillar models were constructed with referenced to geometry
and dimensions of Phaeton model provided in open-source blueprint and surface mod-
els (Appendix C) [139-142]. These models were used as wire-frame references and

means of representing overall vehicle dimensions. Based on these reference geometry,
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modifications were made to create surface and solid CAD designs associated to new
and old pillar models as well as the body-frame.

Although each vehicle has different pillar dimensions, the CAD model used in
this study carries very similar pillar dimensions with some popular four door family
sedans (Honda Accord, Nissan Altima, Mazda 6, etc.). Thus, similar pillar dimen-
sions provide a more comprehensive understanding on pillar-obscuration phenomena.
CAD model was used as the reference vehicle geometry throughout this study. In
Experiment-I11, a solid inner frame (chassis) was constructed based on the reference
surface model. Figure 5.2 shows CAD models associated with A, B and CD pillars.
Elliptical see-though shapes were cut-out to construct New Pillar model, which is a

one-to-one replica of a regular solid pillar model (Figure 5.3).

Current A-Pillar model

See-through

Figure 5.3. Two types of pillar models associated with A, B and CD
pillars. Current Pillars are composed of solid bodies, whereas New
Pillars are composed of see-through spaces.
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5.5.2 Pillar obscuration and driver posture setup

Providing see-through pillars on vehicle packaging could help drivers to anticipate
hard-to-see points that fall within angle of obscuration (Ag, By and C'Dy). This design
challenge was tested through a group of obscuration scenarios that represented a real
traffic condition. Three types of pillar obscuration scenarios were conducted in this
study. To address each pillar obscuration scenario, three digital manikins coming
from 95" percentile male population were created through CATIA’s anthropometric
library. Each manikin was assigned to the associated A, B and CD pillar obscuration
scenario. These scenarios are covered in details throughout next section.

Orientation of driver’s seating location and postures associated with A, B and CD
pillar obscuration were generated according to actual vehicle packaging dimensions,
which were based on blueprints [139]. Posture assignment incorporates some of the
vehicle packaging elements including seat section, steering wheel, accelerator and foot-
rest. Thus, a realistic CAD model with high-fidelity postures were incorporated to
represent obscuration problem in a realistic traffic situation. Figure 5.4 demonstrates

steps taken for generating a manikin with referenced packaging dimensions.

5.6 Overall Procedure and Summary of Data Collection

Throughout this experiment subjects were asked, with the help of the experi-
menter, to take a comfortable driving posture in front of a static driving simulator,
and complete a series of short traffic object detection experiments. Before the exper-
iment started, subjects were asked to work on an eye-tracker calibration task. This
task included making a normal eye contact with an eye-tracker device in front of
the front-facing LCD monitor. Traffic object detection experiments were based on
visual detection tasks, where subjects worked on detecting traffic objects that were
projected to LCD monitors. There were three different pillar types (A, B and CD
pillars) associated with two different pillar models (Old and New pillar models). Sub-

jects were asked to detect traffic objects that were located behind the pillar area - or
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within the obscuration angle. Static traffic objects were projected in randomized or-
der. After each subject completed Experiment-I, he/she proceeded to Experiment-II
with a short break. Experiment-II included filling up Object Detection form and a
Cooper-Harper Test associated with each pillar type (A, B and CD). Finally, subjects
were asked to complete a two user experience questionnaires. First questionnaire was
composed of two sets of sub-questionnaires, which are designed to assess pillar models
used in this experiment. The last questionnaire was intended to collect data about
subject’ pillar obscuration related daily driving experiences. Experimental proce-
dures and equipment used in this experiment were approved by Purdue Institutional

Review Board (IRB) (Appendix-A). Procedures followed during the experiment were:

1. Subjects were asked to provide height and weight related data on human sub-
ject log. This step was intended for screening for exclusion and constructing

referenced DHM manikin. This manikin was used in generating driving posture

(Figure 5.4) and FEA analysis.

2. Subjects were asked to take a comfortable driving posture according to their

seat adjustments. This included raising-lowering and tilting the seat.

3. Experiment started with eye-tracker calibration. This included a step-by-step
eye-gazing to gather subject’s eye motion behavior. Eye tracker was only used

for A-pillar traffic object detection tasks.

4. After eye tracker calibration was completed, subjects worked on various visual
detection tasks. As the computer simulator turned on, subjects were asked to
make field-of-sight observations on static images projected to the LCD mon-
itor. During simulator experiment, there were three different types of pillars
corresponding to two different pillar models. There were two different traffic
objects projected behind the pillars. Traffic objects were composed of what a
driver could normally see on public road (vehicles, pedestrians, bicycles). Pillar
model, pillar type and traffic objects were randomized. Each task was repeated

six times.
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5. Each simulator task took around three seconds. Subjects were asked to fol-
low automated simulation with each traffic scenario shuffles automatically after

three seconds. Subjects take a short break after completing Experiment-1I.

6. In Experiment-II, subjects filled up Traffic Object Detection Forms as static

simulation images shuffle randomly with three seconds between each other.

7. For each pillar model (Old and New), subjects were asked to fill up a modified
Cooper-Harper test after completing each A, B and CD pillar Object Detection

Form experiment, sequentially.
8. After simulator tasks, subjects were asked to fill up three short questionnaires.

9. After all simulator tasks and questionnaires were completed, subjects were re-

quired to sign off human subject log, and exited the experiment.

Table 5.2 shows estimated duration associated to each task. In this experiment,
there were a total of 72 Object Detection Forms, 6 Modified Cooper-Harper Tests and
3 user questionnaires were used. Each subject was required to go-through all phases
demonstrated in Figure 5.5 to successfully complete the experiment.

In this experiment, each subject was asked to finish a calibration task (takes
around 5 minutes) and worked on object detection (obscuration test) experiments for
2 traffic objects for 3 pillar types (A, B and CD) and 2 pillar models (Old and New
Pillar). Each task was replicated six times. Thus, each subject went through 72 (2 x 3
x 2 x 6) tasks, corresponding to: pillar model x pillar type x traffic object x replication.
Obscuration tasks took around 1.5 minutes (3 seconds per task). There were a total
of 72 Object Detection Forms (each takes 15 seconds), 6 Modified Cooper-Harper
Tests (each takes 1-2 minutes) and 3 questionnaires (each takes 3-5 minutes) given

to each subject.
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Table 5.1
Estimated specific times and total time associated with each task

Task Breakdown Individual Times Replications Total Time
Calibration 5 minutes 1 5 minutes

Eye-tracking 3 seconds 24 1.5 minute
Obscuration Task 3 seconds 72 4.5 minutes
Object Detection Form 15 seconds 72 20 minutes
Cooper Harper Test 2 minutes 6 12 minutes
Questionnaire 5 minutes 3 15 minutes

~60 minutes

5.7 Overview of Variables and Data Types

There were three experiments conducted in this study. Each experiment was
composed of multiple variables. Experiment-I and Experiment-II involved human-
subject data collection. In Experiment-I, subjects’ eye-movements were collected
through an eye-tracker device. Eye-movements data had three variables: Fixation
Duration, Coordinates-X and Coordinates-Y. Experiment-II composed of three sub-
experiments: Traffic Object Detection form, Cooper-Harper tests and user question-
naires. Variables associated with Experiment-1I were: Object Detection, Perfor-
mance, Ease of Detection, Design Review and User Feedback. In Experiment-III,
Finite Element Analysis (FEA) was conducted to assess the structural integrity of
pillar designs under FMVSS roof-crush test. FEA analysis was evaluated by Dis-
placement and Stresses. Table 5.2 summarizes types of data, variables, units, and

hypotheses associated with experiments conducted.
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Table 5.2
Types of data, variables, units, and hypotheses associated with ex-
periments conducted in this study

Variables Units Expt.-1 Expt.-2 Expt.-3 Hypotheses
Fixation Duration Milliseconds ° H1, H2, H3
Coordinates-X Pixels . H1, H2, H3
Coordinates-Y Pixels ° H1, H2, H3
Object Detection  Binary . H1, H2, H3
Performance Binary ° H1, H2, H3
Ease of Detection = Rating/Score . H1, H2, H3
Design Review Rating/Score o H1, H2, H3
User Feedback Rating/Score ° H1, H2, H3
Displacement Millimeters ° H4

Stresses Newtons . H4

5.8 Random Error and Systematic Error

Every experiment that involves data collection through a measurement device is
subject to produce unintentional errors, which generate statistical fluctuations in col-
lected data. Often, these errors result from experimenters inability to replicate the
identical conditions during data collection. The degree of presence and frequency of
such errors can predict the success of the measurement. These errors occur through-
out the experiment, and allocate all chance factors that are associated with the mea-
surement. We can classify measurement error in two major categories: random and
systematic errors [143,144].

Random errors are caused by unknown, uncontrolled and unpredictable changes
in the data collection process. Any unknown variation in the measuring device (e.g.,

electronic noise) can affect the precision of collected data.
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Figure 5.6. Potential random and systematic error pathways associ-

ated with eye-tracking experiment.

Systematic errors, similar to random errors, are also generated without intention.

However, they often happen due to erroneous use of instruments and/or uncontrolled

environmental conditions, which affect the accuracy of data collection.

It is practically not feasible to eliminate all random and systematic errors gener-

ated during data collection. In this experiment, the eye-tracker device (e.g., calibra-

tion and noise) and human subjects (e.g., positioning and posture) can be considered

as potential contributors of such errors (Figure 5.6), which might have a systematic bi-

asing effects on data collection. In order to minimize the biasing effect of uncontrolled

errors, every experiment step and equipment calibration were carefully examined and

executed systematically throughout each experiment.
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Validity and reliability of data collection depend on the amount of random and
systematic errors occur in an experiment. A measure that generates low random
error and low systematic error should be considered acceptable, as it is both valid
and reliable [77,145]. Starting by the following section, methods and assumptions

that examine validity and reliability of the data are covered in details.

5.9 Summary of Statistical Techniques

A summary of independent variables and dependent variables in as well as random
and standard error were summarized in previous sections. A detailed information
about (M)ANOVA and ICC were documented. This section summarizes statistical
techniques used for analyzing data, as well as methods and goal of measurement
(Table 5.4). Starting by Chapter 6, each experiment is analyzed in details through

utilizing statistical methods described in this section.

Table 5.3: Summary of methods of measurement, goal of
measurement, statistical, numerical and visual methods

associated with hypotheses

) Method of Goal of Statistical, Numerical
Experiments
Measurement Measurement and Visual Methods
Experiment-I Eye-tracker Areas of Interest Descriptive Statistics
Bar Graphs
Heat-maps

Burnout Images

Validity ANOVA
MANOVA
Reliability ICC

Cronbach’s Alpha

continued on next page
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Table 5.3: continued

) Method of Goal of Statistical, Numerical
Experiments

Measurement Measurement and Visual Methods

Experiment-II  Detection Form Detection Performance Descriptive Statistics
Bar Graphs
Cooper-Harper  Design Improvement Descriptive Statistics
Line Graphs
Questionnaire User Preference Descriptive Statistics
Bar Graphs
Internal Consistency Cronbach’s Alpha

Experiment-1II FEA Structural Integrity Descriptive Statistics
Stress & Displmnt.
Bar Graphs
Correlation ICC

Pearson
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6. EXPERIMENT - I

6.1 Introduction
6.1.1 Overview

Experiment-I involves a human data collection in a static driving simulator (Figure
6.1). Simulation setup was composed of a large monitor, steering wheel, pedals and
adjustable seat. Subjects were asked to take a driving position in front of a large
monitor, which represents the driver’s side of the windshield and dashboard area.
Driver’s point-of-view of a traffic scenario was projected as still images. Subjects
worked on visual detection tasks to identify traffic objects found behind A-pillar
area through eye-gazing on the monitor. Purpose of this experiment was to collect
eye-gazing data of drivers through a eye-tracking device. Research question posed

whether pillar models and/or traffic objects have effects on eye-tracking data.

Design of Experiment

[ ]

Expriment - | Experiment - Il ‘ Experiment - IlI ’
(eye-tracker) (traffic object detection) (structural integrity)

Figure 6.1. Experiment-I is a human subject data collection experi-
ment through an eye-tracker device and a static simulator setup.
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6.1.2 Connections to human-in-the-loop design framework

Experiment-I demonstrates how human related data could be connected into
human-in-the-loop design framework. In this specific design study eye-tracker de-
vice with a static simulator setup was used as means of collecting human subject
data. Shaded area in red Figure 7.2 shows how data collected through eye-tracker
and simulator setup was integrated to DHM. Similarly, Figure 7.3 demonstrates a vi-
sual synopsis of how Experiment-I was integrated to DHM within human-in-the-loop

framework.

Digital Human Modeling

Environment
4 N\ 4 N\ /

Eye-Trackin / 1. Clash Detection
i ° 2. Coverage Zones

3. Kinematics

Method of Human Data Input Motion Output
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Rendering Output
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Visualization
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£
£
£

; 1. Posture
. Static / 2. Virtual Reality
Simulator Env. i
3. Rendering
4. ...
L J \ /

Method of Environment Input

Figure 6.2. Shaded area in red (with dashed lines) represents how
Experiment-I was integrated to data flow process within human-in-
the-loop framework. Experiment-I gathered human subject related
data through an eye-tracker device and a static simulator.
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Figure 6.3. Shaded area in red (with dashed lines) represents whic
portion of the human-in-the-loop design framework was used to inte-

grate human aspects of data during design process.

6.2 Experimental Setup

6.2.1 Eye-tracker and simulator setup

An eye-tracker device from EyeTribe (The EyeTribe Tracker) was used as a method

to capture pixel correspondences of eye movements of subjects on a large monitor

[146]. Static images that represent what a driver would be seeing when driving an

automobile were projected to LCD monitor as static images (Figure 6.4).
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Eye-tracker device has a sampling rate of 60Hz and can capture eye movements
with accuracy of 0.5 to 1 degrees. It uses a super-speed USB 3.0 port for power and
data transfer. Throughout this experiment a 9-point calibration template was used
for calibrating a 24 inches LCD monitor.

Eye-tracker

Steering Wheel

Tape Lines | CD Display Photo Camera

Reference Blueprints

/
$
—
.,
™,

Figure 6.4. Simulation setup in Experiment-1 consisted of an eye-
tracker, an LCD display, a Logitech gaming steering wheel with ped-
als, a generic adjustable office seat and a photo camera. Eye-tracking
device was used for capturing subject’s eye-movements. Static im-
ages that represented driver’s point-of—view of the windshield were
projected on a LCD display. A Logitech steering wheel with pedals,
and a generic adjustable chair were provided to subjects. Location
of experimental components and seating position of the subjects were
based on actual blueprints. Subjects had the flexibility of adjusting
seat position (back-and-forth, incline) within the boundaries shown
on blueprints.
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During data collection, subjects sat on an adjustable seat roughly 50cm away from
the eye-tracker device. Subjects were able adjust seat location (back and forth, up
and down, recline). Seat location was bounded by the referenced interior layout taken
from CAD vehicle model (blueprint) (Figure 6.4).

In addition, a photo camera on a tripod setup was used for capturing head and
upper body position of subjects in reference to tapelines that were stuck on a front-
facing wall. These images were solely used for gaining understanding about driver’s

posture.

6.2.2 Traffic objects

There were a total number of 24 (2 x 2 x 6) static images representing 2 traffic
objects (either a bicycle or a pedestrian) located behind the A-pillar zone for 2 pillar
models (Old and New) with 6 replications. Each image stayed on the monitor for
three seconds. After three seconds, simulation setup proceeded to the next image.
Images were randomly shuffled.

Total number of images shown in driving simulator split between Old Pillar and
New Pillar model, where subject either saw a solid pillar (Old Pillar) or a see-through

pillar (New Pillar), accordingly.

Table 6.1: Traffic scenarios for A-pillar obscuration for

two pillar types with trials

Pillar Model  Pillar Type Traffic Objects Trials

Current Pillar A Pedestrian 6
Bicycle 6
New Pillar A Pedestrian 6
Bicycle 6




Pedestrian

L

Figure 6.5. Two traffic objects were used interchangeably. Images
represented a pedestrian or a biker were projected in a randomized
order during static driving simulation. Each traffic object was located
within the A-pillar obscuration angle (Ay).
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Figure 6.5 shows visual setup of traffic objects according to the vehicle’s location.
Each traffic object falls within obscuration angle of Ay. Either a biker or a pedestrian
was placed within obscuration angle. Static images on the lower-right corner for each
traffic object demonstrates the street view of what driver’s would be seeing during
simulation. These images were based on the Google Map street view images explained
in previous chapter. Figure 6.5 only demonstrates how a biker and a pedestrian were
situated at the pillar obscuration zone for New Pillar design. During Experiment-
I, the exact traffic objects but for solid pillar were also presented to subjects in

conjunction to see-through pillar.

6.3 Procedure

Throughout Experiment-I static driving simulator setup presented in Figure 6.4
was used and eye-tracker device was utilized for capturing subject’s eye-movements
through static images projected on a LCD monitor. Each image represented a traffic
scenario associated with two different traffic objects for two pillar models. This
experiment solely focused on A-pillar obscuration. Data flow is summarized in Figure

6.6. Specific procedures to follow in Experiment-1 were:

1. Subjects were asked to take a comfortable driving posture according to their

seat adjustments. This includes raising-lowering and tilting the seat.

2. Eye-tracker device was adjusted to accommodate subject’s seating preference
and checked if it was able to capture eye-movements. (Subjects binocular field-
of-vied should be inside the active green zone, which represents active area of

eye-tracking.)

3. Experiment started with eye-tracker calibration. This includes a step-by-step
setup to gather individual eye motion behavior. Subjects were asked to follow

a moving red dot between 9 points shown on the screen.



Driving Posture

—©

(W THE" ' “TRIBE

(SMS24A850 (1920x1200) Pr

Eye-tracker Setup

—®

Calibration

e

Data Collection

—®
B I s e

Figure 6.6. Experiment-I involves a static driving simulator to capture
eye-movements of subjects. It starts with subjects taking a driving
posture, orienting eye-tracker device according binocular field, fol-
lowed by calibration and finally with data collection.
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4. After eye-tracker calibration was completed, subject worked on various visual
detection tasks. As the computer simulator turned on, subjects were asked to
make field-of-sight observations of traffic objects projected to the LCD monitor.
During simulator experiment, there were two types traffic objects (biker or
pedestrian) corresponding to two different pillar models (Old of New Pillar
model). Traffic environment was composed of what a subject could normally
see when he/she is driving on a public road (Figure 6.5). Pillar model, pillar
type and traffic objects were projected in randomized order. A total of 24
images were used throughout this experiment. Each image only stays on LCD
monitor for three seconds and shuffles randomly. Each task was repeated six

times.

6.4 Variables

In Experiment-I, subjects’ eye-movements were collected through an eye-tracker
device. Primarily, there were three independent variables of interest, encompass-
ing: 1. Types of Pillars, 2. Traffic Objects and 3. Trials. These variables were
used for generating a 3-way ANOVA/MANOVA analysis. On top of primary inde-
pendent variables, three more independent variables were included to extend this
study. Additional independent variables were: Gender, Driving Experience and Use
of Glassess. Through the introduction of 3 more independent variables, a 6-way
ANOVA/MANOVA study was conducted. Three dependent variables of interest in
this study, includes: 1. Fixation Duration, Coordinates-X and Coordinates-Y.

Coordinates-X and Coordinates-Y data represents pixel-correspondences of each
subjects’ eye-movements superimposed on the monitor. Fixation Duration represents
the intensity (or duration of eye-movement) fixated on a single point of observation
(X,Y). Table 6.2 and Table 6.3 summarizes types of data, variables, units, and hy-

potheses associated with experiments conducted.
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Table 6.2
Types of data, variables, units, and hypotheses associated with ex-
periments conducted in this study

Independent Variables Levels Hypotheses
> Types of Pillar Old,New H1, H2, H3
z
g Traffic Objects Pedestrian,Bicycle H1, H2, H3
8

Trials 1,...,6 H1, H2, H3
75 Gender Male,Female H1, H2, H3
S
§ Driving Experience Low,Medium,High H1, H2, H3
<< Use of Glasses Glasses,No Glasses H1, H2, H3

Table 6.3

Types of data, variables, units, and hypotheses associated with ex-
periments conducted in this study

Dependent Variables Units Hypotheses

Fixation Duration Milliseconds H1, H2, H3
Coordinates-X Pixels H1, H2, H3
Coordinates-Y Pixels H1, H2, H3

6.5 Experimental Design

There were two different ANOVA/MANOVA studies performed in this study.
First study was a 3-way ANOVA/MANOVA model, which was composed of three
(primary) independent variables (Types of Pillars, Traffic Objects and Trials). An
additional 6-way ANOVA/MANOVA study was conducted to further expand the
primary 3-way model. Each model used same dependent variables summarized in
Table 6.3. Besides these studies, several statistical studies were performed to analyze

eye-tracking data. Statistical techniques used in this study are covered in Section 6.7.
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6.5.1 Hypotheses and linear model for a three-way factorial analysis

The primary interest in ANOVA/MANOVA study was to explore whether pillar

types, traffic objects or trials have effect on the eye-tracking data. Hypotheses to

setting up factorial analysis and mathematical equation with associated factors are

summarized below.

e HO:
H1:

o HO:
H1:

o HO:
H1:

torLp = Unew (no effect of pillar models)

HO is rejected

HPedestrian — H’Bicycle (no eﬁGCt Of tmﬁic 0bj€Ct$)
HO is rejected

Uty = pr2 ... pre (no effect of trials)
HO is rejected

The basic mathematical model can be expressed in terms of the parameters of a

linear model as:

2—way
N\

Ve

Yijee = p+ i + B + v + (aB); + (), + (BV)jk +(aBY)ijr + Eijhe (6.1)

Yijw: dependent variable

w: overall mean

«a; : pillar type (i = OLD, NEW)

B, « traffic objects (j = Pedestrian, Bicycle)
i : number of trials (k = 1,...,6)
(aB)ij,(ay)ik,(57)jk: two-way interactions
(af8y)iji = three-way interaction

€ijkt - error term
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6.5.2 Hypotheses and linear model for a six-way factorial analysis

This study was performed on top of the 3-way model with consideration of 3 addi-
tional independent variables, encompassing: 1. Gender, 2. Driving Experience and 3.
Use of Glasses. In this study interaction effects were ignored since more than 3 inter-
actions are hard to interpret for statistical significance on a large ANOVA/MANOVA
study with varying levels. The purpose of this study to gain an additional under-
standing on top of the 3-way ANOVA/MANOVA conducted previously, especially
exploring effects of additional independent variables on Types of Pillar, Traffic Ob-
jects and Trials. The basic mathematical model can be expressed in terms of the

parameters of a linear model as:

2—way 3—way
7\ 7\

Y;jkmnpt =p+o;+ Bj + Yk + 5m + on + )‘p + (a"")\)ijk:mnp + (a""/\)ijkmnp
4—way 5—way (62)

(e N ity (A gy T(ABVILN) ijhmnp + Eigromnp

Yijkmnpt: dependent variable

w: overall mean

«a; @ pillar type (i = OLD, NEW)

B, : traffic objects (j = Pedestrian, Bicycle)

v, - number of trials (k = 1,...,6)

dm : gender (m = Male, Female)

©n : driving experience (n = low, medium, higih)

A, @ use of glasses (p = glasses, no glasses)

iS]

e

. N)ijkmnp: two-way interactions

Q

. N)ijkmnp: three-way interactions

Q

- N)ijkmnp: four-way interactions

Q

e A)ijkmnp: five-way interactions

(
(
(
(
(aBYIPN)ijkmnp: Six-way interactions

Eijkmnpt - €ITOr term
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Equation 6.2 can be expanded with including every 2, 3, 4 and 5 way interactions:

szjkmnp?ﬁM+al+ﬁj+7k+5m+(pn+)\p

(ifBj) +
+(Bvk) +
i +

(i)

(B
(VePn)

+(O‘i7k5m> + (

_|_
+

_|_

(0 8j7k0m) +
+(aiBi0mAp)

(a;i0mAp) +
(BimeAp) +
(VeOmn)

(O‘f)/k%on )
(63’)%@” )

(cive)

+ (’Vk)‘p) +

+ (i B;0m) +
4 YkPn)
(aipnAp) +
(Bj0mpn) +
+ (Ve0mAp) +

(aiﬁj7k90n>
+ (Olzﬁ]@n)\ ) +

(041 mPnA )
(BJ mPnA )

(citpn)
Om) + (Bjpn) +
(5m90n) +

(8;

(O

(aiBjeon) +
+ (arAp) +
(Bik0m) +
(Bj0mAp) +
(VepnAp) + (Omendp) |

+ (iBiyiAp) +

(c

(BiVk0men) +
(fYk(SmSOn/\P)

( 17k6m<pn

+(O‘zﬁj'}/k6m90n)\p) + Eijkmnp

6.6 Participants

6.6.1 Population estimates

p) +

+ (@ip)
)‘p) + (’kam)
Ap) + (PnAp) i

(iBjAp)

(ati0mpn)
(Bjeen)
(BjenAp)

(6.3)

(ai6j5m90n>
+ (O‘z/Yk(Sm)‘P)
(ﬁijk(Sm)\zJ

(Oézﬁg’YkSDn)\ )
(B Vk0mpnAp)

Before starting to any experimental analysis that involves human subjects, the

very first statistical step to be performed is to make estimates about the population
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(i.e., pilot study). The main goal of the pilot study is to estimate the number of
subjects required to gain a statistical power. Pilot study also provides an additional
insight about the total time required for conducting experiment as well as procedures
to accommodate subjects during data collection [147].

There are various methods to estimate sample size. One of the most common ways
is to use a sample size estimation based on the mean and standard deviations from
pilot studies. In this method, one can assume that the collected sample mean differs
from the population mean (u), where the difference between sample and population
mean can be treated as an error factor. Therefore, through the differences of means,
a sample size with desired margin of error is measured [148, 149].

Based on the means and standard deviation retrieved from a pilot study, the
sample size can be calculated to estimate the total number of subjects required for
human data collection. In this study, Equation 6.5 is used for estimating the sample

size with a confidence of 1 — «, where the mean value of u to be within + E.

o
E=7Z, — 6.4
2 {ﬁ} o4
Za/2 X o 2
= | =22 6.5
0= 2] (6.5)
where,
E: is maximum difference between the pilot and the population mean

Zqso:  critical value, the positive Z value that is wihtin the area of /2 at
the right tail of the standard normal distribution
o: population standard deviation

n: sample size

6.6.2 Pilot study

A sample size calculation to estimate the population mean was performed through

using Equation 6.5. Data collected from four different pilot studies (on Fixation Du-
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ration) resulted with average standard deviation of ~400 and the maximum allowable
difference (+ E) of ~150. From pilot study results, one can calculate the /2 value

(0.05 - 0.025 = 0.475), which equals to Z(0.475) = 1.96.

Zoja x 0] [1.96 x 400
= | | =|—""""| ~2 .
o [Fee 22| [RER] a (6.6)

Above sample size calculation assumes the normality of the data and suggests
that around ~27 subjects would be sufficient to achieve a 95% confidence. However,
the pilot study resulted with a slightly skewed data. Number of replications were
increased to six - to gain a thorough understanding of pillar-obscuration problems
and to reach a desired statistical power. Therefore, each task was replicated six times
(instead of twice) to lessen the biasing effects of violations from normality and to

reduce the potential measurement errors (i.e. random and systematic errors).

6.6.3 Summary of subjects

A total of 48 subjects, 28 male and 20 female, participated in this study. The
overall mean of the standing height was ~174cm and mean weight was ~70kg. The
mean standing heights and weights were 179cm and 78kg for males, and 167cm and
59kg for females. The average height and weight values are close to the 50" percentile
standing height of North American population - 179c¢cm and 165cm for female and
male subjects respectively (Table 6.4). The range of standing height was between
157cm and 194cm, which covers 35" percentile female (160cm) to 95 percentile
male (194cm) according to CATTA anthropometrics data base [150].

Around 4% of the subjects rated their driving experience as "High’, which indicates
a person who drives relatively longer distances than a daily driver. Majority of
subjects (65%) identified themselves as daily drivers (Medium). Around 30% of the
subjects rated their driving experience as "Low’, which refers to a very minimal driving
or not driving at all (Table 6.5). The use of glasses (including contact lenses) was

evenly distributed within the population (Table 6.6).



Table 6.4

Descriptive statistics - Weight (kg) and Height (cm)

Gender N Minimum Maximum Mean Std. Dev.

Male Height 28 165 194 178.61 6.91
Weight 28 64 106 7779 11.66

Female Height 20 157 180 166.70 5.15
Weight 20 48 77 59.25  8.45

Total Height 48 157 194 173.65 8.57
Weight 48 48 106 70.06 13.86

Table 6.5

Descriptive statistics - Driving Experience

Frequency Percent
High 2 4.2
Medium 31 64.6
Low 15 31.3
Total 48 100.0
Table 6.6

Descriptive statistics - Use of Glasses

Frequency Percent

No Glasses 24
Use Glasses 24
Total 48

50.0
50.0
100.0

6.7 Data Analysis and Statistical Techniques

112

In this section an in-depth analysis was provided on eye-tracking data, which

is composed of Fixation Duration, Coordinates-X and Coordinates-Y. Based on the
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hypotheses summarized in Table 8.2, statistical analyses were performed and results
were categorized. First of all, raw data was transformed into a compound data by
Weighted Moving Averages technique discussed in Equation 6.7. Later, descriptive
analysis was performed on independent and dependent variables. Starting by next
section comparison between 'Pillar Models’, "Traffic Objects’, 'Driving Experience’,
"Use of Glasses’ and Trials’ were tabulated. Normality assumptions were checked.
Logarithmic transformation was applied to data that showed weak normality, so that
data more closely meet normality assumptions. A combination of Analysis of Variance
(ANOVA) and Multivariate Analysis of Variance (MANOVA) studies were conducted
to assess whether or not results are significant. Finally, areas of interest analyses were
performed to interpret statistical and visual differences between Current Pillar and

New Pillar design.

6.7.1 Transformation of raw data to compound data
Weighted moving average

Eye-tracker data provides information related three types dependent variables:
Fixation Duration (in milliseconds), Coordinates-X (pixels) and Coordinates-Y (pix-
els). Fixation Duration represents a time dependent variable, which refers to how
long subject’s pupils get fixated to a specific point (X and Y coordinate). Fixations
are associated with areas of interest, where a subject pays significant attention to a
specific point (X,Y). The duration of fixations are relatively longer than eye-gazing
(random eye-movements without fixation).

It was seen in raw data that each subject had an average of four major fixations per
image presented on simulation display. Weighted Moving Average (MWA) method
was used for creating a compound data set (Equation 6.7), which aggregated four
fixations into a single fixation reading [151,152]. Within WMA approach, Fixation

Duration was considered as the weighting factor for each X and Y coordinate. Higher
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the Fixation Duration (intensity), more time that subjects spend on associated point

(X and Y coordinates).

> WixVi
WMA=" (6.7)

n

> Wi

i=1

where,

WMA: Weighted Moving Average

W: weights (Fixation Duration)
V: actual X and Y coordinates associated with each Fixation Duration
n: number of data points

Fixation coordinates and fixation duration

Throughout Experiment-I, moving weighted average technique was used and com-
pound data was formed after applying equation 6.7 to raw data. The bubble graph on
Figure 6.7 demonstrates distribution of X and Y coordinates, and relative size of the
Fixation Duration associated with each point (X,Y). Coordinates-X and Coordinates-
Y (pixel-by-pixel correspondences of eye movements) were superimposed on simula-
tion display. At any specific point, larger the diameter of a bubble, longer the fixation

duration.

6.7.2 Descriptive statistics

A total of 1152 (48 subjects x 2 pillar models x 2 traffic objects x 6 trials) data
set were collected during Experiment-I. Each data set was was composed of Fixation
Duration, Coordinates-X and Coordinate-Y outputs.

Starting from next page a series of tables provided to summarize compound data.
Table 6.7 represents overall descriptive statistics for Fixation Duration and Fixation

Coordinates (X,Y). Tables from 6.8 to 6.12 summarize distribution of the eye-tracking



115

o (Coordinates X, Coordinates Y)
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Figure 6.7. Fixation duration and coordinates data superimposed on
simulation display. Area of the bubbles represent the duration of
fixations.

data over independent variables of Gender (Male vs. Female), Pillar Types (Old vs.
New pillar), Traffic Objects (Bicycle vs. Pedestrian), Use of Glasses (Glasses vs. No
Glasses), and Driving Experience (Low, Medium and High).

Table 6.7
Summary of Fixation Duration and Coordinates (X,Y)

Variables N Min. Max. Mean Std. Dev.

Fixation_Duration 1152 10 1988 373.50 194.34
Coordinates_X 1152 10 1686 503.67 350.15
Coordinates_Y 1152 106 880 602.16 82.88




Table 6.8: Descriptive statistics for Subjects
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Gender Dependent Var. N~ Min. Max. Mean Std. Dev.

Male Fix_Duration 672 10 1988  381.05 217.43
Coordinates X 672 10 1686  502.17 360.25
Coordinates.Y 672 106 880  600.81 88.56

Female Fix_Duration 480 104 1969 362.94 156.00
Coordinates X 480 28 1558  505.78 335.85
Coordinates Y 480 341 836  604.05 74.23

Table 6.9: Descriptive statistics for Pillar Types

Pillar Types Dependent Var. N Min. Max. Mean Std. Dev.

Old Pillar Fix_Duration 576 89 1969  347.63 157.77
Coordinates X 576 33 1686 663.02 361.23
Coordinates .Y 576 252 858  601.89 91.71

New Pillar Fix_Duration 576 10 1988  399.38 222.19
Coordinates X 576 10 1659 344.33 253.10
Coordinates .Y 576 106 880  602.43 73.06

Table 6.10: Descriptive statistics for Traffic Objects

Traffic Objects Dependent Var. N Min. Max. Mean Std. Dev.

Bicycle Fix_Duration 576 10 1988  367.38 216.93
Coordinates X 576 10 1659 512.84 347.56
Coordinates.Y 576 332 856  612.96 79.56

Pedestrian Fix_Duration 576 89 1854 379.63 168.72
Coordinates X 576 16 1686  494.51 352.77

continued on next page



Table 6.10: continued

Traffic Objects  Dependent Var. N Min. Max. Mean Std. Dev.

Coordinates.Y 576 106 880  591.36 84.76

Table 6.11: Descriptive statistics for Use of Glasses

Glasses Dependent Var. N Min. Max. Mean Std. Dev.

No Glasses  Fix_Duration 576 103 1988 383.45 183.85
Coordinates X 576 58 1686 524.38 337.54
Coordinates.Y 576 363 858  608.15 78.13

Use Glasses Fix_Duration 576 10 1963 363.56 203.97
Coordinates X 576 10 1650 482.97 361.42
Coordinates.Y 576 106 880  596.17 87.02

Table 6.12: Descriptive statistics for Driving Experience

Experience Dependent Var. N Min. Max. Mean Std. Dev.
Low Fix_Duration 360 89 1988  390.85 219.03
Coordinates X 360 28 1686 542.01 410.86
Coordinates Y 360 106 858  596.72 92.41
Medium Fix_Duration 744 10 1969  364.09 184.09
Coordinates X 744 10 1650 491.54 323.52
Coordinates Y 744 252 880  609.13 77.25
High Fix_Duration 48 136 642  389.31 136.88
Coordinates X 48 135 1148 404.23 186.46
Coordinates Y 48 349 699  534.98 54.89
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Table 6.13: Descriptive statistics for Trials

Trials Dependent Var. N Min. Max. Mean Std. Dev.
Trial 1 Fixation_Duration 192 10 1892  376.05 224.75
Coordinates_X 192 10 1659  527.63 386.30
Coordinates_Y 192 318 858  601.74 86.17
Trial 2 Fixation Duration 192 125 1969 378.57 206.79
Coordinates_X 192 50 1539 483.16 339.99
Coordinates_Y 192 106 858  592.88 93.50
Trial 3 Fixation_Duration 192 113 684  357.90 115.71
Coordinates_X 192 22 1686 491.51 339.91
Coordinates_Y 192 351 880  609.05 80.77
Trial 4 Fixation_Duration 192 111 738  354.66 113.68
Coordinates_X 192 33 1543 521.77 345.69
Coordinates_Y 192 260 787  604.86 77.57
Trial 5 Fixation_Duration 192 89 1988  414.83 295.10
Coordinates_X 192 16 1643  487.70 342.81
Coordinates_Y 192 332 787  605.67 78.18
Trial 6 Fixation_Duration 192 90 940 359.02 135.49
Coordinates_X 192 46 1558  510.29 345.93
Coordinates_Y 192 367 836  598.76 80.01

6.7.3 Intra-class correlation

Background on intra-class correlation

In Experiment-I, test-retest reliability method involved subjects replicating the

identical test conditions in six different trials. All subjects were required to repeat
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same object detection task in exact conditions for six times. Results between six
trials for each task per subject were compared to assess test-retest reliability.

Literature review shows that Intra-Class Correlation (ICC) is a preferred method
when there are more than two replications (test-retest) to be correlated. ICC defines
the correlation of between-subject variance divided by the total variance [153, 154].
Wu [114] and Tian [113] studied the use of ICC two-way random single rater model
with absolute agreement for testing-retesting reliability of human motion data. Equa-
tion 6.8 was used for ICC(2,1) analysis:

BMS

16C2N) = Brrs ¥ (k= DEMS + k[(TMS — EMS) /] (6.8)

where,

BMS: Between-subject mean square
EMS: Error mean square

TMS: Trial mean square

k: number of trials

n: number of objects

Interpretation of the ICC index depends on the nature of the experiment and
the domain of interest. Under different circumstances, such as application domain
(e.g., applied psychology vs. engineering) and experimental conditions (e.g.,sensitivity
of the data), strong and weak correlations are classified in different ranges. Most
of the literature shows that magnitudes of relationship are categorized as strong,
moderate and weak. Some studies show that ICC ranging from 0.7 to 1 is considered
as good /high/excellent correlation between classes [155-157], while other studies [158,
159] define the perfect correlation as between 0.8 and 1.0. Substantial correlation was
considered between 0.6 and 0.8, the moderate correlation between 0.4 and 0.6, and
the poor correlation between 0 and 0.4. Due to the similarities of experimental setup
and application domain, Wu’s (2005) [114] and Tian’s (2007) [113] ICC method was
followed to assess the reliability of collected data. The correlation coefficient range

was defined in the following table:
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Table 6.14
Classification of Intra Class Correlation Index (ICC)

ICC Range Meaning Notes

(0.80, 1.00] Excellent Perfect match

(0.60, 0.80]

(0.40, 0.60] Moderate Though reliability not high, but possible being improved
( ]

0.00, 0.40

Good Relative high agreement

Poor No or few correlation

For ’Excellent” and 'Good’ reliability, two test scores should correlate with each
other very well. This level of correlation is expected for the ideal reliability test. If
ICC index value reaches to score of 1.0, it is called the 'Perfect Match’, which shows
the highest correlation possible. For the 'Moderate’ reliability, it is still possible to
improve the correlation level by changing design variables. "Poor’ reliability proposes
that reliability is low, which does not provide any useful information to interpret
significant relations about variables. A high correlation ("Good’ or "Excellent’) level

is expected in this study, where ICC magnitude falls in the range of 0.6<ICC<1.0.

Results on intra-class correlation

One of the objectives of this study is to demonstrate that the correlation mea-
surements between trials (the test-retest reliability of outcomes) should be in high
correlation (’Good’ or ’Excellent’ correlation) range, where Intra Class Correlation
(ICC) index magnitude falls in range of 0.6 <ICC index <1.0. ICC indexes for Fix-
ation Duration, Coordinates-X and Coordinates-Y are listed in the following table:

Comparison of outcomes between six trials resulted in larger than 0.60, which
demonstrate a 'good’ test-retest reliability. ICC results in Table 6.15 shows that

Coordinates-X provide ’excellent’ test-retest reliability. Similarly, Coordinates-Y in-
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Table 6.15
Intra-Class Correlation (ICC) of test-retest reliability of Trials

ICC  95% Confidence Interval F Test
Lower Upper Value dfl df2 Sig.
Fixation Duration .618 .441 .640 2224 191 955 0.000
Coordinates X 862 .342 627 7.122 191 955 0.000
Coordinates Y 794 746 .836 4.869 191 955 0.000

dicates a very-close to "excellent” ICC score. The lowest agreement among all re-

sponses is Fixation Duration, which resulted in 'good’ reliability.

6.7.4 Multivariable Analysis of Variance

Validity hypothesis in this study focuses on assessing the significance effects and
interactions of independent variables: Gender, Pillar Type, Use of Glasses, Traffic
Objects, Driving Experience, and Trials. Eye-tracking data collected in Experiment-I
was also compared with user feedback on Experiment-II to check whether outcomes of
Experiment-I (objective measurements - eye-tracker device) overlaps with outcomes

of Experiment-II (subjective measurements - design questionnaire/review).

Background on ANOVA and MANOVA studies

Hypotheses proposed in this study targeted to detect ergonomics differences be-
tween pillar designs. In other words, one should experience a bias generated by the
subjects different performance in detecting objects between Old Pillar and New Pil-
lar. Ideally, the response generated by subjects should be overlapping even with
the presence of bias. Thus, results on Objective Measurements (Experiment-I) and

Subjective Measurements (Experiment-II) should reflect similar outcomes.
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To measure validity, a standard criterion that can be believed as valid measure-
ment is compared with collected data (e.g., subject feedback). Traffic Objects pre-
sented in static simulation experiment were known in advance by the experimenter.
Thus, they can be defined as standard data. Collected data (both eye-tracking and
object detection data) were compared with standard data to assess the validity in
this study. Main effects and interaction effects were compared by multiple ANOVA
and MANOVA studies. A quick overview on ANOVA/MANOVA basics are covered
in this section [160-163].

A one-way ANOVA can be represented by a linear model equation:

yij =m + a; —+ Gij (69)

In general, ANOVA table for the same case (one-way) can be constructed as:

Table 6.16
Descriptive Statistics of logarithmic transformed data - Skewness and Kurtosis

Source Sum of Squares DoF  Mean Squares Fo
Factors SSy =J>_ (¥i. — y_,)z I-1 MSF = (iﬁ) MSF = M—Sg

Residual SSE =>.>  (yi. — yi.)z I(J-1) MSE = I(?]S_El)
Corr. Total SST =33 (y5—3.)* 1J-1

MANOVA is the generalized case of ANOVA with multiple dependent variables.
Therefore, there are analogous parts to the ANOVA equation. Often, number of
different statistical tests are used to check the significance of MANOVA results [164].
In this study, Wilk’s Lamda was used to interpret results. Pillai’s Trace, Hotelling’s
Trace and Roy’s Largest Root analysis were also provided with MANOVA tables.
Underlying assumptions of MANOVA analysis are provided in details from Equation
6.10 to Equation 6.24 [162,165].

First, the total sum-of-squares is split into sum-of-squares between sum-of-squares

(SShg(y)) and within sum-of-squares (SSy4(y)) groups.
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SSTotal(y) = SSbg(y) T 5 Sug(y) (6.10)

Above equation can be expressed as:

ZZ Yy — GMy, —nZY GMy))* +3° 3 (v - V) (6.11)

One can partition sum-of-squares between (SSp(,)) two Independent Variables.
Lets assume SSp and S St represent sum-of-squares of variables D and T. Accordingly,

SSpr represent the interaction term.

SSy, = SSp + SSr + SSpr (6.12)

Then equation can be expressed as:

Mo, Z Z (DT — GMpr))? =11, (D), — GM(D))2+
k
M S (T — GMir))* + S (DT — GMpr)) '~ (6.13)
N Z (Dk — GM(D))2 — Ny, Z (Tm — GM(T)>2
k m

Then the full-factorial design looks like this:

2% (Yikm = GMoaem))* =132 (Di = GM(p))” + 1 3 (T — GMizy)*+

m

M 33 (DTxm — GMpry)” = 1 3 (D — GM(p)* = 1 32 (T — G M)
k m
+ Z Z Z ( tkm — DTkm)2
(6.14)
Because there are multiple dependent variables in MANOVA, a column matrix
could be used for each dependent variable. Then, vector matrix for two dependent

variables (a and b) with n samples is:

Vi = . (6.15)
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Similarly, there are column matrices associated with each Independent Variable.
For 'n’ many dependent variable and 'm’ levels of independent variables, the column

matrices like:

X
X
DTy o = . (6.16)
Xn
Xi Xy Xi
X X X
D1 - ,DQ = Dm = (617)
X X X

In addition, a single matrix of grand means are calculated for each dependent

variable averaged across all individuals in matrix.

Xy

Xo
GM=| ~ (6.18)

Xy,

Differences are found by subtracting matrices. The error term is calculated by
subtracting the grand mean matrix from each of dependent variable score. Then,
each column matrix is multiplied by its transpose.

Finally, sum-of-total-squares can be expressed by partitioning sum-of-squares for

independent variables, interactions and within-group error. A study with two inde-

pendent variables and two dependent variables can be expressed as:

Stepl — (Yigm — GM)

(6.19)
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k
i S (T — GM) (T — GMY + [t S (DTh — GM)(D Ty — GMY'
m km (620)
—ny, ; (D, — GM)(Dy, — GM) —ny > (T, — GM)(T,,, — GM)']

i k m

One can see that final results yield four different S matrices for a study with two
dependent and two independent variables. Determinant of each matrix represents

generalized variance of the associated terms (Equation 5.12).

S STotal =55 IndependentVariables + S8 Interaction 1 SS Within—GroupError (6 2 1)

One of the most popular methods of analyzing significance of MANOVA results
is Wilk’s Lambda test. Using the determinants of each matrix (5.12), we can assess
the significance of MANOVA results through ratios of determinants used for Wilk’s
Labmda () calculation.

_ |Serror|
’Seffect + Serror‘

An estimate for F for Wilk’s Lambda test can be calculated from below equation:

F(dfi, dfs) = (“Ty) (ﬁ> (6.23)

A (6.22)

dfr

where,

y = )\l/s

p2 (dfeffect)2 —4

S =
p2+(dfeffect)2757

p = number of Dependent Variables (6.24)

dfl = p<dfeffect)
() — Egct] [
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Normality assumption

One of the prerequisites of any parametric study is to check normality of the
data. In this section, Skewness and Kurtosis investigations were performed on eye-
tracker data to assess normality assumptions. One can see at Table 6.17 that Fixation
Duration and Coordinates-X data resulted in a highly positive skewness. In contrast,
Coordinates-Y data resulted with a slight negative skewness (-0.33) and moderate

kurtosis (2.14).

Table 6.17
Descriptive statistics of raw data - Skewness and Kurtosis

Fixation Duration Coordinates. X Coordinates_Y

N 1152 1152 1152
Mean 373.50 503.67 602.16
Median 344.00 390.00 600.00
Std. Deviation 194.34 350.15 82.88
Skewness 4.29 97 -.33
Std. Error of Skewness .07 .07 .07
Kurtosis 29.12 25 2.14
Std. Error of Kurtosis .14 14 14

Some may argue that these values are relatively acceptable to satisfy normality as-
sumptions [166], however, on a different normality evaluation approach, Kolmogorov-
Smirnov and Shapiro-Wilk tests showed that all dependent variables violated normal-
ity assumptions. Each test had 'p’ value smaller than zero, which indicated that the
data is not normally distributed (Table 6.18).

Since Fixation Duration, Coordinates-X and Coordinates-Y violated normality
assumption, each data set was normalized by applying logarithmic transformation.

There are two major assumptions for logarithmic transformation; 1) positive skewness



127

and 2) Non-negative values. FEach dependent variable satisfied these assumptions.
Table 6.13 shows variables with smaller skewness after logarithmic transformation
was performed. A similar observation can be gathered from the 'Logarithmic Trans-
formed’ column on Figure 6.3, which also illustrates a close association to normality

assumption with improved skewness and kurtosis.

Table 6.18
Kolmogorov-Smirnov and Shapiro-Wilk normality tests

Kolmogorov-Smirnov Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

Fix_Duration .16 1152 .000 .68 1152  .000

Coordinates_ X .13 1152 .000 .91 1152  .000

Coordinates.Y .04 1152  .000 .98 1152  .000
Table 6.19

Descriptive Statistics of logarithmic transformed data - Skewness and Kurtosis

Fixation Duration Coordinates X Coorrdinates Y

N 1152 1152 1152
Mean 2.53 2.59 602.16
Median 2.54 2.59 600.00
Std. Deviation A8 33 82.88
Skewness -.15 -47 -.33
Std. Error of Skewness .07 072 07
Kurtosis 6.55 .30 2.14

Std. Error of Kurtosis .14 .14 14
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Figure 6.8. Histogram plots show differences in skewness and kurtosis
associated with Raw Data and Logarithmic Transformed data. One
can see that Logarithmic Transformed plots appear to meet normal
distribution better than Raw Data plots.
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Raw Q-Q Plot

Logarithmic Transformed Q-Q Plot
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Figure 6.9. Quantile-Quantile plot shows distribution of Raw and
Logarithmic Transformed data. One can see that Logarithmic Trans-
formed data has better linear fit compared to Raw Data.
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6.7.5 Three-way ANOVA/MANOVA - main effects and interaction

Even though logarithmic transformation performed previously smoothed out some
of the outliers and scattered points in raw data, the normalization process caused a
slight loss of fidelity. A blend of Analysis of Variance (ANOVA) and Multivariate
Analysis of Variance (MANOVA) were conducted on three independent variables
(Type of Pillars, Traffic Objects and Trials) and three dependent variables (Fixa-
tion Duration, Coordinates-X and Coordinates-Y). Each analysis covered raw and
compound (logarithmic transformed) data in combinations to explore whether or not
independent variables are significantly affect experimental results. In addition, inter-
action effects were also explored. A total of twelve analysis of variance studies (six
ANOVAs and six MANOVAs) were conducted.

Prior to conducting MANOVA investigations, a series of Pearson correlation anal-
ysis were performed between all dependent variables to check whether dependent
variables correlated to each other in small or moderate range [167]. Although cor-
relation values were small in some cases, a meaningful pattern of correlations were
observed for most of the dependent values, suggesting appropriateness of a MANOVA
(Table 6.20).

Table 6.20
Pearson correlations of raw and logarithmic transformed dependent variables

Dependent Variables Fixation Duration Coordinates-X Coordinates-Y
(Raw/Log) (Raw/Log) (Raw/Log)

Fixation Dur. (Raw/Log) 1 /1 -.119 / -.126 .020 / .008

Coordinates-X (Raw/Log) -.119 /-.0.126 1/1 -.209 / -.165

Coordinates-Y (Raw/Log) .020 / .008 -209 / -.165 1/1
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Analysis of variance - I (ANOVA-I)

ANOVA-I study sought to determine whether Fixation Duration differed across
the factors of: Pillar Models, Traffic Objects, and Trials. A 2 x 2 x 6 (24) mixed
design ANOVA was performed on multi-levels. Pillar Models are within two levels
(New and Old), Traffic Objects are within two (Bicycle and Pedestrian) and Trials
are within six levels (T1 to T6).

Table 6.21: Three-way ANOVA-I results on Fixation Du-

ration
Sum of Mean
Source df F Sig.
Squares Square
Corrected Model 1930775.041a 23 83946.741 2.280 .001
Intercept 160710327.022 1 160710327.022 4363.952 .000
Pillar_Types 771023.272 1 771023.272 20.936 .000
Traffic_Objects 43230.251 1 43230.251 1.174 279
Trials 489345.265 5 97869.053 2.658 .021
Pillar_Types *
51133.355 1 51133.355 1.388 239
Traffic_Objects
Pillar_Types * Trials 137348.661 5 27469.732 746 .589
Traffic_Objects * Trials 157031.098 5 31406.220 .853 512
Pillar_Types *
281663.140 5 56332.628 1.530 178
Traffic_Objects * Trials
Error 41540616.938 1128 36826.788
Total 204181719.000 1152
Corrected Total 43471391.978 1151

a R Squared = .044 (Adjusted R Squared = .025)
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The ANOVA-I analysis revealed that there is a significant main effect of Pillar
Types (F = 20.396, p <.000) and Trials (F = 2.658, p = .021) on Fixation Duration.
Traffic Objects (F = 1.174, p = .279) has no significant effect on Fixation Duration,
suggesting that Pillar Types and Trials effect the eye-fixation intensity during the

simulation. There is no significant interaction found between independent variables.

Analysis of variance - IT (ANOVA-II)

ANOVA-II study sought to determine whether Coordinates-X differed across the
factors of: Pillar Models, Traffic Objects, and Trials. A 2 x 2 x 6 (24) mixed design
ANOVA was performed on multi-levels. Pillar Models are within two levels (New and
Old), Traffic Objects are within two (Bicycle and Pedestrian) and Trials are within
six levels (T1 to T6).

Table 6.22: Three-way ANOVA-II results on
Coordinates-X

Sum of Mean
Source df F Sig.

Squares Square
Corrected Model 30523655.492a 23 1327115.456 13.536 .000
Intercept 292248554.070 1 292248554.070 2980.765 .000
Pillar_Types 29251369.584 1 29251369.584  298.347  .000
Traffic_Objects 96671.709 1 96671.709 .986 321
Trials 339650.018 5 67930.004 .693 .629
Pillar_Types *

13495.876 1 13495.876 138 711
Traffic_Objects
Pillar_Types * Trials 297302.734 5 59460.547 .606 .695
Traffic_Objects * Trials 175259.879 5 35051.976 .358 878
Pillar_Types *

349905.692 5 69981.138 714 613

Traffic_Objects * Trials

continued on next page
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Sum of Mean

Source df Sig.
Squares Square

Error 110594533.437 1128 98044.799

Total 433366743.000 1152

Corrected Total

141118188.930 1151

a R Squared = .216 (Adjusted R Squared = .200)

The ANOVA-II analysis revealed that there is a significant main effect of Pillar
Types (F = 298.347, p <.000) on Coordinates-X. Traffic Objects (F = .986, p = .321)

and Trials (F = .693, p = .629) has no significant effect on Coordinates-X, suggesting

that only Pillar Types effect the pixel correspondence of eye movements on X axis.

No significant interaction was found between independent variables.

Analysis of variance - III (ANOVA-III)

ANOVA-III study sought to determine whether Coordinates-Y differed across the
factors of: Pillar Models, Traffic Objects, and Trials. A 2 x 2 x 6 (24) mixed design

ANOVA was performed on multi-levels. Pillar Models are within two levels (New and

Old), Traffic Objects are within two (Bicycle and Pedestrian) and Trials are within

six levels (T1 to T6).

Table

Three-way ANOVA-II results

Coordinates-Y

Sum of Mean
Source df Sig.
Squares Square
Corrected Model 359169.770a 23 15616.077 .000
Intercept 417712177.709 1 417712177.709  62436.079 .000

continued on next page
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Sum of Mean
Source df F Sig.
Squares Square
Pillar_Types 83.959 1 83.959 013 911
Traffic_Objects 134269.938 1 134269.938 20.070 .000
Trials 31671.671 5 6334.334 947 450
Pillar_Types *
130454.063 1 130454.063 19.499 .000
Traffic_Objects
Pillar_Types * Trials 22117.525 ) 4423.505 .661 .653
Traffic_Objects * Trials 20999.671 5 4199.934 .628 .679
Pillar_Types *
19572.942 5 3914.588 585 711
Traffic_Objects * Trials
Error 7546587.521 1128 6690.237
Total 425617935.000 1152
Corrected Total 7905757.291 1151

a R Squared = .45 (Adjusted R Squared = .26)

The ANOVA-III analysis revealed that there is a significant main effect of Traffic
Objects (F = 20.070, p <.000) on Coordinates-Y. Pillar Types (F = .013, p = .911)

and Trials (F = .947, p = .450) found to generate no significant effect on Coordinates-

Y. A two-way interaction effect between Pillar Types * Traffic Objects was found on

Coordinates-Y outcomes.

Analysis of variance - IV (ANOVA-1V)

ANOVA-IV study sought to determine whether log-transformed Fixation Duration

differed across the factors of: Pillar Models, Traffic Objects, and Trials. A 2 x 2 x 6

(24) mixed design ANOVA was performed on multi-levels. Pillar Models are within
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two levels (New and Old), Traffic Objects are within two (Bicycle and Pedestrian)
and Trials are within six levels (T1 to T6).

Table 6.24: Three-way ANOVA-IV results on Log-

Transformed Fixation Duration

Sum of Mean
Source df F Sig.

Squares Square
Corrected Model 1.710a 23 074 2.386 .000
Intercept 7394.396 1 7394.396  237288.457 .000
Pillar_Types 461 1 461 14.805 .000
Traffic_Objects 310 1 310 9.933 .002
Trials 244 5 .049 1.567 .166
Pillar_Types *

222 1 222 7.130 .008
Traffic_Objects
Pillar_Types * Trials 157 5 .031 1.005 413
Traffic_Objects * Trials .186 5 037 1.192 311
Pillar_Types *

131 5) .026 .838 .522
Traffic_Objects * Trials
Error 35.151 1128 .031
Total 7431.257 1152
Corrected Total 36.861 1151

a R Squared = .046 (Adjusted R Squared = .027)

The ANOVA-IV analysis revealed that there is a significant main effect of Pillar
Types (F = 14.805, p <.000) and Traffic Objects (F = 9.933, p = .002) on log-
transformed Fixation Duration. Trials (F = 1.567, p = .166) has no significant
effect on log-transformed Fixation Duration, suggesting that Pillar Types and Traffic

Objects effect the eye-fixation intensity during the simulation. A two-way interaction
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effect between Pillar Types * Traffic Objects was found on log-transformed fixation

outcomes.

Analysis of variance - V (ANOVA-V)

ANOVA-V study sought to determine whether log-transformed Coordinates-X
data differed across the factors of: Pillar Models, Traffic Objects, and Trials. A 2
X 2 x 6 (24) mixed design ANOVA was performed on multi-levels. Pillar Models
are within two levels (New and Old), Traffic Objects are within two (Bicycle and
Pedestrian) and Trials are within six levels (T1 to T6).

Table 6.25: Three-way ANOVA-V results on Log-

Transformed Coordinates-X

Source Sum of df Mean F Sig.
Squares Square

Corrected Model 27.178a 23 1.182 13.147 .000

Intercept 7717701 1 7717.701 85867.011 .000

Pillar_Types 26.041 1 26.041 289.734 .000

Traffic_Objects 170 1 170 1.889 170

Trials 296 5 .059 .660 .654

Pillar_Types * Traffic_Objects .034 1 .034 376 .540

Pillar_Types * Trials 142 5 .028 316 .904

Traffic_Objects * Trials 074 5 015 164 976

Pillar-Types * 421 5 084 037 456

Traffic_Objects * Trials

Error 101.384 1128 .090

Total 7846.264 1152

Corrected Total 128.562 1151

continued on next page
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Table 6.25: continued

Sum of Mean
Source df F Sig.

Squares Square

a R Squared = .211 (Adjusted R Squared = .195)

The ANOVA-V analysis revealed that there is a significant main effect of Pillar
Types (F = 289.734, p <.000) on log-transformed Coordinates-X. Traffic Objects (F
= 1.889, p = .170) and Trials (F = .660, p = .654) have no significant effect on
log-transformed Coordinates-X, suggesting that only Pillar Types effect pixel corre-
spondence of eye movements on X axis. A two-way interaction effect between Pillar

Types * Traffic Objects was found on log-transformed Coordinates-X outcomes.

Analysis of variance - VI (ANOVA-VI)

ANOVA-VI study sought to determine whether log-transformed Coordinates-Y
data differed across the factors of: Pillar Models, Traffic Objects, and Trials. A 2
x 2 x 6 (24) mixed design ANOVA was performed on multi-levels. Pillar Models
are within two levels (New and Old), Traffic Objects are within two (Bicycle and
Pedestrian) and Trials are within six levels (T1 to T6).

Table 6.26: Three-way ANOVA-VI results on Log-

Transformed Coordinates-Y

Sum of Mean
Source df F Sig.
Squares Square
Corrected Model 210a 23 .009 2.155 .001
Intercept 8872.016 1 8872.016  2098020.359 .000
Pillar_Types .002 1 .002 .365 .546
Traffic_Objects .081 1 081 19.198 .000

continued on next page
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Table 6.26: continued

Sum of Mean
Source df F Sig.
Squares Square
Trials .026 5 005 1.246 285
Pillar_Types * Traffic. Objects .065 1 .065 15.324 .000
Pillar_Types * Trials 012 5 .002 .550 738
Traffic_Objects * Trials .016 5 .003 778 .565
Pillar_Types *
.008 5 .002 361 875
Traffic_Objects * Trials
Error 4.770 1128 .004
Total 8876.996 1152
Corrected Total 4.980 1151

a R Squared = .042 (Adjusted R Squared = .023)

The ANOVA-VI analysis revealed that there is a significant main effect of Traffic
Objects (F = 19.198, p <.546) on log-transformed Coordinates-Y. Pillar Types (F
= .365, p = .546) and Trials (F = 1.246, p = .285) have no significant effect on
log-transformed Coordinates-Y, suggesting that only Traffic Objects effect pixel cor-
respondence of eye movements on Y axis. A two-way interaction effect between Pillar

Types * Traffic Objects was found on log-transformed Coordinates-Y outcomes.

Multivariable analysis of variance - I (MANOVA-I)

MANOVA-I analysis was performed to identify whether each independent variable
has significant effect on three dependent variables accordingly; Fixation Duration,
Coordinates-X and Coordinates-Y. A 2 x 2 x 6 (24) mixed design MANOVA analysis
was conducted. Pillar Type is the within subjects variable with two levels (Old and
New), Traffic Objects within two levels (Bicycle and Pedestrian) and Trials are with
six levels (T1 to T6).



Table 6.27: Multivariable Analysis of Variance on Fixa-

tion Duration, Coordinates X and Coordinates Y

Effect Test Value F Sig.
Intercept Pillai’s Trace .986 27021.910b .000
Wilks” Lambda 014 27021.910b  .000
Hotelling’s Trace 71.994 27021.910b .000
Roy’s Largest Root 71.994 27021.910b .000
Pillar_Types Pillai’s Trace 226 109.565b .000
Wilks” Lambda 74 109.565b .000
Hotelling’s Trace 292 109.565b .000
Roy’s Largest Root .292 109.565b .000
Traffic_Objects Pillai’s Trace .023 8.651b .000
Wilks” Lambda 977 8.651b .000
Hotelling’s Trace .023 8.651b .000
Roy’s Largest Root .023 8.651b .000
Trials Pillai’s Trace .019 1.462 110
Wilks” Lambda 981 1.462 110
Hotelling’s Trace .019 1.462 110
Roy’s Largest Root .012 2.793c .016
PillarTypes * Pillai’s Trace 020 7.756b 000
Traffic_Objects
Wilks” Lambda 980 7.756b .000
Hotelling’s Trace .021 7.756b .000
Roy’s Largest Root .021 7.756b .000
Pillar_Types * Trials Pillai’s Trace .010 765 718
Wilks” Lambda 990 765 718
Hotelling’s Trace .010 764 719

continued on next page
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Table 6.27: continued

Effect Test Value F Sig.
Roy’s Largest Root .006 1.325¢ 251
Traffic_Objects * Trials Pillai’s Trace .008 .639 .845
Wilks’ Lambda 992 .638 .845
Hotelling’s Trace .009 .638 .845
Roy’s Largest Root .006 1.427c¢ 212
Pillar-Types * Pillai’s Trace 014 1.028 422
Traffic_Objects * Trials
Wilks” Lambda .986 1.027 423
Hotelling’s Trace .014 1.026 424
Roy’s Largest Root .008 1.799¢ 110

MANOVA-I results showed that Pillar Types (F = 109.565, p <.000) and Traf-
fic Objects (F = 8.651, p <.000) do have significant effect on Fixation Duration,
Coordinates-X and Coordinates-Y. Trials (F = 1.462, p = .110) has no effect on col-
lected data, which suggests that Pillar Types and Traffic Objects effect the pixel corre-
spondence of eye movements on Fixation Duration, Coordinates-X and Coordinates-

Y during the simulation. A two-way interaction was found between Pillar Types *

Traffic Objects (F = 7.756, p <.000).

Multivariable analysis of variance - II (MANOVA-II)

MANOVA-II analysis was performed to identify whether each independent vari-
able has significant effect on three dependent variables accordingly; logarithmic trans-
formed Fixation Duration, Coordinates-X and Coordinates-Y. A 2 x 2 x 6 (24) mixed
design MANOVA analysis was conducted. Pillar Type is the within subjects vari-
able with two levels (Old and New), Traffic Objects within two levels (Bicycle and
Pedestrian) and Trials are with six levels (T1 to T6).



Table 6.28: Multivariable Analysis of Variance on log-

arithmic transformed Fixation Duration, Coordinates-X

and Coordinates-Y
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Effect Test Value F Sig.
Intercept Pillai’s Trace 996 104292.423b  .000
Wilks” Lambda .004 104292.423b  .000
Hotelling’s Trace 277.866 104292.423b .000
Roy’s Largest Root 277.866 104292.423b .000
Pillar_Types Pillai’s Trace 223 107.718b .000
Wilks” Lambda 7T 107.718b .000
Hotelling’s Trace 287 107.718b .000
Roy’s Largest Root .287 107.718b .000
Traffic_Objects Pillai’s Trace .030 11.668b .000
Wilks” Lambda 970 11.668b .000
Hotelling’s Trace .031 11.668b .000
Roy’s Largest Root .031 11.668b .000
Trials Pillai’s Trace .014 1.085 .364
Wilks” Lambda .986 1.085 .365
Hotelling’s Trace 014 1.084 .365
Roy’s Largest Root .009 1.987¢ .078
PillarTypes * Pillai’s Trace 025 9.797h 000
Traffic_.Objects
Wilks” Lambda 975 9.797b .000
Hotelling’s Trace .026 9.797b .000
Roy’s Largest Root .026 9.797b .000
Pillar_Types * Trials Pillai’s Trace 011 .845 627
Wilks’” Lambda 989 .844 .628

continued on next page
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Table 6.28: continued

Effect Test Value F Sig.
Hotelling’s Trace 011 .844 .629
Roy’s Largest Root .006 1.255¢ 281
Traffic_Objects * Trials Pillai’s Trace .010 759 725
Wilks’ Lambda 990 759 725
Hotelling’s Trace .010 759 725
Roy’s Largest Root .008 1.722¢ 127
Pillar Types * Pillai’s Trace 010 789 691
Traffic_Objects * Trials
Wilks” Lambda 990 788 .692
Hotelling’s Trace 011 788 .693
Roy’s Largest Root .006 1.318¢ 254

MANOVA-II results showed that Pillar Types (F = 107.781, p <.000) and Traffic
Objects (F = 11.668, p <.000) do have significant effect on logarithmic transformed
Fixation Duration, Coordinates-X and Coordinates-Y. Trials (F = 1.085, p = .364)
has no effect on collected data, suggesting that Pillar Types and Traffic Objects
effect the pixel correspondence of eye movements on logarithmic transformed Fixa-
tion Duration, Coordinates-X and Coordinates-Y during the simulation. A two-way

interaction was found between Pillar Types * Traffic Objects (F = 9.797, p <.000).

Multivariable analysis of variance - IIT (M ANOVA-III)

MANOVA-III analysis was performed to identify whether each independent vari-
able has significant effect on three dependent variables accordingly; logarithmic trans-
formed Fixation Duration, logarithmic transformed Coordinates-X and Coordinates-

Y. A 2x2x6 (24) mixed design MANOVA analysis was conducted. Pillar Type is
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the within subjects variable with two levels (Old and New), Traffic Objects within

two levels (Bicycle and Pedestrian) and Trials are with six levels (T'1 to T6).

Table 6.29: Multivariable Analysis of Variance on log-

arithmic transformed Fixation Duration, logarithmic

transformed Coordinates-X and Coordinates-Y

Effect Test Value F Sig.
Intercept Pillai’s Trace 997 146768.323b  .000
Wilks” Lambda .003 146768.323b  .000
Hotelling’s Trace 391.035 146768.323b .000
Roy’s Largest Root 391.035 146768.323b .000
Pillar_Types Pillai’s Trace 215 103.020b .000
Wilks” Lambda 785 103.020b .000
Hotelling’s Trace 274 103.020b .000
Roy’s Largest Root .274 103.020b .000
Traffic_Objects Pillai’s Trace .031 11.956b .000
Wilks’ Lambda 969 11.956b .000
Hotelling’s Trace .032 11.956b .000
Roy’s Largest Root .032 11.956b .000
Trials Pillai’s Trace .014 1.038 A11
Wilks” Lambda .986 1.038 412
Hotelling’s Trace .014 1.038 412
Roy’s Largest Root .009 1.977c 079
Pillar_Types * Traffic_.Objects Pillai’s Trace .026 9.865b .000
Wilks” Lambda 974 9.865b .000
Hotelling’s Trace .026 9.865b .000
Roy’s Largest Root .026 9.865b .000
Pillar_Types * Trials Pillai’s Trace .009 712 775

continued on next page
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Table 6.29: continued

Effect Test Value F Sig.
Wilks” Lambda 991 711 776
Hotelling’s Trace .009 710 776
Roy’s Largest Root .005 1.100c .359
Traffic_Objects * Trials Pillai’s Trace .009 .684 .803
Wilks” Lambda 991 .684 .803
Hotelling’s Trace .009 .684 .803
Roy’s Largest Root .007 1.657c 142
Pillar Types * Pillai’s Trace 011 833 642
Traffic_Objects * Trials
Wilks’ Lambda 989 .832 .643
Hotelling’s Trace 011 831 .644
Roy’s Largest Root .006 1.273c 273

MANOVA-III results showed that Pillar Types (F = 103.020, p <.000) and Traffic
Objects (F = 11.956, p <.000) do have significant effect on logarithmic transformed
Fixation Duration, logarithmic transformed Coordinates-X and Coordinates-Y. Tri-
als (F = 1.038, p = .412) has no effect on collected data, suggesting that Pillar
Types and Traffic Objects effect the pixel correspondence of eye movements on loga-
rithmic transformed Fixation Duration, logarithmic transformed Coordinates-X and

Coordinates-Y during the simulation. A two-way interaction was found between Pillar

Types * Traffic Objects (F = 9.865, p <.000).

Multivariable analysis of variance - IV (M ANOVA-IV)

MANOVA-IV analysis was performed to identify whether each independent vari-
able has significant effect on three dependent variables accordingly; logarithmic trans-

formed Fixation Duration, Coordinates-X and logarithmic transformed Coordinates-
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Y. A 2x2x6 (24) mixed design MANOVA analysis was conducted. Pillar Type is

the within subjects variable with two levels (Old and New), Traffic Objects within

two levels (Bicycle and Pedestrian) and Trials are with six levels (T'1 to T6).

Table 6.30: Multivariable Analysis of Variance on log-

arithmic transformed Fixation Duration, Coordinates-X

and logarithmic transformed Coordinates-Y

Effect Test Value F Sig.
Intercept Pillai’s Trace 1.000 826851.860b .000
Wilks’” Lambda .000 826851.860b .000
Hotelling’s Trace 2202.980 826851.860b .000
Roy’s Largest Root 2202.980 826851.860b .000
Pillar_Types Pillai’s Trace 219 105.511b .000
Wilks” Lambda 781 105.511b .000
Hotelling’s Trace 281 105.511b .000
Roy’s Largest Root .281 105.511b .000
Traffic_Objects Pillai’s Trace .029 11.094b .000
Wilks’” Lambda 971 11.094b .000
Hotelling’s Trace .030 11.094b .000
Roy’s Largest Root .030 11.094b .000
Trials Pillai’s Trace .016 1.195 267
Wilks” Lambda 984 1.195 267
Hotelling’s Trace .016 1.194 268
Roy’s Largest Root .009 2.044c .070
Pillar Types * Pillai’s Trace 021 8.101b 000
Traffic_Objects
Wilks” Lambda 979 8.101b .000
Hotelling’s Trace .022 8.101b .000

continued on next page
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Table 6.30: continued

Effect Test Value F Sig.
Roy’s Largest Root .022 8.101b .000
Pillar_Types * Trials Pillai’s Trace .010 785 .696
Wilks” Lambda .990 784 697
Hotelling’s Trace .010 783 .698
Roy’s Largest Root .005 1.079c¢ 370
Traffic_ Objects * Trials Pillai’s Trace 011 816 .660
Wilks’ Lambda 989 .816 .661
Hotelling’s Trace 011 .816 .661
Roy’s Largest Root .007 1.619c 152
Pillor.Types * Pillai’s Trace 009 693 794
Traffic_Objects * Trials
Wilks” Lambda 991 692 795
Hotelling’s Trace .009 .692 795
Roy’s Largest Root .005 1.070c 375

MANOVA-IV results showed that Pillar Types (F = 105.511, p <.000) and Traffic
Objects (F = 11.094, p <.000) do have significant effect on logarithmic transformed
Fixation Duration, Coordinates-X and logarithmic transformed Coordinates-Y. Tri-
als (F = 1.195, p = .267) has no effect on collected data, suggesting that Pillar
Types and Traffic Objects effect the pixel correspondence of eye movements on loga-
rithmic transformed Fixation Duration, Coordinates-X and logarithmic transformed

Coordinates-Y during the simulation. A two-way interaction was found between Pillar

Types * Traffic Objects (F = 8.101, p <.000).



147

Multivariable analysis of variance - V (MANOVA-V)

MANOVA-V analysis was performed to identify whether each independent vari-
able has significant effect on three dependent variables accordingly; Fixation Dura-
tion, logarithmic transformed Coordinates-X and logarithmic transformed Coordinates-
Y. A 2x2x6 (24) mixed design MANOVA analysis was conducted. Pillar Type is
the within subjects variable with two levels (Old and New), Traffic Objects within

two levels (Bicycle and Pedestrian) and Trials are with six levels (T'1 to T6).

Table 6.31: Multivariable Analysis of Variance on Fix-
ation Duration, logarithmic transformed Coordinates-X

and logarithmic transformed Coordinates-Y

Effect Test Value F Sig.
Intercept Pillai’s Trace 1.000 813920.826b .000
Wilks” Lambda .000 813920.826b .000

Hotelling’s Trace 2168.528 813920.826b .000
Roy’s Largest Root 2168.528 813920.826b .000

Pillar_Types Pillai’s Trace 213 101.460b .000
Wilks” Lambda 87 101.460b .000
Hotelling’s Trace 270 101.460b .000
Roy’s Largest Root .270 101.460b .000
Traffic_Objects Pillai’s Trace 022 8.320b .000
Wilks’ Lambda 978 8.320b .000
Hotelling’s Trace .022 8.320b .000
Roy’s Largest Root .022 8.320b .000
Trials Pillai’s Trace .020 1.494 .098
Wilks’” Lambda .980 1.494 .098
Hotelling’s Trace .020 1.494 .098

continued on next page
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Effect Test Value F Sig.
Roy’s Largest Root .013 2.854c .014
PillarTypes * Pillai’s Trace 016 6.104b 000
Traffic_Objects
Wilks” Lambda 984 6.104b .000
Hotelling’s Trace .016 6.104b .000
Roy’s Largest Root .016 6.104b .000
Pillar_Types * Trials Pillai’s Trace .008 576 .896
Wilks” Lambda 992 575 .896
Hotelling’s Trace .008 D75 .896
Roy’s Largest Root .005 1.099¢ .359
Traffic_Objects * Trials Pillai’s Trace .008 601 877
Wilks” Lambda 992 .600 877
Hotelling’s Trace .008 .600 877
Roy’s Largest Root .006 1.325¢ 251
Pillar Types * Pillai’s Trace 013 994 458
Traffic_Objects * Trials
Wilks” Lambda 987 993 459
Hotelling’s Trace .013 992 460
Roy’s Largest Root .008 1.737c 123

MANOVA-V results showed that Pillar Types (F = 101.460, p <.000) and Traf-
fic Objects (F = 8.320, p <.000) do have significant effect on Fixation Duration,

logarithmic transformed Coordinates-X and logarithmic transformed Coordinates-Y.

Trials (F = 1.494, p = .098) has no effect on collected data, suggesting that Pillar

Types and Traffic Objects effect the pixel correspondence of eye movements on Fixa-

tion Duration, logarithmic transformed Coordinates-X and logarithmic transformed
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Coordinates-Y during the simulation. A two-way interaction was found between Pillar

Types * Traffic Objects (F = 6.104, p <.000).

Multivariable analysis of variance - VI (MANOVA-V)

MANOVA-VI analysis was performed to identify whether each independent vari-
able has significant effect on three dependent variables accordingly; logarithmic trans-
formed Fixation Duration, logarithmic transformed Coordinates-X and logarithmic
transformed Coordinates-Y. A 2 x 2 x 6 (24) mixed design MANOVA analysis was
conducted. Pillar Type is the within subjects variable with two levels (Old and New),
Traffic Objects within two levels (Bicycle and Pedestrian) and Trials are with six levels

(T1 to T6).

Table 6.32: Multivariable analysis of variance on log-
arithmic transformed Fixation Duration, logarithmic
transformed Coordinates-X and logarithmic transformed

Coordinates-Y

Effect Test Value F Sig.
Intercept Pillai’s Trace 1.000 888289.180b  .000
Wilks” Lambda .000 888289.180b .000

Hotelling’s Trace 2366.667 888289.180b .000
Roy’s Largest Root 2366.667 888289.180b .000

Pillar_Types Pillai’s Trace 212 100.966b .000
Wilks” Lambda 788 100.966b .000
Hotelling’s Trace .269 100.966b .000
Roy’s Largest Root .269 100.966b .000
Traffic_Objects Pillai’s Trace .029 11.319b .000
Wilks’ Lambda 971 11.319b .000
Hotelling’s Trace .030 11.319b .000

continued on next page
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Effect Test Value F Sig.
Roy’s Largest Root .030 11.319b .000
Trials Pillai’s Trace 015 1.144 310
Wilks” Lambda 985 1.144 310
Hotelling’s Trace .015 1.143 311
Roy’s Largest Root .009 1.994c 077
PillarTypes * Pillai’s Trace 021 8.148h 000
Traffic_Objects
Wilks” Lambda 979 8.148b .000
Hotelling’s Trace 022 8.148b .000
Roy’s Largest Root .022 8.148b .000
Pillar_Types * Trials Pillai’s Trace .009 .659 827
Wilks” Lambda 991 .658 827
Hotelling’s Trace .009 .658 .828
Roy’s Largest Root .005 1.103c 357
Traffic_Objects * Trials Pillai’s Trace .010 724 762
Wilks” Lambda 990 724 762
Hotelling’s Trace .010 124 762
Roy’s Largest Root .007 1.557¢ .169
Pillar-Types * Pillai’s Trace .010 743 742
Traffic_Objects * Trials
Wilks’ Lambda 990 742 743
Hotelling’s Trace .010 741 744
Roy’s Largest Root .005 1.112¢ 352

MANOVA-VT results showed that Pillar Types (F = 100.966, p <.000) and Traffic

Objects (F = 11.319, p <.000) do have significant effect on logarithmic transformed
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Fixation Duration, logarithmic transformed Coordinates-X and logarithmic trans-
formed Coordinates-Y. Trials (F = 1.144, p = .310) has no effect on collected data,
suggesting that Pillar Types and Traffic Objects effect the pixel correspondence of eye
movements on logarithmic transformed Fixation Duration, logarithmic transformed
Coordinates-X and logarithmic transformed Coordinates-Y during the simulation. A
two-way interaction was found between Pillar Types * Traffic Objects (F = 8.148, p
<.000).

Summary of analysis of variance tests

Table 6.46 summarizes results of all analysis of variance tests conducted on eye-
tracker data. Independent variables with stars on Table 6.46 refers to p’ values
smaller than zero (p <0.000), which indicates a significance at the alpha level of 0.05.
One can see that significant factors have overlapping results throughout the study.
The very last row on Table 6.46 summarizes percentage accumulations of variables

that have a significant MANOVA effect.

Table 6.33: Summary of significance (p-values) of

ANOVA and MANOVA analyses

Tests Dependent Variables Pillar Types Traffic Objects Trials
ANOVA-I Fix.Dur. .000* 279 021*
ANOVA-II Coord.X .000* 321 679
ANOVA-III Coord.Y 911 .000* 450
ANOVA-IV Fix.Dur.LOG .000* .002* .166
ANOVA-V Coord. XLOG .000* 170 .654
ANOVA-VI Coord. YLOG .546 .000* 285

Fix.Dur.
MANOVA-I  Coord.X .000* .000* 110

continued on next page
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Tests

Dependent Variables

Pillar Types

Traffic Objects

Trials

MANOVA-II

MANOVA-III

MANOVA-IV

MANOVA-V

MANOVA-VI

Coord.Y
Fix.Dur. LOG
Coord.X
Coord.Y
Fix.Dur.LOG
Coord. XLOG
Coord.Y
Fix.Dur.LOG
Coord.X
Coord.YLOG
Fix.Dur.
Coord. XLOG
Coord. YLOG
Fix.Dur.LOG
Coord. XLOG
Coord. YLOG

.000*

.000*

.000*

.000*

.000*

.000*

.000*

.000*

.000*

.000*

365

411

267

.098

310

Percentages

83%

75%

8%
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6.7.6 Six-way ANOVA/MANOVA - main effects

This section provides an extended overview of the two-way ANOVA/MANOVA
analysis performed previously. Main goals and hypotheses covered in this study focus
on the effect of Type of Pillars and Trials on eye-tracking data. However, a more
detailed study were performed to explore the effects of Gender, Traffic Object, Use
of Glasses and Driving Experience on top of Types of Pillars and Trials.

Even though logarithmic transformation performed previously smoothed out some
of the outliers and scattered points in raw data, the normalization process caused a
slight loss of fidelity. A blend of Analysis of Variance (ANOVA) and Multivariate
Analysis of Variance (MANOVA) were conducted on six independent variables and
three dependent variables. Each analysis covered raw and logarithmic transformed
data in combinations to explore whether or not independent variables are significantly

affect experimental results. A total of twelve analysis of variance studies (six ANOVAs

and six MANOVAs) conducted.

Analysis of variance - I (ANOVA-I)

ANOVA-I study sought to determine whether Fixation Duration differed across
the factors of: Gender, Pillar Models, Traffic Objects, Use of Glasses, Driving Experi-
ence, and Trials. A 2x2x2x2x3x6 (288) mixed design ANOVA was performed on
multi-levels. Subject’s Gender was within subjects variable with two levels (Male and
Female); Pillar Models (New and Old), Traffic Objects (Bicycle and Pedestrian), Use
of Glasses (Glasses and No Glasses). Driving Experience is within subjects variable

with three levels (Low, Medium and High), and Trials are with six levels (T1 to T6).
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Table 6.34: ANOVA-I results on Fixation Duration

Sum of Mean
Source df F Sig.

Squares Square
Corrected Model 10056352.939 239 42076.791 1.148 083
Intercept 58064029.321 1 58064029.321 1584.747 .000
Pillar_Types 309397.361 1 309397.361 8.444 .004
Traffic_Objects 20850.225 1 20850.225 .569 451
Trials 160756.337 5 32151.267 878 496
Gender 94241.282 1 94241.282 2.572 .109
Driving_Experience 127315.854 2 63657.927 1.737 77
Glasses 146175.051 1 146175.051 3.990 .046
Pillar_Types *

9059.459 1 9059.459 247 .619
Traffic_Objects
Pillar_Types * Trials ~ 20740.518 bt 4148.104 113 989
Pillar_Types * Gender 46498.968 1 46498.968 1.269 .260
Pillar_Types *

244585.742 2 122292.871 3.338 .036
Driving_Experience
Pillar_Types * Glasses 42079.807 1 42079.807 1.148 284
Traffic_Objects *

80522.647 bt 16104.529 .440 821
Trials
Traffic_Objects *

1263.130 1 1263.130 .034 .853
Gender
Traffic_Objects *

63477.930 2 31738.965 .866 421
Driving_Experience
Traffic_Objects *

18379.533 1 18379.533 502 479
Glasses
Trials * Gender 372733.869 5 74546.774 2.035 072

continued on next page
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Table 6.34: continued

Sum of Mean
Source df F Sig.
Squares Square
Trials *
157504.022 10 15750.402 430 932
Driving_Experience
Trials * Glasses 57909.093 5 11581.819 316 903
Gender *
286982.189 1 286982.189 7.833 .005
Driving_Experience
Gender * Glasses 42769.837 1 42769.837 1.167 .280
Driving_Experience *
356330.311 1 356330.311 9.725 .002

Glasses

The ANOVA-I analysis revealed that there is a significant main effect of Pillar
Types (F = 8.444, p = .004) and Glasses (F = 3.990, p = .046) on Fixation Duration.
Traffic Objects (F = .569, p = .451), Trials (F = .8786, p = .496), Gender (F =
2.572, p = .109) and Driving Experience (F = 1.737, p = .177) have no significant
effect on Fixation Duration, suggesting that Pillar Types and Use of Glasses effect the
eye-fixation intensity during the simulation. There is a significant interaction found

between Driving Experience and use of Glasses (F = 9.725, p = .002).

Analysis of variance - IT (ANOVA-II)

ANOVA-II study sought to determine whether Coordinates-X differed according
the factors of: Gender, Pillar Models, Traffic Objects, Use of Glasses, Driving Expe-
rience, and Trials. A 2 x2x 2 x 2 x 3 x 6 (288) mixed design ANOVA analysis was
conducted. Subject’s Gender is the within subjects variable with two levels (Male
and Female); Pillar Models (New and Old), Traffic Objects (Bicycle and Pedestrian);

Use of Glasses (Glasses and No Glasses). Driving Experience is the within subjects
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variable with three levels (Low, Medium and High), and Trials are with six levels (T'1
to T6).

Table 6.35: ANOVA-II results on Coordinates-X

Sum of Mean
Source df F Sig.

Squares Square
Corrected Model 50569062.071 239 211586.034 2.131 .000
Intercept 88280889.355 1 88280889.355 889.155 .000
Pillar_Types 7417062.758 1 7417062.758  74.704  .000
Traffic_Objects 142807.815 1 142807.815 1.438 231
Trials 210305.328 5) 42061.066 424 .832
Gender 17719.861 1 17719.861 178 673
Driving_Experience 1464268.104 2 732134.052 7.374 .001
Glasses 62250.021 1 62250.021 627 429
Pillar_Types *

2494.076 1 2494.076 .025 874
Traffic_Objects
Pillar_Types * Trials 388763.356 5 77752.671 783 .562
Pillar_Types * Gender  158301.898 1 158301.898 1.594 207
Pillar_Types *

1639265.841 2 819632.921 8.255 .000
Driving_Experience
Pillar_Types * Glasses  318859.184 1 318859.184 3.212 073
Traffic_Objects * Trials 204766.646 5 40953.329 412 .840
Traffic_Objects *

91016.599 1 91016.599 917 .339
Gender
Traffic_Objects *

78156.151 2 39078.075 .394 675
Driving_Experience
Traffic_Objects *

28617.026 1 28617.026 .288 591

Glasses

continued on next page
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Table 6.35: continued

Sum of Mean
Source df F Sig.
Squares Square
Trials * Gender 306643.331 5 61328.666 618 .686
Trials *
383172.376 10 38317.238 .386 953
Driving_Experience
Trials * Glasses 161241.029 5 32248.206 325 .898
Gender *
96272.285 1 96272.285 970 325
Driving_Experience
Gender * Glasses 2869510.846 1 2869510.846  28.901  .000

Driving_Experience *
288190.364 1 288190.364 2.903 .089
Glasses

The ANOVA-II analysis revealed that there is a significant main effect of Pil-
lar Types (F = 74.704, <.000) and Driving Experience (F = 7.373, p = .001) on
Coordinates-X. Traffic Objects (F = 1.438, p = .231), Trials (F = .424, p = .832),
Gender (F = .178, p = .673) and Glasses (F = 0.627, p = .429) have no significant ef-
fect on Coordinates X, suggesting that Pillar Types and Driving Experience effect the
pixel correspondence of eye movements on X axis. There is a significant interaction

found between Gender and use of Glasses (F = 28.901, p <.002).

Analysis of variance - III (ANOVA-III)

ANOVA-III study sought to determine whether Coordinates-Y differed according
the factors of: subject’s Gender, Pillar Models, Traffic Objects, Use of Glasses, Driv-
ing Experience, and Trials. A 2 x 2 x 2 x 2 x 3 x 6 (288) mixed design ANOVA
analysis was conducted. Subject’s Gender is the within subjects variable with two
levels (Male and Female); Pillar Models (New and Old), Traffic Objects (Bicycle and

Pedestrian); Use of Glasses (Glasses and No Glasses). Driving Experience is the
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within subjects variable with three levels (Low, Medium and High), and Trials are

with six levels (T1 to T6).

Table 6.36: ANOVA-III results on Coordinates-Y

Sum of Mean
Source df F Sig.

Squares Square
Corrected Model 2072401.48a  239.00 8671.14 1.36 .001
Intercept 138531026.81 1.00 138531026.81 21658.25 .000
Pillar_Types 2029.44 1.00 2029.44 .32 573
Traffic_Objects 25214.87 1.00 25214.87 3.94 .047
Trials 11272.72 5.00 2254.54 .35 .881
Gender 13963.12 1.00 13963.12 2.18 .140
Driving_Experience 182720.56 2.00 91360.28 14.28 .000
Glasses 108450.35 1.00 108450.35 16.96 .000
Pillar_Types *

23394.97 1.00 23394.97 3.66 .056
Traffic_Objects
Pillar_Types * Trials 18746.70 5.00 3749.34 .59 711
Pillar_Types * Gender 7659.17 1.00 7659.17 1.20 274
Pillar_Types *

27611.87 2.00 13805.94 2.16 116
Driving_Experience
Pillar_Types * Glasses 24659.59 1.00 24659.59 3.86 .050
Traffic_Objects *

38935.67 5.00 7787.13 1.22 299
Trials
Traffic_Objects *

55.76 1.00 55.76 .01 .926
Gender
Traffic_Objects *

4503.16 2.00 2251.58 .35 703

Driving_Experience

continued on next page
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Table 6.36: continued

Sum of Mean
Source df F Sig.

Squares Square
Traffic_Objects *

4897.08 1.00 4897.08 7 .382
Glasses
Trials * Gender 17517.05 5.00 3503.41 .55 740
Trials *

31618.21 10.00 3161.82 49 .894
Driving_Experience
Trials * Glasses 30300.57 5.00 6060.11 .95 .449
Gender *

81395.25 1.00 81395.25 12.73 .000
Driving_Experience
Gender * Glasses 95367.59 1.00 95367.59 14.91 .000
Driving_Experience *

23510.83 1.00 23510.83 3.68 .056

Glasses

The ANOVA-III analysis revealed that there is a significant main effect of Traffic
Objects (F = 3.94, p = .047), Driving Experience (F = 14.28, p <.000) and Glasses
(F = 16.96, p <.000) on Coordinates-Y. Pillar Types (F = .32, p = .573), Trials
(F = .35, p = .881) and Gender (F = 2.18, p = .140) have no significant effect on
Coordinates Y, suggesting that Traffic Objects, Driving Experience and Glasses effect
the pixel correspondence of eye movements on Y axis during the simulation. There is
a significant interaction found between Gender and Driving Experience (F = 12.73,

p <.000), and Gender and Glasses (F = 14.91, p <.000).

Analysis of variance - IV - (ANOVA-IV)

ANOVA-IV study sought to determine whether logarithmic transformed Fixation
Duration differed according the factors of: subject’s Gender, Pillar Models, Traffic
Objects, Use of Glasses, Driving Experience, and Trials. A 2 x2x2x2x3x6
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(288) mixed design ANOVA analysis was conducted. Subject’s Gender is the within
subjects variable with two levels (Male and Female); Pillar Models (New and Old),
Traffic Objects (Bicycle and Pedestrian), Use of Glasses (Glasses and No Glasses).
Driving Experience is the within subjects variable with three levels (Low, Medium

and High), and Trials are with six levels (T1 to T6).

Table 6.37: ANOVA-IV results on Fixation Duration,

Logarithmic transformed

Sum of Mean
Source df F Sig.

Squares Square
Corrected Model 8.62a 239.00 .04 1.17 .063
Intercept 2610.66 1.00 2610.66 84315.01 .000
Pillar_Types 22 1.00 22 7.00 .008
Traffic_Objects 10 1.00 10 3.32 .069
Trials A2 5.00 .02 .76 BT
Gender .00 1.00 .00 .02 .892
Driving_Experience 15 2.00 .07 2.35 .096
Glasses 31 1.00 31 10.14 .002
Pillar_Types *

.04 1.00 .04 1.28 .259
Traffic_Objects
Pillar_Types * Trials .06 5.00 .01 A1 841
Pillar_Types * Gender .00 1.00 .00 .00 981
Pillar_Types *

14 2.00 .07 2.30 101
Driving_Experience
Pillar_Types * Glasses .04 1.00 .04 1.43 232
Traffic_Objects * Trials .07 5.00 .01 44 .820
Traffic_Objects * Gender .00 1.00 .00 .10 754

continued on next page
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Table 6.37: continued

Sum of Mean
Source df F Sig.

Squares Square
Traffic_Objects *

.05 2.00 .02 .76 467
Driving_Experience
Traffic_Objects * Glasses .00 1.00 .00 07 799
Trials * Gender 15 5.00 .03 98 431
Trials *

.20 10.00 .02 .66 761
Driving_Experience
Trials * Glasses .06 5.00 .01 37 871
Gender *

21 1.00 21 6.69 .010
Driving_Experience
Gender * Glasses .02 1.00 .02 .52 AT2
Driving_Experience *

49 1.00 .49 15.95 .000

Glasses

The ANOVA-IV analysis revealed that there is a significant main effect of Pillar
Types (F = 7.00, p = .008) and Glasses (F = 10.14, p = .002) on logarithmic trans-
formed Fixation Duration. Traffic Objects (F = 3.32, p = .069), Trials (F = .76, p =
577), Gender (F = .02, p = .892) and Driving Experience (F = 2.35, p = .096) have
no significant effect on logarithmic transformed Fixation Duration data, suggesting
that Pillar Types and Glasses effect the eye-fixation intensity during the simulation.
There is a significant interaction found between Gender and Driving Experience (F

= 6.69, p = .010), and Driving Experience and Glasses (F = 15.95, p <.000).

Analysis of variance - V (ANOVA-V)

ANOVA-V study sought to determine whether logarithmic transformed Coordinates-
X data differed according the factors of: subject’s Gender, Pillar Models, Traffic
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Objects, Use of Glasses, Driving Experience, and Trials. A 2x2x2x2x3x6
(288) mixed design ANOVA analysis was conducted. Subject’s Gender is the within
subjects variable with two levels (Male and Female); Pillar Models (New and Old),
Traffic Objects (Bicycle and Pedestrian); Use of Glasses (Glasses and No Glasses).
Driving Experience is the within subjects variable with three levels (Low, Medium

and High), and Trials are with six levels (T1 to T6).

Table 6.38: ANOVA-V results on logarithmic trans-

formed Coordinates-X

Sum of Mean
Source df F Sig.

Squares Square
Corrected Model 44.20a  239.00 .18 2.00 .000
Intercept 2667.46 1.00 2667.46 28837.59 .000
Pillar_Types 7.01 1.00 7.01 75.79 .000
Traffic_Objects 21 1.00 21 2.32 128
Trials .20 5.00 .04 42 .833
Gender .01 1.00 .01 .06 .806
Driving_Experience .33 2.00 .16 1.78 .169
Glasses 42 1.00 42 4.53 .034
Pillar_Types *

.00 1.00 .00 .03 .869
Traffic_Objects
Pillar_Types * Trials .29 5.00 .06 .62 .683
Pillar_Types * Gender .20 1.00 .20 2.14 144
Pillar_Types *

1.26 2.00 .63 6.79 .001
Driving_Experience
Pillar_Types * Glasses 07 1.00 07 74 391
Traffic_Objects * Trials .20 5.00 .04 43 .829
Traffic_Objects * Gender .05 1.00 .05 .55 457

continued on next page
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Table 6.38: continued

Sum of Mean
Source df F Sig.

Squares Square
Traffic_Objects *

.08 2.00 .04 .46 .633
Driving_Experience
Traffic_Objects * Glasses .04 1.00 .04 .46 499
Trials * Gender .20 5.00 .04 43 .830
Trials *

.33 10.00 .03 .36 .964
Driving_Experience
Trials * Glasses .26 5.00 .05 §5%) 736
Gender *

.03 1.00 .03 .38 .539
Driving_Experience
Gender * Glasses 3.27 1.00 3.27 35.37 .000
Driving_Experience *

43 1.00 43 4.67 .031

Glasses

The ANOVA-V analysis revealed that there is a significant main effect of Pillar
Types (F = 75.79, p <.000) and Glasses (F = 4.53, p = .034) on logarithmic trans-
formed Coordinates-X. Traffic Objects (F = 2.32, p = .128), Trials (F = .42, p =
.833), Gender (F = .06, p = .806) and Driving Experience (F = 1.78, p = .169) have
no significant effect on Coordinates-X, suggesting that Pillar Types and Glasses effect
the pixel correspondence of eye movements on X axis during the simulation. There
is a significant interaction found between Pillar Types and Driving Experience (F =
6.79, p <.000), Gender and Glasses (F = 35.57, <.000), and Driving Experience and
Glasses (F = 4.67, p = .031).
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Analysis of variance - VI (ANOVA-VI)

ANOVA-VT study sought to determine whether logarithmic transformed Coordinates-
Y data differed according the factors of: subject’s Gender, Pillar Models, Traffic
Objects, Use of Glasses, Driving Experience, and Trials. A 2x2x2x2x3x6
(288) mixed design ANOVA analysis was conducted. Subject’s Gender is the within
subjects variable with two levels (Male and Female); Pillar Models (New and Old),
Traffic Objects (Bicycle and Pedestrian), Use of Glasses (Glasses and No Glasses).
Driving Experience is the withing subjects variable with three levels (Low, Medium

and High), and Trials are with six levels (T1 to T6).

Table 6.39: ANOVA-VI results on logarithmic trans-

formed Coordinates-Y

Sum of Mean
Source df F Sig.

Squares Square
Corrected Model 1.281a 239 .005 1.322 .002
Intercept 3081.397 1 3081.397 759887.267 .000
Pillar_Types .003 1 .003 .854 .356
Traffic_Objects .015 1 .015 3.718 .054
Trials .008 5 .002 419 .836
Gender 014 1 014 3.545 .060
Driving_Experience 110 2 .055 13.609 .000
Glasses 072 1 072 17.761 .000
Pillar_Types *

.013 1 .013 3.207 074
Traffic_.Objects
Pillar_Types * Trials .013 ) .003 618 .686
Pillar_Types * Gender .004 1 .004 1.050 .306
Pillar_Types *

.019 2 .010 2.353 .096

Driving_Experience

continued on next page
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Table 6.39: continued

Sum of Mean
Source df F Sig.

Squares Square
Pillar_Types * Glasses .012 1 012 3.051 .081
Traffic_Objects * Trials .026 5 .005 1.290 .266
Traffic_Objects *

.001 1 .001 183 .669
Gender
Traffic_Objects *

.003 2 .002 424 .654
Driving_Experience
Traffic_Objects *

.006 1 .006 1.469 .226
Glasses
Trials * Gender .008 5 .002 418 .836
Trials *

023 10 .002 .567 .842
Driving_Experience
Trials * Glasses 024 5 .005 1.204 .305
Gender *

.047 1 .047 11.561 .001
Driving_Experience
Gender * Glasses .041 1 041 10.216 .001
Driving_Experience *

.016 1 .016 4.000 .046

Glasses

The ANOVA-VTI analysis revealed that there is a significant main effect of Driving
Experience (F = 13.609, p <.000) and Glasses (F = 17.761, p <.000) on logarithmic
transformed Coordinates-Y. Pillar Types (F = .854, p = .356), Traffic Objects (F =
3.718, p = .054), Trials (F = .419, p = .836) and Gender (F = 3.545, p = .060) have no
significant effect on Coordinates-Y, suggesting that Driving Experience and Glasses

effect the pixel correspondence of eye movements on Y axis during the simulation.
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There is a significant interaction found between Gender and Driving Experience (F

= 11.561, p = .001), and Gender and Glasses (F = 10.216, p = .001).

Multivariable analysis of variance - I (MANOVA-I)

MANOVA-I analysis was performed to identify whether each independent vari-
able has significant effect on three dependent variables accordingly; Fixation Dura-
tion, Coordinates-X and Coordinates-Y. A 2 x 2 x 2 x 2 x 3 x 6 (288) mixed design
MANOVA analysis was conducted. Subject’s Gender is the within subjects variable
with two levels (Male and Female); Pillar Models (New and Old), Traffic Objects (Bi-
cycle and Pedestrian), Use of Glasses (Glasses and No Glasses). Driving Experience
is the within subjects variable with three levels (Low, Medium and High), and Trials
are with six levels (T1 to T6).

Table 6.40: Multivariable Analysis of Variance on Fixa-

tion Duration, Coordinates-X and Coordinates-Y

Effect Test Value F Sig.
Intercept Pillai’s Trace 968 9245.577h  .000
Wilks” Lambda .032 9245.577b  .000

Hotelling’s Trace 30.480 9245.577b .000
Roy’s Largest Root 30.480 9245.577b .000
Pillar_Types Pillai’s Trace .083 27.308b .000
Wilks” Lambda 917 27.308b .000
Hotelling’s Trace .090 27.308b .000
Roy’s Largest Root .090 27.308b .000
Traffic_ Objects Pillai’s Trace .008 2.500b .058
Wilks” Lambda .992 2.500b .058
Hotelling’s Trace .008 2.500b .058

continued on next page



Table 6.40: continued

Effect Test Value F Sig.
Roy’s Largest Root .008 2.500b .058
Trials Pillai’s Trace .010 .H86 .888
Wilks” Lambda 990 585 .888
Hotelling’s Trace .010 585 .889
Roy’s Largest Root .006 1.118c .349
Gender Pillai’s Trace .006 1.681b 169
Wilks” Lambda 994 1.681b .169
Hotelling’s Trace .006 1.681b .169
Roy’s Largest Root .006 1.681b 169
Driving_Experience Pillai’s Trace .060 9.383 .000
Wilks’ Lambda 941 9.441b .000
Hotelling’s Trace .063 9.499 .000
Roy’s Largest Root .053 16.065¢ .000
Glasses Pillai’s Trace .026 8.066b .000
Wilks” Lambda 974 8.066b .000
Hotelling’s Trace .027 8.066b .000
Roy’s Largest Root .027 8.066b .000
Pillar Types * Pillai’s Trace 004 1361b 253
Traffic_Objects
Wilks” Lambda .996 1.361b 253
Hotelling’s Trace .004 1.361b 253
Roy’s Largest Root .004 1.361b 253
Pillar_Types * Trials Pillai’s Trace .010 .H96 .880
Wilks” Lambda 990 .596 .880
Hotelling’s Trace .010 .596 .880
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Table 6.40: continued

Effect Test Value F Sig.

Roy’s Largest Root .008 1.462¢ .200
Pillar_Types *

Pillai’s Trace .006 1.716b 162
Gender

Wilks’ Lambda 994 1.716b 162

Hotelling’s Trace .006 1.716b 162

Roy’s Largest Root .006 1.716b 162
Pillar_Types *

Pillai’s Trace .035 5.330 .000
Driving_Experience

Wilks’ Lambda 966 5.357b .000

Hotelling’s Trace .036 5.384 .000

Roy’s Largest Root .033 9.898¢ .000
Pillar_Types *

Pillai’s Trace .008 2.438b .063
Glasses

Wilks” Lambda 992 2.438b .063

Hotelling’s Trace .008 2.438b .063

Roy’s Largest Root .008 2.438b .063
Traffic_Objects * o

Pillai’s Trace .012 758 725
Trials

Wilks” Lambda 988 758 726

Hotelling’s Trace 013 758 726

Roy’s Largest Root .009 1.641c 146
Traffic_Objects * o

Pillai’s Trace .001 .367b N
Gender

Wilks” Lambda 999 .367b Nu

Hotelling’s Trace .001 .367h N

continued on next page
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Table 6.40: continued

Effect Test Value F Sig.
Roy’s Largest Root .001 .367b N
Traffic-Objects * Pillai’s Trace .003 A74 .828
Driving_Experience
Wilks” Lambda 997 A74b .828
Hotelling’s Trace .003 AT3 .829
Roy’s Largest Root .002 .640c .589
Trafie-Oblects b ais Trace 002 495b 686
Glasses
Wilks” Lambda 998 495b .686
Hotelling’s Trace .002 .495b .686
Roy’s Largest Root .002 .495b .686
Trials * Gender Pillai’s Trace 018 1.097 353
Wilks” Lambda 982 1.098 352
Hotelling’s Trace .018 1.098 .352
Roy’s Largest Root .013 2.429c .034
Trials * Pillai’s Trace .016 482 992
Driving_Experience
Wilks” Lambda 984 481 992
Hotelling’s Trace .016 481 992
Roy’s Largest Root .009 .815¢ 614
Trials * Glasses Pillai’s Trace .009 523 930
Wilks” Lambda 991 522 930
Hotelling’s Trace .009 521 930
Roy’s Largest Root .006 1.029¢ .399
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Table 6.40: continued

Effect Test Value F Sig.
Gender © Pillai’s Trace 023 7243 000
Driving_Experience
Wilks” Lambda 977 7.243b .000
Hotelling’s Trace .024 7.243b .000
Roy’s Largest Root .024 7.243b .000
Gender * Glasses Pillai’s Trace 038 11.958b .000
Wilks” Lambda .962 11.958b .000

Hotelling’s Trace .039 11.958b .000
Roy’s Largest Root .039 11.958b .000

Driving_Experience *

Pillai’s Trace 015 4.610b .003
Glasses

Wilks” Lambda 985 4.610b .003

Hotelling’s Trace .015 4.610b .003

Roy’s Largest Root .002 .316¢ .003

MANOVA-I results showed that Pillar Types (F = 27.308, p <0.000), Driving Ex-
perience (F = 9.441, p <0.001) and Glasses (F= 8.066, p <0.001) do have significant
effect on Fixation Duration, Coordinates X and Coordinates Y. Traffic Objects (F
= 2.500, p = .058), Trails (F = .585, p = .888) and Gender (F = 1.1681, p = .169)
have no effect on Coordinates-Y, suggesting that Pillar Types, Driving Experience
and Glasses effect the pixel correspondence of eye movements on Fixation Duration,

Coordinates-X and Coordinates-Y during the simulation.

Multivariable Analysis of Variance - II (MANOVA-II)

MANOVA-II analysis was performed to identify whether each independent vari-

able has significant effect on three dependent variables accordingly; logarithmic trans-
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formed Fixation Duration, Coordinates-X and Coordinates-Y. A2x2x2x2x3x6
(288) mixed design MANOVA analysis was conducted. Subject’s Gender is the within
subjects variable with two levels (Male and Female); Pillar Models (New and Old),
Traffic Objects (Bicycle and Pedestrian), Use of Glasses (Glasses and No Glasses).
Driving Experience is the within subjects variable with three levels (Low, Medium

and High), and Trials are with six levels (T1 to T6).

Table 6.41: Multivariable Analysis of Variance on log-
arithmic transformed Fixation Duration, Coordinates-X

and Coordinates-Y

Effect Test Value F Sig.
Intercept Pillai’s Trace 992 36421.988 .000
Wilks” Lambda .008 36421.988 .000

Hotelling’s Trace 120.072  36421.988 .000
Roy’s Largest Root 120.072 36421.988 .000

Pillar_Types Pillai’s Trace .081 26.822 .000
Wilks’” Lambda 919 26.822 .000
Hotelling’s Trace .088 26.822 .000
Roy’s Largest Root .088 26.822 .000
Traffic_Objects Pillai’s Trace 011 3.418 017
Wilks’ Lambda .989 3.418 017
Hotelling’s Trace 011 3.418 017
Roy’s Largest Root .011 3.418 017
Trials Pillai’s Trace .009 .b43 917
Wilks” Lambda 991 .b43 918
Hotelling’s Trace .009 542 918
Roy’s Largest Root .005 871 .500
Gender Pillai’s Trace .002 147 524
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Table 6.41: continued

Effect Test Value F Sig.
Wilks’ Lambda 998 747 524
Hotelling’s Trace .002 147 524
Roy’s Largest Root .002 747 .b24
Driving_Fxperience Pillai’s Trace .061 9.630 .000
Wilks” Lambda 939 9.689 .000
Hotelling’s Trace .064 9.749 .000
Roy’s Largest Root .054 16.406 .000
Glasses Pillai’s Trace .032 9.984 .000
Wilks” Lambda 968 9.984 .000
Hotelling’s Trace .033 9.984 .000
Roy’s Largest Root .033 9.984 .000
Pillar-Types * Pillai’s Trace .006 1.766 152
Traffic_Objects
Wilks’ Lambda 994 1.766 152
Hotelling’s Trace .006 1.766 152
Roy’s Largest Root .006 1.766 152
Pillar_Types * Trials Pillai’s Trace 011 .695 792
Wilks’ Lambda .989 .694 793
Hotelling’s Trace 011 .694 793
Roy’s Largest Root .009 1.554 170
Pillar_Types * Gender Pillai’s Trace .004 1.234 .296
Wilks” Lambda 996 1.234 .296
Hotelling’s Trace .004 1.234 296
Roy’s Largest Root .004 1.234 .296
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Table 6.41: continued

Effect Test Value F Sig.
Pillar Types * Pillai’s Trace 033 5.023 000
Driving_Experience
Wilks” Lambda 968 5.048 .000
Hotelling’s Trace .033 5.073 .000
Roy’s Largest Root .031 9.412 .000
Pillar_Types * Glasses Pillai’s Trace .009 2.603 .051
Wilks’ Lambda 991 2.603 051
Hotelling’s Trace .009 2.603 051
Roy’s Largest Root .009 2.603 051
Traffic_ Objects * Trials  Pillai’s Trace 012 756 728
Wilks’ Lambda 988 756 728
Hotelling’s Trace .012 755 728
Roy’s Largest Root .009 1.626 .150
Traffic_Objects * Gender Pillai’s Trace .001 .361 781
Wilks” Lambda 999 .361 781
Hotelling’s Trace .001 361 781
Roy’s Largest Root .001 361 781
Traffic-Objects * Pillai’s Trace 003 447 848
Driving_Experience
Wilks” Lambda 997 446 848
Hotelling’s Trace .003 446 .848
Roy’s Largest Root .002 .b24 .666
Traffic-Objects * Pillai’s Trace .001 331 .803
Glasses
Wilks’ Lambda 999 331 .803

continued on next page

175



Table 6.41: continued

Effect Test Value F Sig.
Hotelling’s Trace .001 331 803
Roy’s Largest Root .001 331 .803
Trials * Gender Pillai’s Trace .012 745 740
Wilks’ Lambda 988 745 740
Hotelling’s Trace .012 744 741
Roy’s Largest Root .008 1.494 189
frials ® Pillai’s Trace 018 562 974
Driving_FExperience
Wilks” Lambda 982 .H61 974
Hotelling’s Trace .019 .H61 974
Roy’s Largest Root .011 964 473
Trials * Glasses Pillai’s Trace .009 .b34 923
Wilks” Lambda 991 .H34 923
Hotelling’s Trace .009 b33 924
Roy’s Largest Root .006 1.011 410
Gender * Pillai’s Trace .022 6.966 .000
Driving_Experience
Wilks’ Lambda 978 6.966 .000
Hotelling’s Trace .023 6.966 .000
Roy’s Largest Root .023 6.966 .000
Gender * Glasses Pillai’s Trace .038 11.872 .000
Wilks” Lambda 962 11.872 .000
Hotelling’s Trace .039 11.872 .000
Roy’s Largest Root .039 11.872 .000
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Table 6.41: continued

Effect Test Value F Sig.
Driving_Experience *
Pillai’s Trace .021 6.477 .000
Glasses
Wilks” Lambda 979 6.477 .000
Hotelling’s Trace .021 6.477 .000
Roy’s Largest Root .021 6.477 .000

MANOVA-II results showed that Pillar Types (F = 26.822, p <0.000), Traffic
Objects (F = 3.418, p <0.017), Driving Experience (F = 9.689, p <0.000), and Glasses
(F=9.984, p <0.001) do have significant effect on logarithmic transformed Fixation
Duration, Coordinates-X and Coordinates-Y. Trials (F = .543, p = .917) and Gender
(F = .747, p = .524) have no effect, suggesting that Pillar Types, Traffic Objects,
Driving Experience and Glasses effect the pixel correspondence of eye movements on
logarithmic transformed Fixation Duration, Coordinates-X and Coordinates-Y during

the simulation.

Multivariable analysis of variance - IIT (MANOVA-III)

MANOVA-III analysis was performed to identify whether each independent vari-
able has significant effect on three dependent variables accordingly; logarithmic trans-
formed Fixation Duration, logarithmic transformed Coordinates-X and Coordinates-
Y. A2x2x2x2x3x6 (283) mixed design MANOVA analysis was conducted.
Subject’s Gender is the within subjects variable with two levels (Male and Female);
Pillar Models (New and Old), Traffic Objects (Bicycle and Pedestrian); Use of Glasses
(Glasses and No Glasses). Driving Experience is the within subjects variable with

three levels (Low, Medium and High), and Trials are with six levels (T1 to T6).



Table 6.42: Multivariable Analysis of Variance on log-

arithmic transformed Fixation Duration, logarithmic

transformed Coordinates-X and Coordinates-Y
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Effect Test Value F Sig.
Intercept Pillai’s Trace 994 51153.191 .000
Wilks” Lambda .006 51153.191 .000
Hotelling’s Trace 168.637 51153.191 .000
Roy’s Largest Root 168.637 51153.191 .000
Pillar_Types Pillai’s Trace .082 27.021 .000
Wilks’ Lambda 918 27.021 .000
Hotelling’s Trace .089 27.021 .000
Roy’s Largest Root .089 27.021 .000
Traffic_Objects Pillai’s Trace 012 3.734 011
Wilks” Lambda 988 3.734 011
Hotelling’s Trace 012 3.734 011
Roy’s Largest Root .012 3.734 011
Trials Pillai’s Trace .008 b13 935
Wilks” Lambda 992 512 .936
Hotelling’s Trace .008 512 936
Roy’s Largest Root .005 957 443
Gender Pillai’s Trace .003 .851 466
Wilks” Lambda 997 851 466
Hotelling’s Trace .003 .851 .466
Roy’s Largest Root .003 851 466
Driving_Experience Pillai’s Trace .046 7.107 .000
Wilks” Lambda 954 7.171 .000
Hotelling’s Trace .048 7.235 .000
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Table 6.42: continued

Effect Test Value F Sig.
Roy’s Largest Root .046 13.933 .000
Glasses Pillai’s Trace .039 12.180 .000
Wilks” Lambda 961 12.180 .000
Hotelling’s Trace .040 12.180 .000
Roy’s Largest Root .040 12.180 .000
Pillar-Types * Pillai’s Trace .006 1.832 140
Traffic_Objects
Wilks” Lambda 994 1.832 .140
Hotelling’s Trace .006 1.832 140
Roy’s Largest Root .006 1.832 140
Pillar_Types * Trials Pillai’s Trace .010 .618 .863
Wilks” Lambda 990 617 .863
Hotelling’s Trace .010 617 .863
Roy’s Largest Root .007 1.356 239
Pillar_Types * Gender Pillai’s Trace .005 1.410 239
Wilks” Lambda 995 1.410 239
Hotelling’s Trace .005 1.410 239
Roy’s Largest Root .005 1.410 .239
Fillar Types * Pillai’s Trace 028 4340 000
Driving_Experience
Wilks” Lambda 972 4.358 .000
Hotelling’s Trace .029 4.375 .000
Roy’s Largest Root .027 8.087 .000
Pillar_Types * Glasses Pillai’s Trace .006 1.980 115
Wilks’ Lambda 994 1.980 115
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Table 6.42: continued

Effect Test Value F Sig.
Hotelling’s Trace .007 1.980 115
Roy’s Largest Root .007 1.980 115
Traffic_Objects * Trials Pillai’s Trace 012 748 736
Wilks” Lambda 988 748 137
Hotelling’s Trace 012 748 137
Roy’s Largest Root .009 1.615 153
Traffic_Objects * Gender Pillai’s Trace .001 229 .876
Wilks” Lambda 999 229 .876
Hotelling’s Trace .001 229 .876
Roy’s Largest Root .001 229 .876
Traffic-Objects * Pillai’s Trace 003 485 820
Driving_Experience
Wilks” Lambda 997 485 .820
Hotelling’s Trace .003 484 821
Roy’s Largest Root .002 .552 .647
Traffic_Objects * Glasses Pillai’s Trace .001 .380 167
Wilks” Lambda .999 380 767
Hotelling’s Trace .001 .380 767
Roy’s Largest Root .001 .380 767
Trials * Gender Pillai’s Trace 011 675 811
Wilks” Lambda .989 675 811
Hotelling’s Trace .011 .675 .812
Roy’s Largest Root .008 1.531 178
Trials * Driving Experience  Pillai’s Trace 017 527 .984
Wilks’ Lambda 983 527 984
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Table 6.42: continued

Effect Test Value F Sig.
Hotelling’s Trace 017 .H26 984
Roy’s Largest Root .010 .895 538
Trials * Glasses Pillai’s Trace .010 611 .868
Wilks” Lambda 990 .610 .869
Hotelling’s Trace .010 .610 .869
Roy’s Largest Root .006 1.039 393
Gender * Driving_Experience Pillai’s Trace .022 6.923 .000
Wilks” Lambda 978 6.923 .000
Hotelling’s Trace .023 6.923 .000
Roy’s Largest Root .023 6.923 .000
Gender * Glasses Pillai’s Trace .044 14.057 .000
Wilks” Lambda .956 14.057 .000
Hotelling’s Trace .046 14.057 .000
Roy’s Largest Root .046 14.057 .000
Driving Experience * Pillai’s Trace 02 6919 000
Glasses
Wilks” Lambda 978 6.919 .000
Hotelling’s Trace .023 6.919 .000
Roy’s Largest Root .023 6.919 .000

MANOVA-III results showed that Pillar Types (F = 27.021, p <0.000), Traffic
Objects (F = 3.734, p <0.011), Driving Experience (F = 7.171, p <0.000), and Glasses
(F=12.180, p <0.001) do have significant effect on logarithmic transformed Fixation
Duration, logarithmic transformed Coordinates-X and Coordinates-Y. Trials (F =
512, p = .936) and Gender (F = .851, p = .466) have no effect, suggesting that Pillar
Types, Traffic Objects, Driving Experience and Glasses effect the pixel correspon-
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dence of eye movements on logarithmic transformed Fixation Duration, logarithmic

transformed Coordinates X and Coordinates Y during the simulation.

Multivariable analysis of variance - IV (MANOVA-IV)

MANOVA-IV analysis was performed to identify whether each independent vari-
able has significant effect on three dependent variables accordingly; logarithmic trans-
formed Fixation Duration, Coordinates-X and logarithmic transformed Coordinates-
Y. A2x2x2x2x3x6 (288) mixed design MANOVA analysis was conducted.
Subject’s Gender is the within subjects variable with two levels (Male and Female);
Pillar Models (New and Old), Traffic Objects (Bicycle and Pedestrian), Use of Glasses
(Glasses and No Glasses). Driving Experience is the within subjects variable with

three levels (Low, Medium and High), and Trials are with six levels (T1 to T6).

Table 6.43: Multivariable Analysis of Variance on log-
arithmic transformed Fixation Duration, Coordinates-X

and logarithmic transformed Coordinates-Y

Effect Test Value F Sig.
Intercept Pillai’s Trace 999 295905.312  .000
Wilks’ Lambda 001 295905.312 .000

Hotelling’s Trace 975.512  295905.312 .000
Roy’s Largest Root 975.512 295905.312 .000

Pillar_Types Pillai’s Trace .080 26.325 .000
Wilks” Lambda 920 26.325 .000
Hotelling’s Trace 087 26.325 .000
Roy’s Largest Root .087 26.325 .000
Traffic_Objects Pillai’s Trace 011 3.252 .021
Wilks” Lambda 989 3.252 .021

continued on next page
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Effect Test Value F Sig.
Hotelling’s Trace 011 3.252 .021
Roy’s Largest Root .011 3.252 021
Trials Pillai’s Trace .009 574 .897
Wilks” Lambda 991 573 .897
Hotelling’s Trace .009 573 .898
Roy’s Largest Root .005 927 462
Gender Pillai’s Trace .004 1.199 .309
Wilks” Lambda .996 1.199 .309
Hotelling’s Trace .004 1.199 309
Roy’s Largest Root .004 1.199 309
Driving_Experience Pillai’s Trace .058 9.110 .000
Wilks’ Lambda 942 9.154 .000
Hotelling’s Trace .061 9.198 .000
Roy’s Largest Root .049 15.018 .000
Glasses Pillai’s Trace .033 10.320 .000
Wilks” Lambda 967 10.320 .000
Hotelling’s Trace 034 10.320 .000
Roy’s Largest Root .034 10.320 .000
Pillar-Types * Pillai’s Trace .005 1.581 192
Traffic_Objects
Wilks” Lambda 995 1.581 192
Hotelling’s Trace .005 1.581 192
Roy’s Largest Root .005 1.581 192
Pillar_Types * Trials Pillai’s Trace 011 .689 798
Wilks’” Lambda 989 .688 799

continued on next page
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Effect Test Value F Sig.
Hotelling’s Trace 011 .688 .799
Roy’s Largest Root .008 1.503 .186
Pillar_Types * Gender Pillai’s Trace .004 1.149 .328
Wilks” Lambda .996 1.149 328
Hotelling’s Trace .004 1.149 328
Roy’s Largest Root .004 1.149 328
Pillar-Types * Pillai’s Trace 033 5.040 000
Driving_Experience
Wilks” Lambda 967 5.065 .000
Hotelling’s Trace 034 5.090 .000
Roy’s Largest Root .031 9.440 .000
Pillar_Types * Glasses Pillai’s Trace .008 2.377 .069
Wilks” Lambda 992 2.377 .069
Hotelling’s Trace .008 2.377 .069
Roy’s Largest Root .008 2.377 .069
Traffic_Objects * Trials Pillai’s Trace 012 762 7121
Wilks” Lambda .988 761 722
Hotelling’s Trace 013 761 722
Roy’s Largest Root .009 1.590 .160
Traffic_Objects * Gender Pillai’s Trace .002 AT74 .701
Wilks’” Lambda 998 AT74 701
Hotelling’s Trace .002 474 701
Roy’s Largest Root .002 AT74 701
Traffic Objects * Pillai’s Trace 003 A67 833

Driving_Experience

continued on next page
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Effect Test Value F Sig.
Wilks” Lambda 997 467 833
Hotelling’s Trace .003 466 834
Roy’s Largest Root .002 .625 599
Traffic_Objects * Glasses Pillai’s Trace .002 552 .647
Wilks” Lambda 998 .5b2 .647
Hotelling’s Trace .002 552 .647
Roy’s Largest Root .002 .b52 .647
Trials * Gender Pillai’s Trace 011 .693 794
Wilks” Lambda .989 692 194
Hotelling’s Trace 011 .692 795
Roy’s Largest Root .007 1.298 263
Trials * Driving_Experience Pillai’s Trace .020 .600 958
Wilks” Lambda 980 .600 958
Hotelling’s Trace .020 .600 958
Roy’s Largest Root .012 1.116 347
Trials * Glasses Pillai’s Trace .010 634 .849
Wilks” Lambda 990 633 .850
Hotelling’s Trace .010 633 .850
Roy’s Largest Root .007 1.329 .250
Gender © Pillai’s Trace 021 6.490 000
Driving_Experience
Wilks” Lambda 979 6.490 .000
Hotelling’s Trace 021 6.490 .000
Roy’s Largest Root .021 6.490 .000
Gender * Glasses Pillai’s Trace .035 10.921 .000

continued on next page
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Table 6.43: continued

Effect Test Value F Sig.
Wilks” Lambda .965 10.921 .000
Hotelling’s Trace .036 10.921 .000
Roy’s Largest Root .036 10.921 .000

Driving Experience * Pillai’s Trace 021 6.622 000

Glasses
Wilks” Lambda 979 6.622 .000
Hotelling’s Trace .022 6.622 .000
Roy’s Largest Root .022 6.622 .000

MANOVA-IV results showed that Pillar Types (F = 26.325, p <0.000), Traffic
Objects (F = 3.252, p = 0.021), Driving Experience (F = 9.110, p <0.000), and
Glasses (F = 10.320, p <0.001) do have significant effect on logarithmic transformed
Fixation Duration, Coordinates-X and logarithmic transformed Coordinates-Y. Tri-
als (F = .573, p = .897) and Gender (F = 1.199, p = .309) have no effect, suggesting
that Pillar Types, Traffic Objects, Driving Experience and Glasses effect the pixel
correspondence of eye movements on logarithmic transformed Fixation Duration,

Coordinates-X and logarithmic transformed Coordinates-Y during the simulation.

Multivariable analysis of variance - V (M ANOVA-V)

MANOVA-V analysis was performed to identify whether each independent vari-
able has significant effect on three dependent variables accordingly; Fixation Dura-
tion, logarithmic transformed Coordinates-X and logarithmic transformed Coordinates-
Y. A2x2x2x2x3x6 (288) mixed design MANOVA analysis was conducted.
Subject’s Gender is the within subjects variable with two levels (Male and Female);

Pillar Models (New and Old), Traffic Objects (Bicycle and Pedestrian), Use of Glasses
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(Glasses and No Glasses). Driving Experience is the within subjects variable with

three levels (Low, Medium and High), and Trials are with six levels (T1 to T6).

Table 6.44: Multivariable Analysis of Variance on Fix-

ation Duration, logarithmic transformed Coordinates-X

and logarithmic transformed Coordinates-Y

Effect Test Value F Sig.
Intercept Pillai’s Trace 999 294459.636 .000
Wilks’ Lambda 001 294459.636 .000
Hotelling’s Trace 970.746  294459.636 .000
Roy’s Largest Root 970.746 294459.636 .000
Pillar_Types Pillai’s Trace .081 26.656 .000
Wilks’ Lambda 919 26.656 .000
Hotelling’s Trace .088 26.656 .000
Roy’s Largest Root .088 26.656 .000
Traffic_Objects Pillai’s Trace .009 2.608 .050
Wilks” Lambda 991 2.608 .050
Hotelling’s Trace .009 2.608 .050
Roy’s Largest Root .009 2.608 .050
Trials Pillai’s Trace .009 BT .894
Wilks’” Lambda 991 DT .895
Hotelling’s Trace .010 .b76 .895
Roy’s Largest Root .006 1.142 .336
Gender Pillai’s Trace .007 2.151 .092
Wilks” Lambda 993 2.151 .092
Hotelling’s Trace 007 2.151 .092
Roy’s Largest Root .007 2.151 .092
Driving_Experience Pillai’s Trace .041 6.381 .000

continued on next page
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Effect Test Value F Sig.
Wilks” Lambda 959 6.430 .000
Hotelling’s Trace .043 6.480 .000
Roy’s Largest Root .041 12.423 .000
Glasses Pillai’s Trace 034 10.628 .000
Wilks” Lambda .966 10.628 .000
Hotelling’s Trace .035 10.628 .000
Roy’s Largest Root .035 10.628 .000
PillarTypes * Pillai’s Trace 004 1238 295
Traffic_Objects
Wilks” Lambda .996 1.238 295
Hotelling’s Trace .004 1.238 295
Roy’s Largest Root .004 1.238 295
Pillar_Types * Trials Pillai’s Trace .008 D11 936
Wilks” Lambda 992 b1l 936
Hotelling’s Trace .008 511 .936
Roy’s Largest Root .007 1.186 314
Pillar_Types * Gender Pillai’s Trace .006 1.872 133
Wilks’ Lambda 994 1.872 133
Hotelling’s Trace .006 1.872 133
Roy’s Largest Root .006 1.872 133
Pillar-Types * Pillai’s Trace 029 4543 000
Driving_Experience
Wilks” Lambda 971 4.561 .000
Hotelling’s Trace .030 4.579 .000
Roy’s Largest Root .027 8.347 .000

continued on next page
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Effect Test Value F Sig.
Pillar_Types * Glasses Pillai’s Trace .005 1.569 195
Wilks’” Lambda 995 1.569 195
Hotelling’s Trace .005 1.569 195
Roy’s Largest Root .005 1.569 .195
Traffic_Objects * Trials  Pillai’s Trace 012 744 741
Wilks” Lambda 988 744 741
Hotelling’s Trace 012 743 742
Roy’s Largest Root .009 1.556 170
Traffic_Objects * Gender Pillai’s Trace .001 323 .809
Wilks” Lambda 999 323 .809
Hotelling’s Trace .001 323 .809
Roy’s Largest Root .001 323 .809
Traffic-Objects * Pillai’s Trace .004 .0H3 768
Driving_Experience
Wilks” Lambda 996 .5b2 768
Hotelling’s Trace .004 D52 769
Roy’s Largest Root .002 732 .h33
Traffic_Objects * Glasses Pillai’s Trace .003 764 515
Wilks” Lambda 997 764 515
Hotelling’s Trace .003 764 H15
Roy’s Largest Root .003 764 b15
Trials * Gender Pillai’s Trace .016 983 470
Wilks” Lambda 984 985 469
Hotelling’s Trace .016 986 467
Roy’s Largest Root .013 2.446 .033

continued on next page
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Table 6.44: continued

Effect Test Value F Sig.
frials ® Pillai’s Trace 016 485 992
Driving_Experience
Wilks’” Lambda 984 484 992
Hotelling’s Trace .016 484 992
Roy’s Largest Root .009 811 618
Trials * Glasses Pillai’s Trace 011 .688 799
Wilks” Lambda 989 .688 .799
Hotelling’s Trace 011 .687 .800
Roy’s Largest Root .007 1.330 .249
Gender © Pillai’s Trace 021 6.630 000
Driving_Experience
Wilks” Lambda 979 6.630 .000
Hotelling’s Trace 022 6.630 .000
Roy’s Largest Root .022 6.630 .000
Gender * Glasses Pillai’s Trace .042 13.227 .000
Wilks’” Lambda 958 13.227 .000
Hotelling’s Trace .044 13.227 .000
Roy’s Largest Root .044 13.227 .000
Driving Experience * Pillai’s Trace 017 5.181 .001
Glasses
Wilks’” Lambda 983 5.181 .001
Hotelling’s Trace 017 5.181 .001
Roy’s Largest Root .017 5.181 .001

MANOVA-V results showed that Pillar Types (F = 26.656, p <0.000), Driving Ex-
perience (F = 6.383, p <0.000) and Glasses (F = 10.628, p <0.001) do have significant
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effect on Fixation Duration, logarithmic transformed Coordinates-X and logarithmic
transformed Coordinates-Y. Traffic Objects (F = 2.608, p = .050), Trials (F = .577, p
= .895) and Gender (F = 2.141, p = .092) have no effect, suggesting that Pillar Types,
Traffic Objects, Driving Experience and Glasses effect the pixel correspondence of eye
movements on Fixation Duration, logarithmic transformed Coordinates-X and loga-

rithmic transformed Coordinates-Y during the simulation.

Multivariable analysis of variance - VI (MANOVA-VI)

MANOVA-VT analysis was performed to identify whether each independent vari-
able has significant effect on three dependent variables accordingly; logarithmic trans-
formed Fixation Duration, logarithmic transformed Coordinates-X and logarithmic
transformed Coordinates-Y. A 2 x 2 x 2 x 2 x 3 x 6 (288) mixed design MANOVA
analysis was conducted. Subject’s Gender is the within subjects variable with two
levels (Male and Female); Pillar Models (New and Old), Traffic Objects (Bicycle
and Pedestrian), Use of Glasses (Glasses and No Glasses). Driving Experience is the
within subjects variable with three levels (Low, Medium and High), and Trials are

with six levels (T1 to T6).

Table 6.45: Multivariable Analysis of Variance on log-
arithmic transformed Fixation Duration, logarithmic
transformed Coordinates-X and logarithmic transformed

Coordinates-Y

Effect Test Value F Sig.
Intercept Pillai’s Trace 999 318050.905 .000
Wilks” Lambda 001 318050.905 .000

Hotelling’s Trace 1048.519  318050.905 .000
Roy’s Largest Root 1048.519 318050.905 .000
Pillar_Types Pillai’s Trace .081 26.569 .000

continued on next page
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Effect Test Value F Sig.
Wilks” Lambda 919 26.569 .000
Hotelling’s Trace .088 26.569 .000
Roy’s Largest Root .088 26.569 .000
Traffic_Objects Pillai’s Trace 012 3.538 014
Wilks” Lambda 988 3.538 014
Hotelling’s Trace 012 3.538 014
Roy’s Largest Root .012 3.538 014
Trials Pillai’s Trace .009 .H42 918
Wilks’” Lambda 991 541 919
Hotelling’s Trace .009 541 919
Roy’s Largest Root .005 978 .430
Gender Pillai’s Trace .004 1.323 .266
Wilks” Lambda .996 1.323 .266
Hotelling’s Trace .004 1.323 .266
Roy’s Largest Root .004 1.323 .266
Driving_Experience Pillai’s Trace .043 6.687 .000
Wilks” Lambda 957 6.744 .000
Hotelling’s Trace .045 6.800 .000
Roy’s Largest Root .043 13.125 .000
Glasses Pillai’s Trace .039 12.402 .000
Wilks’” Lambda 961 12.402 .000
Hotelling’s Trace .041 12.402 .000
Roy’s Largest Root .041 12.402 .000
Pillor.Types * Pillai’s Trace 005 1633 180

Traffic_Objects

continued on next page
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Effect Test Value F Sig.
Wilks” Lambda 995 1.633 180
Hotelling’s Trace .005 1.633 180
Roy’s Largest Root .005 1.633 180
Pillar_Types * Trials Pillai’s Trace .010 614 .866
Wilks” Lambda 990 613 .866
Hotelling’s Trace .010 613 867
Roy’s Largest Root .007 1.330 249
Pillar_Types * Gender Pillai’s Trace .004 1.311 270
Wilks’” Lambda 996 1.311 270
Hotelling’s Trace .004 1.311 270
Roy’s Largest Root .004 1.311 270
FillarTypes Pillai’s Trace 028 4328 000
Driving_Experience
Wilks” Lambda 972 4.345 .000
Hotelling’s Trace .029 4.362 .000
Roy’s Largest Root .027 8.050 .000
Pillar_Types * Glasses Pillai’s Trace .006 1.711 163
Wilks” Lambda 994 1.711 163
Hotelling’s Trace .006 1.711 163
Roy’s Largest Root .006 1.711 163
Traffic_Objects * Trials Pillai’s Trace 012 748 736
Wilks” Lambda 988 748 737
Hotelling’s Trace 012 147 738
Roy’s Largest Root .008 1.549 172
Traffic_Objects * Gender Pillai’s Trace .001 322 .810

continued on next page
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Effect Test Value F Sig.
Wilks” Lambda 999 322 .810
Hotelling’s Trace .001 322 810
Roy’s Largest Root .001 322 .810
Traffic-Objects * Pillai’s Trace 003 515 797
Driving_Experience
Wilks’” Lambda 997 515 798
Hotelling’s Trace .003 514 798
Roy’s Largest Root .002 618 .604
Traffic_Objects * Glasses Pillai’s Trace .002 599 616
Wilks” Lambda 998 .599 616
Hotelling’s Trace .002 .599 .616
Roy’s Largest Root .002 .599 .616
Trials * Gender Pillai’s Trace .010 .619 .862
Wilks” Lambda 990 .619 .862
Hotelling’s Trace .010 618 .862
Roy’s Largest Root .007 1.328 250
Trials * Driving_Experience Pillai’s Trace 018 .H62 974
Wilks’ Lambda 982 .562 974
Hotelling’s Trace .019 .H61 974
Roy’s Largest Root .011 997 444
Trials * Glasses Pillai’s Trace 012 708 779
Wilks” Lambda 988 708 779
Hotelling’s Trace 012 707 780
Roy’s Largest Root .007 1.361 237

continued on next page
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Table 6.45: continued

Effect Test Value F Sig.
Gender *

Pillai’s Trace 021 6.432 .000
Driving_Experience

Wilks” Lambda 979 6.432 .000

Hotelling’s Trace 021 6.432 .000

Roy’s Largest Root .021 6.432 .000
Gender * Glasses Pillai’s Trace 042 13.176 .000

Wilks’” Lambda 958 13.176 .000

Hotelling’s Trace .043 13.176 .000

Roy’s Largest Root .043 13.176 .000
Driving_Experience *

Pillai’s Trace .023 7.073 .000
Glasses

Wilks” Lambda 977 7.073 .000

Hotelling’s Trace 023 7.073 .000

Roy’s Largest Root .023 7.073 .000

MANOVA-VI results show that Pillar Types (F = 26.569, p <0.000), Traffic Ob-
jects (F = 3.538, p = 0.014), Driving Experience (F = 6.744, p <0.000), and Glasses
(F = 12.402, p <0.000) do have significant effect on logarithmic transformed Fixa-
tion Duration, logarithmic transformed Coordinates-X and logarithmic transformed
Coordinates-Y, suggesting that Pillar Types, Traffic Objects, Driving Experience
and Glasses effect the pixel correspondence of eye movements on Fixation Duration,
Coordinates-X and Coordinates-Y during the simulation. Trails (F = .541, p = .919)
and Gender (F = 1.323, p = .266) have no effect on logarithmic transformed Fixa-
tion Duration, logarithmic transformed Coordinates-X and logarithmic transformed

Coordinates-Y.
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Summary of analysis of variance tests

Table 6.46 summarizes results of all analysis of variance tests conducted on eye-
tracker data. Independent variables with stars on Table 6.46 refers to 'p’ values
smaller than zero (p <0.000), which indicates a significance at the alpha level of 0.05.
One can see that significant factors have overlapping results throughout the study.

The very last row on Table 6.46 summarizes percentage accumulations of variables

that have a significant MANOVA effect.

Table 6.46: Summary of significance (p-values) of

ANOVA and MANOVA analyses

Dependent  Pillar  Traff. ) Driv.  Use
Tests Trials Gender
Variables Types Obj. Exper. Glass
ANOVA-I Dur. .004* 451 496  .109 77 .046*
ANOVA-II Coor.X .000* 231 832  .673 001*% 429
ANOVA-III Coor.Y 573 047 881 .140 .000*  .000*

ANOVA-1V Dur.LOG .008*% .069  .577  .892 .096 .002*
ANOVA-V Coor. XLOG .000* .128  .833  .806 169 .034*
ANOVA-VI Coor.YLOG .573 047% 881  .140 .000*  .000*

Fix.Dur.

MANOVA-I  Coor.X .000* .058 .888  .169 .000*  .000%*
Coor.Y
Dur.LOG

MANOVA-II  Coor.X .000% .017* 917 524 .000*  .000%*
Coor.Y
Dur.LOG

MANOVA-III Coor.XLOG .000* .011* .936  .466 .000*  .000%*
Coor.Y

continued on next page
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Table 6.46: continued

Tests Dependent  Pillar  Traff. Trials  Gender Driv.  Use
Variables Types Obj. Exper. Glass
Dur.LOG

MANOVA-IV  Coor.X .000* .021* .897  .309 .000*  .000*
Coor.YLOG
Dur.

MANOVA-V  Coor.XLOG .000* .050 .894  .092 .000*  .000*
Coor.YLOG
Dur.LOG

MANOVA-VI  Coor.XLOG .000* .014* .919  .266 .000*  .000*
Coor.YLOG

Percentages 8%  50% 0% 0% 75% 92%

6.7.7 Area of interest observations

One of the main hypotheses proposed in this study is that New Pillar (Proposed
Pillar) and Current Pillar (Old pillar) are significantly different in terms of provid-
ing ergonomics improvements (e.g., success of detecting traffic objects). Summary of
ANOVA and MANOVA analyses in Table 6.46 demonstrated that Pillar Types con-
tributes significantly on visual detection of traffic object. In this section, eye-tracker
data was analyzed to find what portion of the simulation display received significant
fixation and eye movements during simulation.

First of all, simulation screen was split into five evenly distributed areas of interest,
each being fixed to 380 by 1200 (380x1200) pixels in width (X-axis) and height (Y-
axis). The X-axis spans from (0,0) at the origin to (1920,0), which equals to five

even split areas of interest (380x5). Throughout this section total Fixation Duration
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and Coordinates (X,Y) of eye-tracker data were superimposed on each corresponding
areas of interest.

In this study, A-pillar section of the windshield area represented as Area-1, which
covers the very first 380x1200 portion of the simulation display. Figure 6.12 shows

the split simulation window with evenly distributed (380x1200) areas of interest.

1200
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Figure 6.12. Simulation screen split in five evenly distributed areas
of interest. Area-1 represents the A-pillar zone of New Pillar design
with circular see-through gaps.

Projection of compound coordinates

In this section eye-tracker data was plotted on simulation screen that was divided
into five split areas of interest. One can see that Old Pillar model has a wider (a more
homogeneous) distribution of points across the X-axis. In contrast, eye-movements

of subjects on the New Pillar is more concentrated towards the A-pillar zone (Figure

6.13).
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A total of 1152 (576x2) data points were evenly distributed between Current
Pillar (576 points) and New Pillar (576 points) on Figure 6.13. For Area-1, a total
of 157 hits were counted for Current Pillar design, whereas, New Pillar received a
total of 405 hits. Histogram plots also show that there is an accumulation of eye-
movements data towards Area-1 on New Pillar plot when compared to Old Pillar. In
parallel to these findings, bar chart on Figure 6.14 also demonstrates that projection
of subjects’ eye-movements on Area-1 for Old Pillar is only 27%, while New Pillar

model receives a 43% more total number of hits for the same area.

Total fixation duration

Another variable that provides insightful information about subjects’ traffic object
detection performance is the Fixation Duration. In this section Fixation Duration
data was plotted onto five different areas of interests. First, intensity (duration) of
fixations were superimposed on compound coordinates data (Figure 6.15). The size
of each bubble demonstrates the relative duration of the associated fixation. Per
each point on the plot (X and Y coordinates), the larger the bubble diameter gets,
longer the fixation duration becomes. One can see that New Pillar design has higher
concentration of overlapping bubble points when compared to Old Pillar design. This
observation is especially significant on Area-1, where New Pillar plot has distinctively
condensed area of fixation. A parallel observation can be captured when compared
total fixation duration (in milliseconds) between Old Pillar and New Pillar model.

Bar plot on Figure 6.16 shows a 16% increase in total fixation duration at Area-1.

Review of heat-maps and burnout images

Compound coordinates and fixation data provided an in-depth information about
distribution of subjects’ eye-movements and where fixation concentrations occur on

the simulation display. In this section, coordinates data and fixation intensities were
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Figure 6.14. Comparison of total number of hits (X,Y) between Old
and New Pillar. There is a 43% increase in the total number of eye-
movements at Area-1 when subjects use New Pillar design.

superimposed to generate heat-maps and burnout images, which provide additional
information about areas of interest.

Heat-maps are one of the versatile visual communication techniques used in image
processing, which provide color-coded representation of eye-movements in relation
to the concentration of looks that each area of interest receives [168]. Heat-maps
provided in Figure 6.17 and 6.18 were generated through superimposing fixation data
over compound coordinates data. Red (hot) areas show high levels of concentration,
whereas, blue (cold) areas represent low levels of concentration. Once can see that
there is a distinctive concentration (hot zone) found at Area-1 on New Pillar design.

Burnout images also provides similar information, where only concentrated (areas
subject to high fixation duration) areas were presented, and the rest of the image
was blackened. One can see from Figures 6.17 and 6.18 that differences in burnout

images visibility associated between Old Pillar and New Pillar design. Subjects on
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Figure 6.16. Comparison of total fixation duration data between Old

and New Pillar.
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New Pillar performed very concentrated visual search. In contrast, a dispersed visual

search was performed by subjects on Old Pillar design.

Heat-maps and burnout images provided another group of supporting evidence

that there is a significant difference found between Old Pillar and New Pillar design

in terms of eye-movement concentrations and fixation duration. Old Pillar was as-

sociated with dispersed eye-movements on X-axis. In contrast eye-movements and

fixations on New Pillar design were heavily concentrated on the A-pillar zone.
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Figure 6.17. Old Pillar design demonstrates a dispersed data along
X-axis. Heat-maps and burnout data are relatively homegenous and
spread with weak concentration at Area-1.



Figure 6.18. Heat-maps and burnout images on New Pillar demon-
strates higher concentration of eye-movements and fixation on A-pillar

zone.
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6.8 Results and Discussions

A good test-retest reliability on Trials was observed throughout this study (Table
6.20). Outcomes of six trials demonstrated a 'good’ ICC scores of .618, .862 and .794
for Fixation Duration, Coordinates-X and Coordinates-Y data accordingly.

One can see from Table 6.47 that there was no statistically significant difference in
mean outcomes in Fixation Duration, Coordinates-X and Coordinates-Y between Tri-
als, but there were statistically significant differences between Pillar Types and Traffic
Objects. Across all MANOVA studies, New Pillar found to be significantly different
than Old Pillar model both for Fixation Duration, Coordinates-X and Coordinates-Y
outcomes. Only at Coordinates-Y Pillar Type did not generate a significant effect.
Similar to MANOVA studies, ANOVA results showed a strong agreement that a dif-
ferent between New Pillar and Old Pillar model was observed in terms of generating
different outcomes on detecting traffic objects. Pedestrians found to be significantly
different than Bicycle bot for Fixation Duration, Coordinates-X and Coordinates-Y
outcomes. This difference was detected across all MANOVA studies except 6-way
MANOVA-V study. MANOVA studies showed that Trials found not to be generating
different outcomes. Cells shaded in yellow in Table 6.47 shows mutual findings on
ANOVA/MANOVA studies between 3-way and 6-way models for main effects. In
contrast, cells highlighted in red shows where an agreement does not hold.

Six-way ANOVA /MANOVA study was conducted to explore further information
about subjects’ eye-tracking attributes. Results revealed valuable information in re-
garding effects of Gender, Driving Experience and Use of Glasses on eye-tracking
outcomes. One can see from Table 6.46 that there was no statistically significant
difference in mean outcomes in Fixation Duration, Coordinates-X and Coordinates-Y
on Gender, but there were statistically significant differences between Driving Expe-
rience and Use of Glasses.

Summary of interactions effects at Figure 7.9 and Figure 7.10 demonstrate that

2-way interactions found between Pillar Types and Traffic Objects. One can see that
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non-parallel intersecting lines overlaps with significance found on ANOVA/MANOVA
studies.

In addition to ANOVA/MANOVA studies conducted, Areas of Interest observa-
tions revealed that subjects generated higher number of eye-movements and fixations
at Area-1 section of the simulator window. Figure 6.13 and Figure 6.15 show that a
dense eye-movements and fixations were associated with Area-1 section of the sim-
ulator monitor. Eye-movements and Fixation Duration related data on New Pillar
were resulted higher (43% and 16%) more than Old Pillar model.

Heat-maps and burnout images also demonstrated supporting visual evidence that
subjects eye-movements were concentrated on Area-1 section, which represents the
A-pillar zone of the vehicle windshield. Comparison between Figure 6.17 and Figure
6.18 shows that subjects did a lateral eye-gazing across x-axis when using Old Pillar
model, whereas, a highly concentrated search on Area-1 (A-pillar zone) was generated

by subjects when New Pillar model was projected on simulator monitor.

Table 6.47: Summary of significance (p-values) of

ANOVA and MANOVA analyses on main effects

Dependent
Tests Pillar Types  Traffic Objects Trials
Variables
3-way 6-way | 3-way 6-way | 3-way 6-way
ANOVA-I Fix.Dur. .000% .004* | .279 451 .021%* -
ANOVA-II Coord.X .000* .000* | .321 231 .679 832
ANOVA-III Coord.Y 911 573 .000% .047* | .450 881

ANOVA-IV Fix.Dur.LOG .000* .008* | .002* - 166 577
ANOVA-V Coord. XLOG .000* .000* | .170  .128 654  .833
ANOVA-VI Coord. YLOG .546  .573 .000* .047* | 285 881

Fix.Dur.
MANOVA-I  Coord.X .000* .000* | .000* ” 110 .888

continued on next page
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Tests

Dependent

Variables

Pillar Types

Traffic Objects

Trials

3-way 6-way

3-way 6-way

3-way 6-way

MANOVA-II

MANOVA-III

MANOVA-IV

MANOVA-V

MANOVA-VI

Coord.Y
Fix.Dur.LOG
Coord.X
Coord.Y
Fix.Dur.LOG
Coord. XLOG
Coord.Y
Fix.Dur.LOG
Coord.X
Coord. YLOG
Fix.Dur.
Coord. XLOG
Coord. YLOG
Fix.Dur.LOG
Coord. XLOG
Coord. YLOG

.000* .000*

.000*

.000*

.000*

.000*

.000*

.000*

.000* .000*

.000*% .017*

011%*

.000%*

.021%*

.000*

.000*

.000* .014*

.365 917

411

936

267

897

.098

894

310 919

Percentages

83%  83%

% 50%

8% 0%
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7. EXPERIMENT - 11
7.1 Introduction
7.1.1 Overview

Experiment-I provided information about the accumulation of eye-movements on
specific areas (areas-of-interest) of the LCD monitor. However, this approach does
not reveal important information whether subjects did actually identify a traffic ob-
ject or not. Goal of the Experiment-II is to provide whether subjects did actually
detect traffic objects projected on LCD monitor or not. Furthermore, Experiment-II
also reveals information about the effectiveness/success of pillar models in terms of
assisting users in detecting traffic objects.

Experiment-II was split into three sub-experiments: Traffic Object Detection Ex-
periment, Cooper-Harper Test and User Questionnaire/Review. Each experiment

represents different levels of performance related data (Figure 8.1).

7.1.2 Connections to human-in-the-loop design framework

Experiment-II demonstrates how an additional human related data could be con-
nected into human-in-the-loop design framework. In this specific design study three
sub-experiments was used as means of collecting human subject data. Shaded area
in Figure 7.2 shows how data collected through Traffic Object Detection experiment.
Similarly, Figure 7.3 demonstrates a visual synopsis of how Experiment-II was inte-

grated to DHM within human-in-the-loop framework.
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Design of Experiment

[ ]

Expriment - | Experiment - Il ‘ Experiment - IlI ’
(eye-tracker) (traffic object detection) (structural integrity)

Figure 7.1. Experiment-II is a human subject data collection ex-
periment through three sub-experiments: Traffic Object Detection
Experiment, Cooper-Harper Test and User Questionnaire/Review.

7.2 Experimental Setup
7.2.1 Pillar obscuration simulation

A modified version of the static simulator used in Experiment-I was utilized in
Experiment-II. The modified setup was composed of three LCD monitors that rep-
resents corresponding pillar sections of the referenced vehicle. Still images that were
gathered from Google Maps projected on each corresponding LCD monitor. These
images represents actual road environment for constructing a virtual traffic scene
(Figure 7.7). Similar to Experiment-I, a steering wheel, an adjustable seat and ped-
als were provided as simple physical probes. Dimensions of the experimental setup,
locations of the driver’s seat and orientation of each pillar were based on the refer-
ence vehicle blueprints. Figure 7.4 shows experimental components that are placed
in experiment room according to blueprints of the reference vehicle.

In Experiment-II, three LCD displays were used without an eye-tracker device.

Each LCD display was located on paired pillar zones, where static images associated
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Figure 7.2. Shaded area in red (inside dashed lines) represents how
Experiment-I1 was integrated to data flow process within human-in-
the-loop framework. Experiment-II gathered human subject related
data through three sub-experiments.

to driver’s point-of-view were projected. Figures 7.5 and 7.6 show a generic view of the

experimental setup, and how traffic simulation scenario was transferred to physical

experiment setup.

7.2.2 Traffic objects

A realistic traffic scenario was created by using still images from Google Maps.

Bikers, pedestrians, motorcyclists were used as traffic objects. Each object was placed

within associated pillar obscuration angle. Traffic environment was based on a three-

way road junction located in the heart of the Purdue University campus at West

Lafayette, Indiana (Latitude - 40°25’26.64”N and Longitude - 86°54’28.46" W). The

junction is known for its accumulated local traffic - heavily composed of pedestrians,



EXPERIMENT-I
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EXPERIMENT-II
Traffic Object Detection
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Figure 7.3. Shaded area in red (inside dashed lines) represents which
portion of the human-in-the-loop design framework was used to inte-
grate human aspects of data during design process.

bikers and family cars. Three dimensional images of the road junction were taken
from Google Maps. Based on the reference vehicle and associated with A, B and
CD pillar obscuration zones, three traffic objects were situated on the Google Maps
image. Each object was situated within obscuration angle. Later, still images were

taken from driver’s point-of-view. These images represent three different driving

scenarios corresponding A, B and CD pillars (Figure 7.7).
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Pillar Obscuration Model Experimental Setup

-
-

Figure 7.4. Orientation of traffic objects that are within pillar obscu-
ration zones were projected to LCD displays. Static images on the
LCD display represented the depth field of the driver’s point-of-view.

In A-pillar obscuration scenario, reference vehicle was located on the very right
lane as it is attempting to make a right turn. Traffic objects were located within
the left side of the A-pillar obscuration angle. This scenario represents a very typical

A-pillar obscuration happen at a pedestrian lane crossing.
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Figure 7.5. First group of traffic objects placed within obscuration
zones (Ag, By, C'Dy) associated with each pillar (A, B, CD). Images
show drivers point-of-view when looked at associated pillar and traffic
element.

Similarly, for B-pillar obscuration scenario, traffic objects were located on the
right side of the vehicle. In this setup, reference car was driving straight on its course

and traffic objects were merging to the main road.
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Figure 7.6. Second group of traffic objects placed within obscuration
zones (Ay, By, CDy) associated with each pillar (A, B, CD). Images
show drivers point-of-view when looked at associated pillar and traffic
element.

Finally, for CD pillar obscuration, traffic elements were oriented rear right-end
of the vehicle. This scenario represented a situation where the reference vehicle was
attempting a back-up maneuver for parallel parking.

In each obscuration case, traffic scenarios represented a combination of visual tasks

that include checking the crosswalk, monitoring merging traffic and watching other
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traffic objects. In each scenario, much the same to regular driving conditions, driver
must check right and left side of the vehicle as he/she continues on the course. If traffic
objects are not present in the scene, no action is required. If traffic objects are within
vicinity of the vehicle, driver must make multiple maneuvers to avoid them. Although
static simulator did not propose any medium of controlling simulation environment,
subjects were advised to look for traffic objects on the monitor as if they were in a

real driving condition.

7.2.3 Pillar obscuration scenario

Throughout this experiment two traffic objects were assigned to each pillar (A,
B and CD) and placed within obscuration angle zone of each pillar. A block-design
approach was taken by grouping pillar types with traffic objects under each pillar
model (Old and New Pillar). Traffic objects and pillar types were randomized during
data collection. Each traffic object was located within associated pillar obscuration
angle as represented in Figure 7.4 and Figure 7.7. Table 7.1 shows assignment of

traffic objects per pillar type within each block (Pillar model).

Table 7.1: Traffic object assignment per pillar model and
pillar type

Pillar Model  Pillar Type Traffic Objects Trials

A Pedestrian 6

Bicycle 6

Current Pillar B Motorcycle 6
Bicycle 6

CD Pedestrian 6

Motorcycle 6

A Pedestrian 6

Bicycle 6

continued on next page
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Table 7.1: continued

Pillar Model  Pillar Type Traffic Objects Trials

New Pillar B Motorcycle 6
Bicycle 6

CD Pedestrian 6

Motorcycle 6

7.3 Procedure

Experiment-II was conducted for A, B and CD pillar for Old Pillar and New
Pillar model. Subjects filled-up Traffic Object Detection form after each static image
displayed on the screen. Therefore, a total of 72 (3 x 24) Traffic Object Detection
forms were used throughout the Experiment-II. For each pillar type, 2 Cooper-Harper
test were conducted to detect visual performance of drivers when used Old Pillar
model and New Pillar model. Thus, a total of 6 Cooper-Harper tests were used.
Finally, 3 questionnaires were given to subjects to evaluate pillar models in categories
of visibility, aesthetics and safety. Figure 7.8 summarizes overall data flow.

Specific procedures followed during Experiment-II were:

1. After Experiment-I completed, subjects were asked to start Experiment-II with
Traffic Object Detection tasks. Subject went through Traffic Object Detection
forms, which were static shuffling randomly with three seconds between each

other.

2. For each pillar model (Old and New), subjects were asked to fill up a modified
Cooper-Harper test after completing each A, B and CD pillar Object Detection

Form experiment, sequentially.

3. After simulator tasks, subjects were asked to fill up three short questionnaires.



Traffic Layout - Road Junction

A-Pillar

rIrer

B-Pillar
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Figure 7.7. Reference vehicle and traffic objects were inserted into
corresponding traffic scenario. Images represent perceptive layout of
the traffic environment and driver’s point-of-view are shown in groups.
Each traffic object was located within pillar obscuration angle (Ag, By,
C'Dy) associated with each A, B and CD pillars.
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Traffic Object Detection
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User Questionnaire(s)

Figure 7.8. Traffic Object Detection form is composed of three levels
of questions that needs to be answered sequentially.

4. After all simulator tasks and questionnaires were completed, subjects were re-

quired to sign off human subject log, and exited the experiment.

7.4 Variables

In Experiment-II, subjects’ response was collected through three sub-experiments.

There were four dependent variables, encompassing: 1. Object Detection, 2. Perfor-

mance, 3. Ease of Detection, and 4. Design Review.

Object Detection data represents binary variable whether subjects detect a traffic

object on monitor or not.

Similarly, Traffic Object Detection Performance was a

binary selection. Subjects choose one correct traffic object among four choices. Ease

of Detection data and Design Review were Rating/Score data. Table 7.2 summarizes

types of data, variables, units, and hypotheses associated with experiments conducted.
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Table 7.2
Types of data, variables, units, and hypotheses associated with ex-
periments conducted in this study

Dependent Variables Type Hypotheses
Traffic Object Detection Binary H1, H2, H3
Object Detection Performance Binary H1, H2, H3
Ease of Detection Rating/Score H1, H2, H3
Design Review Rating/Score H1, H2, H3

7.5 Experimental Design

Each sub-experiment in Experiment-II was analyzed to provide further under-
standing on whether pillar designs provide improvements in detecting traffic objects
or not. Table 7.3 summarizes details on measurements, goals and statistical methods

used in Experiment-II.

Table 7.3: Summary of methods of measurement, goal of

measurement, statistical methods in Experiment-II

Method of Goal of Statistical, Numerical

Measurement Measurement and Visual Methods

Detection Form Detection Performance Descriptive Statistics
Bar Graphs
Cooper-Harper  Design Improvement Descriptive Statistics
Line Graphs
Questionnaire User Preference Descriptive Statistics
Bar Graphs
Internal Consistency Cronbach’s Alpha
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7.6 Participants

Participant pool was exactly the same. All participants who attended to Experiment-
I were also participated Experiment-II. A detailed information regarding participants
were previously provided in Chapter 6. You can find summary of subjects and de-

scriptive statics in tables provided in Section 6.6.3.

7.7 Data Analysis and Statistical Techniques
7.7.1 'Traffic object detection experiment

Experiment-II started with Traffic Object Detection experiment. Subjects’ input
was collected through a Traffic Object Detection Form. Each simulation image rep-
resenting A, B and CD pillars were displaye