
Towards A Framework For Resilient Design Of
Complex Engineered Systems

As modern systems continue to increase in size and complex-
ity, they pose significant safety and risk management chal-
lenges. System engineers and much of the government re-
search efforts are focused on understanding the attributes
and characteristics that emerge from the interactions of com-
ponents and subsystems. As a result, the objective of this
research is to develop techniques and supporting tools for
the verification of the resilience of complex engineered sys-
tems during the early design stages. Specifically, this work
focuses on automating the verification of safety requirements
to ensure designs are safe, automating the analysis of de-
sign topology to increase design robustness against inter-
nal failures or external attacks, and allocating appropriate
level of redundancy into the design to ensure designs are
resilient. In distributed complex systems, a single initiat-
ing fault can propagate throughout engineering systems un-
controllably, resulting in severely degraded performance or
complete failure. This research is motivated by the fact that
there is no formal means to verify the safety and resilience
properties, and no provision to incorporate related analysis
into the design process. The proposed approach is validated
on the quad-redundant Electro-Mechanical Actuator (EMA)
of a Flight Control Surface (FCS) of an aircraft.

1 Introduction
In recent years, technological advancements and a grow-

ing demand for highly reliable complex engineered systems,
e.g., aviation, power generation, transportation, and health
care have made the safety assessment of these systems ever
more important [1, 2]. These systems are considered safety-
critical and are required to perform more reliably in dynami-
cally uncertain operational environments. Consequently, the
development of systems with broader fault detection and di-
agnosis capabilities is vital for protecting lives, property, and
continuity of service. Looking back at the Columbia space
shuttle incident of 2003, it is evident that the illogical pursuit
of the design mantra of better, cheaper, faster led to the de-
cisions that eroded safety without realizing that the risks had
dramatically increased. In the aftermath of such catastrophic
failure and similar major accidents, it has become apparent
that complex systems design and development require both
ultra-high safety and high performance [3].

In order to design a resilient system, first we define the
concept of complex systems. System of systems (SOS) is
a collection of other elements which themselves are distinct
complex systems that interact with one another to achieve
a common goal. The more the number of systems, the

higher the possibility of negative interaction occurrence, that
is emergence. The reason for this is that (1) the systems con-
stituting the SOS were designed independently and were not
originally designed to work together, and (2) each system in
the SOS may be of a different technology.

The SOS performs functions and achieves results that
can not be achieved by any specific component. More pre-
cisely, the performed functions are characterized by the be-
haviors that are emergent properties of the entire SOS and not
the behavior of any specific system component. Pariès [4],
Bedau [5], Chalmers [6], and Seager [7] categorized these
emergent properties into three distinct types: (1) normal
emergence, (2) weak emergence, and (3) strong emergence.

The three categories of emergence are depicted in Fig-
ure 1. According to Bedau and Chalmers [5, 6], normal
emergence is a system property, which results from multi-
ple components or sub-systems working together to perform
a required function. Hence, normal emergence is a desirable
system behavior, while weak and strong emergence are con-
sidered undesirable and possibly catastrophic types of emer-
gence. Pavard et al. [8] looks at an air traffic control system
as a good example of normal emergence. In this system,
a specific and fixed role is assigned to Flight Management
System (FMS), Instrument Landing System (ILS), and the
air traffic controller. The function of a designed system with
normal emergence is an intended emergent property of the
planned interaction of the individual parts and components.

On the other hand, weak emergence is defined as an
emergence that could be predicted and prevented if all the
laws of physics are taken into the consideration and exhaus-
tive simulation and verification is conducted. One example
of weak emergence is the Mars Polar Lander as explained by
Leveson [9]. In this accident, the Lander strut vibration was
interpreted by software as a landing signal. Therefore, soft-
ware shut down both engines, and the lander crashed into
the planet. If the system, including software, physical sys-
tem, and their interactions had been verified properly with
exhaustive simulation of the vibration of the strut, then the
catastrophic failure might never have happened.

Lastly, strong emergence is one of the most difficult
types of emergence to be identified. By nature, this type of
emergence results from completely random factors and its
source is often human. The Nagoya incident as described
by Leveson [10] is one example of strong emergence. In
this case, the pilot mistakenly sent a wrong command to the
flight control system, which resulted in loss of passengers’
and pilot’s life. The important question to ask here is how the

1 INTRODUCTION 2

Possible to predict if all the laws of
physics are studied and analyzed

Impossible to predict.
(Causes are completely random)

System of Systems
(Complex Systems)

Minimize the
consequences of failures

Normal Emergence Weak Emergence Strong Emergence

Recover from
Failures

Resilient System

predicts and prevents functional
losses and disruptions

Fig. 1: Resilience and Emergence in Systems.

Verification
Stage

State of the Art

Reliability-based Hazard-based

Design
Stage

Verification
Stage

Design
Stage

Reliability
Block

Diagrams
(RBD)

Failure
Modes and

Effects
Analysis
(FMEA)

Function
Failure
Design
Method
(FFDM)

Risk in
Early

Design
(RED)

Function
Failure

Identification
& Propagation

(FFIP)

Fault
Tree

Analysis
(FTA)

Probabilistic
Risk

Assessment
(PRA)

Hazard
and

Operability
Studies

(HAZOP)

Systems-
Theoretic
Accident
Modeling

and
Processes
(STAMP)

Fig. 2: Techniques for Safety and Reliability Analysis of System Design.

entire system, including aircraft and pilot could have been
more resilient and adaptable to a range of external and inter-
nal threats and failures.

In this paper, resilience is viewed as a system’s ability
to cope with complexity [11] and adapt to changes caused
by emergence, either weak or strong. As depicted in Fig-
ure 1, resilience is characterized as a multi-faceted property
of complex systems that (i) predicts and prevents functional
losses and disruptions, (ii) minimizes the impact of failures,
and (iii) recovers from disturbances. The result of this re-
search provides a basis for incorporating risks into the design
process of engineered systems and tools that proactively cap-
ture how the internal system’s interactions and environmen-
tal factors affect system resilience. In particular, this pro-

posal addresses the following three objectives

1. Failure prevention in system design through effective
anticipation of disruption based on exhaustive simula-
tion and verification of safety requirements.

2. Reduction of adverse consequences through identifica-
tion of a design topology and physical system infras-
tructure that is more robust against failures.

3. Recovery from disturbance through component redun-
dancies while determining the least number of compo-
nent redundancies that are required to tolerate and pre-
vent catastrophic system failure.

The remainder of this paper is structured as follows: sec-
tion 2 presents the background and related research on failure

2 BACKGROUND 3

analysis techniques in the early stages of system design. In
section 3 an overview of the step-by-step implementation of
the framework, both at the component and system level, is
explained. Section 4 outlines the application of the proposed
methodology in the analysis and verification of the safety
properties of the quad-redundant Electro Mechanical Actu-
ator (EMA) system design. The paper ends with conclusions
and future work.

2 Background
A number of failure analysis techniques have been de-

veloped over the years. This section reviews several of these
common approaches for failure and reliability analysis dur-
ing conceptual design of engineered systems. As depicted
in Figure. 2, two distinct categories of methods are usu-
ally adopted to address safety analysis of system design.
First, reliability-based approaches are based on identifying
fault and their likelihood of occurring throughout the sys-
tem life-cycle. The second category of techniques is based
on undesirable system states and focus on identifying paths
that reach that state and the likelihood of that path. Hence,
hazard-based techniques are system state centric whereas the
reliability-based approaches are fault centric.

2.1 Reliability-based Techniques
This work explores the reliability-based and hazard-

based perspectives and incorporates them into the concepts
of emergence and resilience as a groundwork for establish-
ing a framework to evaluate the balance between the two ar-
eas of risk mitigation. The following section will detail the
traditional approach to system design to provide the context
of this work.

2.1.1 Verification Stage Approaches
This group of reliability analysis methods is based on the

symbolic logic of the conceptual models of failure scenarios
within a design. The goal is to assess the probability of fail-
ure occurrence in the system design. One of these methods
is the Reliability Block Diagram (RBD) [12], which divides
the system into elements based on the functional model of
the system design, where each system element is assigned a
reliability factor. Then a block diagram of the elements in a
parallel, series, or the combination of parallel and series is
constructed. Each block represents a function or an event in
the system and each element’s failure mode is assumed in-
dependent from the rest of the system. The reliability factor
may or may not be available for all the system design ele-
ments and should be assigned by an expert, which makes it
subjective and hard to validate.

The second popular method of reliability analysis, Fail-
ure Mode and Effect Analysis (FMEA) [13] is a bottom up
approach that investigates failure modes of components and
their effects on the rest of the system. In practice, this tech-
nique is supported by a top-down analysis to confirm the an-
alytical resolution. FMEA provides an exhaustive analysis
to identify the single point of failures and their effects on
the rest of the system. The result of the analysis is used to
increase reliability, incorporate mitigation into the design,
and optimize the design. However, FMEA is very costly

in terms of resources, particularly when implemented at the
component level within complex systems. Also, occurrences
of simultaneous failures and multiple faults are not evalu-
ated. The completeness and correctness of the analysis is
very much dependent on the expert knowledge.

2.1.2 Design Stage Approaches
The next category of reliability analysis techniques uses

functional modeling to represent the system design for anal-
ysis. The Function Failure Design Method (FFDM) intro-
duced by Stone et al. [14,15] is an example of such a method.
FFDM can be used not only at the early stage of system de-
sign but throughout the design process by creating a relation-
ship between system functionality to failure modes and prod-
uct function to system design concepts. Risk in Early Design
(RED) method presented by Grantham et al. [16, 17] is built
upon the FFDM technique which formulates the functional-
failure likeliness and consequence associated with each func-
tion failure. Nevertheless, Devendorf [18] attests that RED
is not able to assist the designers in effective error proofing
during the design process. The knowledge-based repository
used by RED to provide relative failure information does not
scale to other syntax.

In order to overcome these limitations, other research
efforts have drawn attention to the importance of failure cas-
cades in reliability analysis. Kurtoglu at al. [19] presented
the Function-Failure Identification and Propagation (FFIP)
approach for detecting functional failure during the early
stages of system design by interleaving failure identification
analysis with model based reasoning.

2.2 Hazard-based Techniques
Hazard-based methodologies focus on system transi-

tions which move from a hazardous state to a failure state
based on a set of initiating mechanisms. Therefore, the aim
of hazard-based techniques is to identify the potential haz-
ards and the mechanisms and sequences of events which can
cause the system to transition to a failure state in the presence
of those hazards.

2.2.1 Verification Stage Approaches
Another symbolic logic model is based on the Fault Tree

Analysis (FTA) [20] which studies the failure propagation
path from the point of start to the vulnerable components
and assigns a severity factor to each failure model. One of
the benefits of using FTA is its ability to analyze the proba-
bility of simultaneous occurrence of failure within a complex
systems. On the other hand, the probabilistic evaluation of
complex large systems could get computationally intensive.

Also, the correct probabilistic evaluation requires a sig-
nificant amount of resources. Another form of symbolic
logic modeling technique is known as Event Tree Analysis
(ETA) [21] which differs from FTA analysis in a manner that
covers both success and failure events. In this technique all
types of events, such as nominal system operations, faulty
operations, and intended emerging behaviors, are modeled.
Still, calculating the probability of non-comparative failure
or success is difficult to estimate and reach agreement on.

Probabilistic Risk Assessment (PRA) [22] is a technique

3 METHODOLOGY 4

used for analysis of failure risk [23]. PRA incorporates a
number of fault/event modeling methods, such as event se-
quence diagrams and fault trees, and integrates them into a
probabilistic analysis to guide decision-making during ver-
ification stage. However, the requirement for developing a
fully specified system model as part of the verification pro-
cess is constable. The reason is that such detailed, high-
fidelity models of complex systems are not available during
early stages.

2.2.2 Design Stage Approaches
Another technique for safety analysis is Hazard and Op-

erability Studies (HAZOP) [24] that is based on modeling
the interaction flow between components and recognizing a
hazard if components deviate from the intended operation
of designs. A set of guidewords are provided to help with
identification of such deviations. However, from the context
of safety analysis based on interaction between components
and their intended environments, HAZOP is unable to pro-
duce repeatable hazard analysis of the same accident. The
reason for this weakness lies in the highly dynamic and un-
predictable nature of interactions between different subsys-
tems and their operational environment. Moreover, depend-
ing on the expertise and skills of the safety engineers, the
deviations can be identified differently.

In systematic models, such as Systems-Theoretic Ac-
cident Modeling and Processes (STAMP), accidents result
from several causal factors that occur unexpectedly in a spe-
cific time and space [25]. Therefore, the system under con-
sideration is not viewed as a static entity but as a dynamic
process that is constantly adapting to achieve its goals and
reacting to internal and environmental changes.

There are many benefits in using STAMP models as the
basis for hazard analysis of a complex system. However,
Johnson et al. [26] state that the STAMP approach has two
fundamental weaknesses: the lack of methodological guide-
line in implementing the constraint flaw taxonomy and the
construction of control models in a complex system is com-
plicated. In addition, [26] presents two independent stud-
ies of implementing STAMP hazard analysis techniques on
the mission interruption of the joint European Space Agency
(ESA) and National Aeronautics and Space Administration
(NASA) Solar and Heliocentric Observatory (SOHO). The
hazard analysis from each study resulted in significantly dif-
ferent conclusions regarding the cause of failure in the sys-
tem under study.

3 Methodology
The techniques reviewed in the previous section are de-

signed to evaluate a limited set of scenarios in order to
deal with the system complexity. The effects of this in-
formal and incomplete verification is the possibility that a
non-tested scenario could result in unexpected behavior and
catastrophic system failure. To address the incomplete veri-
fication of designs via simulation, formal methods have been
proposed to increase the confidence level. Formal verifi-
cation enables the evaluation of safety properties at differ-
ent levels of abstractions,(i.e., component, sub-system, sys-

tem), proving that the system under consideration satisfies its
safety requirements.

The proposed framework relies on constructing a finite
model of a design and checking it against its desired safety
properties. In the context of this work, the properties of a
system are modeled as transition systems. A desired safety
property contains no failure states. In modeling and rea-
soning about complex systems, it is more efficient to de-
fine safety properties by directly declaring the desired be-
havior of a system instead of stating the characteristics of a
faulty behavior. Another advantage of modeling the system
as a finite-state machine and the fact that it is finite makes it
possible to execute an exhaustive state-space exploration to
prove that the design satisfies its requirements. Since there
is an exponential relationship between the number of states
in the model and number of components that make up the
system, the compositional reasoning approach [27] is used
to handle the large state-space problem. The compositional
reasoning technique decomposes the safety properties of the
system into local properties of its components. These lo-
cal properties are subsequently verified for each component.
The combination of these simpler and more specific verifi-
cations guarantee the satisfaction of the global safety of the
overall system architecture design. It is important to note
that, the safety requirements of the components are satisfied
only when explicit assumptions are made on their environ-
ment. Therefore, an assume-guarantee [28–32] approach is
utilized to model each component with regards to its inter-
action with its environment, i.e, the rest of the system and
outside world.

Next in the proposed framework, each design is con-
verted to system-level graph representation. These graph
representations are then used as a tool to convert each de-
sign into an adjacency matrix of nodes (components) and
edge connections [33]. Subsequently, Non-Linear Dynam-
ical System (NLDS) and epidemic spreading algorithms are
used to analyze the propagation of failure in complex engi-
neered system design.

Furthermore, the framework addresses the issue of for-
mally specifying and formulating the design architecture that
is resilient to component failures by exploiting redundancy.
The application of component redundancy improves system
reliability but also adds cost, weight, size, and power con-
sumption. Therefore, it is vital to minimize the number of
redundancies. The safety analysis and verification process
proposed in this research examines the number of choices
to determine a best way to incorporate redundancy into the
design.

The proposed framework integrates safety by planning
and anticipating for unexpected failures and disruptions.
From this perspective, safety is considered a dynamic fea-
ture of the system that requires constant reinforcement and
support on an ongoing basis. It is important to recognize
that safety is a feature that results from what a system does,
rather than a characteristic that a system has. Therefore, the
proof of safety is only conveyed by the absence of failures
and accidents. For this reason, safety-proofing a system de-
sign is never absolute or complete. However, in this research,

3 METHODOLOGY 5

Design Concepts

Learning Algorithm

Design Meets Safety Requirements

Complex Network

Failure Impact Analysis

Semi-Formal and Formal Verification

H6
1

Engineering Targets

Application of Component Redundancy

Resilient System Design

Minimize the
effect of adverse
consequences

Failure prediction
& prevention

Recover
from adverse
consequences

Framework For Assessing And Improving The Resilience Of Complex Engineering Systems

Model Checking

0
1
1
1

1
0
1
1

1
1
0
1

1
1
1
0



















Design Matrix

Markov Chain

)(t
i)(1 t

i

Epidemic Spreading

Fig. 3: An Overview of The Proposed Approach.

the proposed framework biases the odds in the direction that
ensures safe system operation by 1- Predicting and prevent-
ing adverse consequence 2- Minimizing the adverse con-
sequences, and 3- Recovering from adverse consequences.
Fig. 3 represents an overview of the approach which will be
discussed in detail in the next section.

3.1 Formal and Semi-Formal Verification Approaches
Design requirements are the specification of safety con-

straints initially defined in the design [34]. Requirements are
modeled at different levels of abstractions. For example, a
higher level of abstraction is used when expressing the global
system properties and a low level of abstraction is used when
expressing the required features for each system component,

Fig. 4: Requirements Decomposition.

3 METHODOLOGY 6

i.e. the barriers and materials to be used. Managing this
set of specifications is based on iterative decomposition and
substitution of the abstract requirements by the requirements
that are more concrete.

3.1.1 Safety Requirements Modeling Using SysML
Traditional methods and tools used by system engineer-

ing are mostly based on a formalism that capture a variety
of system features, i.e., requirements engineering, behav-
ioral, functional, and structural modeling, etc. Those with
particular focus on requirements engineering are the Unified
Modeling Language (UML) [35] to support various aspect of
system modeling, Rational Doors [36] to express the require-
ments, and Reqtify [37] to trace the requirements through de-
sign and implementation. UML is developed by the Object
Management Group (OMG) in cooperation with the Interna-
tional Council of Systems Engineering (INCOSE). UML is
an Object-oriented modeling language that allows hierarchi-
cal organization of system component models, which in turn
results in easier reuse and maintenance of the system model.
However, UML was originally developed for software engi-
neers and its primary application is software-oriented; there-
fore it does not meet all the system engineers expectations.
For example, UML does not provide a notion to represent
continuous flows exchanged within the system, i.e., Energy,
Material, and Signal (EMS). The analysis of EMS flows are
crucial in system design safety verification for identifying the
failure propagation path and identifying the common failure
modes. For this reason, the SysML [38] profile was devel-
oped borrowing a subset of the UML language to meet the
requirements of a general purposed language for system en-
gineering.

A SysML requirement diagram enables the transforma-
tion of text-based requirements into the graphical modeling
of the requirements which can be related to other modeling
elements. Fig. 4 depicts the decomposition of a single ab-
stract requirement into several more explicit ones. A study
by Blaise et al. [39] confirms the effectiveness of such di-
agrams to facilitate the structuring and management of re-
quirements that are traditionally expressed in natural lan-
guages.

The next step in the requirement analysis phase consists
of mapping the requirements to the corresponding system
components or functions. System components are modeled
as part of the structural design of a system. The structural de-

sign model corresponds to the system hierarchy in terms of
systems and subsystems, which are modeled using the Block
Definition diagram (BDD). SysML blocks are the best mod-
eling elements to model multi-disciplinary systems and are
especially effective during system specification and design.
They are effective because blocks are not only able to model
logical or physical decomposition of a system, they also en-
able designers to define specification of software, hardware,
or human elements.

Fig. 5 illustrates how a single requirement can be satis-
fied by a set of sub-systems and components. The require-
ment diagram is connected to the structure diagram by a
cross connecting element known as satisfy. A requirement
can be satisfied by a component or subsystem. Furthermore,
the detailed modeling of sub-systems and components are
possible through the use of Internal Block Diagram (IBD).
In addition, blocks are a reusable form of description that
can be applied throughout the construction of system model-
ing if necessary. Another advantage of using blocks during
the design process is their ability to include both structural
and behavioral features, such as properties and operations
that represent the state of the system and behavior that the
system may display.

Including properties as part of the requirement model-
ing is specifically important when verifying safety require-
ments. As Madni. [40] demonstrated, safety is a changing
characteristic of complex systems that, once integrated into
the design, is not preserved unless enforced throughout sys-
tem operation. It is for this reason that in this paper safety is
viewed as a system property.

A complete proof of safety is possible through a formal
definition of different properties that are linked to each high-
level abstract and low-level detailed requirements. Fig. 6 rep-
resents how a requirement, property, block, and behavioral
model are connected to one another. For example, allocate
as a cross connecting principle in SysML is used to connect
a behavior to a component in a structure diagram.

After decomposing safety properties of the system into
local properties of its components. These local properties are
subsequently verified for each component. The combination
of these simpler and more specific verifications guarantees
the satisfaction of the global safety of the overall system ar-
chitecture design.

Fig. 5: Requirements Mapping.

3 METHODOLOGY 7

Fig. 6: Requirements Traceability.
3.1.2 Automated Assume-guarantee Reasoning

In [41], Henzinger et al. cover the advantages that for-
mal verification offers over the above approaches. In for-
mal verification, system designers construct a precise math-
ematical model of the system under design, so that exten-
sive analysis is carried out to generate proof of correct-
ness. One of the well-established methods for automatic
formal verification of the system is model checking, where
a mathematical model of a system is constructed and veri-
fied with regards to specified properties. In model check-
ing, the desired properties are defined in terms of temporal
logic, system of rules and symbolism for representing, and
reasoning about, propositions qualified in terms of time [42].
The defined logical formulae are then used to prove that
a system design meets safety requirements and specifica-
tions. A model checker to establish assume-guarantee prop-
erties of components is called assume-guarantee reasoning
(AGR) [43, 44]. In the assume-guarantee reasoning (AGR)
method, the system properties are verified and modeled with
respect to the assumptions on the environment where com-
ponent and (sub)system performances are guaranteed under
these assumptions. The assumption generation methodology
uses compositional and hierarchical reasoning approaches
via a compositional reachability analysis (CRA) [45] tech-
nique. CRA incrementally composes and abstracts the com-
ponent models into subsystem and, ultimately, a high-level
system models.

After system modeling, the actual analysis of the mod-
els is carried out utilizing the AGR verification technique.
In the assume-guarantee methodology, a formula contains a
triple 〈A〉M 〈P〉, where M is defined as a component, P is a
safety property, and A is an assumption or constraint on M’s
environment. The formula is proven correct if whenever M
is a component within a system satisfying A, then the system
also guarantees P.

The simplest assume guarantee rule for checking a
safety property P on a system with two components M1 and
M2 can be defined as following [32, 46]:
Rule ASYM

1 : 〈A〉M1 〈P〉
2 : 〈true〉M2 〈A〉
〈true〉M1 ‖M2 〈P〉

The first rule is checked to ensure that the generated assump-
tion restricts the environment of component M1 to satisfy P.
For example, the assumption A is that there is no Electromag-

netic Interference (EMI) or Radio Frequency Interference
(RFI) in the environment where component M1 operates;
hence, P is satisfied. The second rule ensures that compo-
nent M2 respects the generated assumption. For example, M2
will not generate any EMI and RFI while operating. If both
rules hold then it is concluded that the composition of both
components also satisfies property P (〈true〉M1 ‖M2 〈P〉).

In this research, the algorithm in [47] is used to auto-
matically generate assume-guarantee reasoning at the com-
ponent, subsystem, and system level. The objective is to au-
tomatically generate assumptions for components and their
compositions, so that the assume-guarantee rule is derived in
an incremental manner.

The automated design verification proves the correct-
ness of the complex engineered system design with regards
to its functional and safety properties. The proposed frame-
work provides information on the property violation of the
composed components during conceptual design, while iden-
tifying the failure propagation behavior. The automatic gen-
eration of failure propagation paths enables the system de-
signers to better address the safety issues in the design.

In the proposed approach, individual components’ be-
havior in the system are modeled as Labeled Transition Sys-
tems (LTSs), LTSs basically represent a finite state system.
The properties of the LTSs make it ideal for expressing the
behavioral model of system components. The LTS model is
expressed graphically, or by its alphabet, transition relation,
and states including single initial state. The LTS of the sys-
tem is constructed from the LTS of its subsystems, and is
verified against safety properties of the design requirements.
Labelled Transition Systems (LTS) such as T is defined as:

T = (S,L,→,s0).
A set S of states
A set L of actions
A set→ of transitions from one state to another.
An initial state s0 ∈ S

This type of graphical modeling, however, could easily be-
come unmanageable for large complex systems. There-
fore, an algebraic notation known as Finite State Process
(FSP) [48] is used to define the behavior of processes in a
design. FSP is a specification language as opposed to mod-
eling language with semantics defined in terms of LTSs. Ev-
ery FSP model has a corresponding LTS description and vice
versa.

In order to produce an architecture that can be used to
verify all the required design functionalities, the behavioral
model of the system is composed with the defined safety
properties. Then the verification algorithm analyzes all exe-
cution paths of the composed model to ensure the specified
property holds for all executions of the system. As a result,
some of the weak emergence can be predicted and prevented
because most of the laws of physics are taken into the con-
sideration and exhaustive simulation and verification is con-
ducted.

On the other hand, strong emergence is one of the most
difficult type of emergence to be identified. By nature, this

3 METHODOLOGY 8

type of emergence results from completely random factors.
Therefore, it is essential for complex systems to be designed
in a way that are able to survive and recover from unexpected
disruptions and operational environment degradations [49].
This differs from traditional definitions of reliability which
only deals with the functional response of components and
(sub)systems. In this research reliability analysis is part of
the design process to determine the weakness of a design and
to quantify the impact of component failures. The resulting
analysis provides a numerical rank to identify which compo-
nents are more important to system reliability enhancement
or more critical to system failure. Design reliability anal-
ysis methods introduced in the research literature, such as
the Function-Failure Design Method (FFDM) [50], the Func-
tional Failure Identification and Propagation (FFIP) [19], and
decomposition-based design optimization [51, 52] have be-
gun to adopt graph-based approaches to model the function
of the component and the flow of energy, material, and signal
(EMS) between them. This work extends this idea to demon-
strate the effect of the design architecture on the robustness
of the system being designed.

3.2 Design Topology and its Effect on Failure Propaga-
tion

In the past several years, scientific interest has been de-
voted to modeling and characterization of complex systems
that are defined as networks [53, 54]. Such systems con-
sist of simple components whose interactions are very ba-
sic, but their large-scale effects are extremely complex, (e.g.,
protein webs, social communities, Internet). Numerous re-
search studies have been devoted to the effect of network
architecture on the system dynamics, behavior, and charac-
teristics. Since, many complex engineered systems can be
represented by their internal product architecture, their com-
plexity is dependent on the heterogeneity and quantity of dif-
ferent components as well as the formation of connections
between those components. Because of this, system proper-
ties can be studied by graph-theoretic approaches. Complex
networks are modeled with graph-based approaches, which
are effective in representing components and their underly-
ing interactions within complex engineered systems.

The second part of the research determines how design
architecture affects the propagation of failures throughout
an engineered system. System robustness and resistance to
topological failure propagation help to describe how a com-
plex engineered system responds to internal and external
stimuli.

The cascading failure is modeled as a Contact Process
(CP), introduced by Harris [55], and has wide applications in
engineering and science [56, 57]. A typical CP starts with a
component in its failure mode, which affects the neighboring
components at a rate that is proportional to the total number
of faulty components. For such a system with n components,
given any set of initially faulty components, the propagation
of failure between components exists in a finite amount of
time. This paper presents a reasoning method based on the
length of time that the failure propagation is active in the
system. With this information, system architectures can be
identified which are resilient to the transmission of failures.

3.2.1 Non-Linear Dynamical System (NLDS) Modeling
The NLDS propagation model provides an indication

for the length of time to full propagation according to the
graph layout defined by an adjacency matrix. In the pro-
posed model, a universal failure cascading rate β (0 ≤ β ≤
1) for each edge connected to a faulty component is defined.
The model is based on discrete time-steps ∆t, with ∆t → 0.
During each time interval ∆t, a faulty component i infects
its neighboring components with probability β. The bigger
the probability β is for highly connected components, the
greater the average time to full failure propagation.

The proposed solution for solving a full Markov chain
is exponential in size. In order to overcome this limitation, it
is assumed that the states of the neighbors of any given com-
ponent are independent of one another. Therefore, the non-
linear dynamical system of 2N variables is reduced to one
with only N variables for the full Markov chain which can be
replaced by Equation (3). This makes the large design prob-
lems solvable with closed-form solutions. Notice that the
independence assumption is theoretically very close to the
full Markov chain and does not place any constraints on the
design network topology. In addition, the NLDS model is de-
sign based on the assumption that the failure cascading rate
is the same for all the components. The reason for this is that
in this paper, each sub(sustem), i.e. electronic network, use
similar links between the components which propagate the
failure with similar rate. Therefore in this specific case, dif-
ferent domains are modeled as different sub(network) with
the same value for . Future work will consider different fail-
ure propagation rate for different components.

The probability that a component i is failed at time t
is defined by pi(t) and the probability that a component i
will not be affected by its neighbors in the next time-step is
denoted by ζi(t). This holds if either of following happens:

1. each neighbor is in its nominal state.
2. each neighbor is in its failed state but does not transfer

the failure with probability (1 - β).

With the consideration of small time-steps (∆t→ 0), the pos-
sibility of multiple cascades within the same ∆t is small and
can be ignored.

ζi(t) = ∏
j: neighbor o f i

(p j(t−1)(1−β)+(1− p j(t−1)))

(1)

= ∏
j: neighbor o f i

(1−β∗ p j(t−1)) (2)

In the above formula (1), it is assumed that p j(t − 1) are
independent from one another.
As illustrated in Fig. 7, each component at time-step t, is
either Nominal (N) or Failed (F). A nominal component i is
currently nominal, however can be affected (with probability
1− ζi(t)) by one of its faulty neighbors. It is important to
note that ζi(t) is dependent on the following:

1. The failure birth rate β.

4 CASE STUDY 9

2. The graph topology around component i.

)(t
i)(1 t

i

Fig. 7: Transition Diagram of the Nominal-Failed (NF)
Model.

The probability of a component i becoming faulty at time t is
defined by pi(t):

1− pi(t) = (1− pi(t−1))ζi(t) i = 1...N (3)

The above equation can be solved to estimate the time evo-
lution of the number of faulty components (ηt), given the
specific value of β and a graph topology of the conceptual
design, as follows:

ηt =
N

∑
i=1

pi(t) (4)

3.2.2 Epidemic Spreading Model (SFF)
In this approach, the theoretical model is based on the

concept that each component in the complex system design
can exist in a discrete set of states. The failure propagation
changes the state of a component from nominal to failure or
from failure to fixed. As a result, the model is classified as
a susceptible - failed - fixed (SFF) model, in which compo-
nents only exist in one of the three states. The design state
fixed prevents the component from failing by the same cause.
The densities of susceptible, failed, and fixed components,
S(t), ρ(t), and F(t) , respectively, change with time based on
the normalization condition.

The proposed methodology is based on the universal rate
(µ) in which the failed components are fixed in the design,
whereas susceptible components are affected by the failure
at a rate (λ) equal to the densities of failed and susceptible
components. The value of λ and µ are chosen based on expert
knowledge and historical failure and repair data [58–60]. In
addition, k̄ is defined as a the number of contacts that each
component has per unit time. It is important to note that the
assumption made in this proposed model is based on the fact
that the propagation of failure is proportional to the density
of the faulty components. Therefore, the following differen-
tial equations can be defined:

dS
dt

=−λk̄ρS (5)

dρ

dt
=−µρ+λk̄ρS (6)

dF
dt

= µρ (7)

In order to estimate S(t), the initial conditions of F(0) = 0
(no design fix is implemented yet), S(0) ' 1 (almost all the
components are in their nominal or susceptible modes) , and
ρ(0) ' 0 (small number of faulty components exist in the
initial design) is assumed. Therefore the following can be
obtained for S(t):

S(t) = e−λk̄ρF(t) (8)

4 Case Study
In order to address the contact process in an engineered

system, a general connectivity distribution P(k) is defined for
each design network. At each time step, each nominal or
susceptible component is affected with probability λ, in the
case of being connected to one or more faulty components.
At the same time, every faulty component is repaired in the
system design so they are resilient against a similar failure.
It is assumed that the designers of the system fix the faulty
components with probability µ. Because every component in
an engineered system has different degrees of connectivity
(k), the time evolution of ρk(t), Sk(t), and Fk(t) which are
the density of faulty, susceptible, and fixed components with
connectivity k at time t is considered and analyzed. There-
fore the Equation in (8) can be replaced by the following:

Sk(t)+ρk(t)+Fk(t) = 1 (9)

As a result, the global variables such as ρ(t), S(t), and F(t)
are expressed by an average over the different connectivity
classes; i.e., F(t) = ∑k P(k)Fk(t).
The above equations combined with initial conditions of the
system design at t = 0 can be defined and evaluated for any
complex engineered system.

As depicted in Fig. 8, a quad-redundant Electro-
Mechanical Actuator (EMA) [61] for the Flight Control Sur-
faces (FCS) of an aircraft, developed in a program sponsored
by NASA, is used to illustrate and validate the proposed ap-
proach. The positions of the surfaces, A, C, and D, in Fig. 9,
are usually controlled using a quad-redundant actuation sys-
tem. The FCS actuation system responds to position com-
mands sent from the flight crew, B in Fig. 9, to move the
aircraft FCS to the command positions.

The EMAs are arranged in a parallel fashion; therefore,
each actuator is required to tolerate a fraction of the over-
all load. To meet safety requirements, each actuator must
take on the full load from the FCS in the extreme case in the
extreme case where all three of the four actuators become
non-operational. In addition, the design should also consider
other issues such as the possibility of the actuators becom-
ing jammed. If one actuator becomes jammed in this paral-
lel arrangement, it will prevent the other ones from moving.
Therefore, a mechanism to disengage faulty actuators from
the rest of the system is required to avoid the faulty actuators
from becoming dead-weights. Once an EMA is disengaged
from the system it cannot be re-engaged automatically. It

4 CASE STUDY 10

Mechanical Linkage Which
can be disengaged

Load
Sensor

2

Load
Sensor

1

Diagnostics

Controller

Position Sensor 1

Position Sensor 2

Position Sensor 3

Position Sensor 4

Load
Sensor

3

Load
Sensor

4

Position Response

Position Response

D
riv

e
C

ur
re

nt
s

Po
si

tio
n

C
om

m
an

d

Load

Actuator
1

Actuator
2

Actuator
3

Actuator
4

Fig. 8: Quad-Redundant EMA Scheme.

Fig. 9: Basic Aircraft Control Surfaces.

is envisioned that this will happen on the ground, once the
aircraft has landed.

In order for the design to be reliable, additional redun-
dancies in other components of the system, such as load and
position sensors are required. Thus, a fully quad-redundant
scheme is envisioned, as depicted in Fig. 8. As illustrated,
the design features redundancy in the EMAs and the sensor
feedback signals. The position command is fed to the control
loop, while the load from the FCS is shared by the EMAs.
The individual load, current, and position response signals
from each EMA are used to perform separate diagnostics on
each EMA. Therefore, faults are isolated to the individual
actuators, which facilitates adaptive on-the-fly decisions on
disconnecting degraded EMAs from the load. A dedicated
diagnostics block performs actuator health assessments, and
makes decisions on whether or not to disengage any faulty
actuators from the flight control surface. The disengagement
is made possible by mechanical linkages, which can be dis-
connected from the output shaft coupling.

4.1 Safety Requirements Modeling Using SysML
In the case study of Fig. 9, the Flight Control Surface

(FCS) must meet rigorous safety and availability require-

ments before it can be certified. The FCS has two types of
dependability requirements:

Integrity: the FCSs must address safety issues such as
loss-of control resulting from aircraft system failures, or
environment disturbances.
Availability: the system must have a high level of avail-
ability.

Therefore, it is critical for the FCS to continue opera-
tion without degradation following a single failure, and to
fail safe or fail operative in the event of a related subsequent
failure. The movement of the FCS is controlled by a quad-
redundant EMAs. Fig. 10 depicts a set of high-level require-
ments. To facilitate the verification process, each level of re-
quirements are associated with a formal Finite State Process
(FSP) using property stereotype in SysML, meaning that sat-
isfying property P1 is the same as satisfying properties P1.1,
P1.2, and P1.3.

The next phase consists of identifying the design archi-
tecture, including sub-systems and components to map each
requirement to a traceable source. As depicted in Fig. 5, re-
quirements mapping are made possible by using the satisfy
relationship to link a single or set of blocks to one or more
requirements.

4.2 Automated Assume-guarantee Reasoning
In order to transform the requirements and the design ar-

chitecture into a finite model, we use finite labelled transition
systems (LTS). As an example, consider the following LTS
model of a command unit subsystem of the quad-redundant
EMAs:

commandLoad[1..4],{missionComplete,resetShaft,timeout}
Fig. 11 represents this model graphically. State 0 corre-

4 CASE STUDY 11

Fig. 10: Quad-redundant EMAs High-Level Requirements.

resetShaft

{timeout,missionComplete}

commandLoad[1]

commandLoad[2]

commandLoad[3]

commandLoad[4]

{timeout,missionComplete}

{timeout,missionComplete}

{timeout,missionComplete}

Fig. 11: LTS Model of the Command Unit Subsystem.

sponds to the command unit resetting the output shaft of
the FCS before sending any load command to the EMAs.
By performing the action <commandLoad[1..4]>, the com-
mand unit requests a range of load values between 1 to 4
from EMAs. Then, the command unit expects two pos-
sible responses <{timeout and missionComplete}>. The
<mission is completed> event occurs when EMA(s) have
maintained the specified load to the FCS throughout the mis-
sion. On the other hand, the <timeout> event occurs in the
case where all four EMAs have failed to provide the required
load.

The labelled transition systems (LTS) CommandUnit

represented in Fig. 11 can be expressed in FSP as shown in
Table 1.

Table 1: FSP Description of Command Unit

FSP Notation

1 : CommandUnit = (resetShaft→ commandLoad[L]→ {timeout,

2 : missionComplete} → CommandUnit).

After modeling the commandUnit the next primitive
component to be modeled is the controller subsystem. The
controller gets the load command from the command unit
and actively regulates the current to each EMA at every time
step. The difference between the external load and the total
actuator load response is used to accelerate or decelerate the
output shaft. If the controller perceives that the output shaft
position response is falling behind the commanded position,
it will increase the current flow to the EMAs. As depicted in
Table 2, in the FSP description of the controller, a repetitive
behavior is defined using a recursion. In this context recur-
sion is recognized as a behavior of a process that is defined
in terms of itself, in order to express repetition.The controller performs action <getLoad[l..4]>, and then
behaves as described by <Controller[l]>. Controller[l] is
a process whose behavior offers a choice, expressed by the
choice operator “|”. Controller[l] initially engages in either
<timeout> or <SendLoad>. The action <timeout> is per-
formed when all actuators fail, otherwise <SendLoad> is

4 CASE STUDY 12

Table 2: FSP Description of Controller

FSP Notation

1 : Controller = (getLoad[l:L]→ Controller[l]),

2 : Controller[t:L] = (timeout→ Controller

3 : | sendLoad→allLoadsCompleted→getShaftPosition[x:Positions]

4 : →if (x ≥ t) then (missionComplete→Controller)

5 : else Controller[t]).

utilized. Subsequently, after sending the required load to
each EMA, feedback signals are sent to inform the controller
of completion of tasks by labeling the action with <all Loads
Completed>. This results in the controller to perform the ac-
tion <get Shaft Position>. At this stage, the controller com-
pares the new position with the required shaft position, if the
shaft has reached the required position then the <mission is
completed>. Otherwise, the behavior is repeated until the
shaft reaches the required position.

Next in the modeling process is the Electro Mechani-
cal Actuator unit, which receives the load command from
the controller and carries out the operation. The Electro Me-
chanical Actuator is modeled in Table 3 with Jammed and
Disengaged as part of its definition. If during the time of
maintaining the specified torque or load the EMA functions
according to specification, the signal <“all loads are com-
pleted”> is sent to the controller. Otherwise, the EMA is
considered non-operational or jammed. In the jammmed
mode, the EMA is incapable of maintaining the required load
and prevents the rest of the EMAs from moving. Therefore,
it needs to be disengaged from the system.

Table 3: FSP Description of EMA

FSP Notation

1 : EMA = (recLoad→ performLoad→ (allLoadsCompleted→ EMA

2 : | jam→ block→ Jammed)),

3 : Jammed = (recLoad→ Jammed

4 : | disengage→ unblock→ Disengaged),

5 : Disengaged = (recLoad, allLoadsCompleted, timeout → Disen-
gaged).

In this research it is assumed that the design is described
by a composition expression. In the context of system de-
sign engineering, the term composition is similar as coupled
model. Coupled model, defines how to couple several com-
ponent models together to form a new model, similarly, com-
position groups together individual state machines. Such an
expression is called a parallel composition, denoted by “‖”.
The “‖” is a binary operator that accepts two LTSs as an in-
put argument. In the joint behavior of the two LTSs, the
transition can be performed by any of the LTS if the action
that labels the transition is not shared with the other LTS.
Shared actions have to be performed concurrently. Table 4
depicts the FSP of the joint behavior of EMA and controller.

The composed LTS model of the two subsystems consists of
161 states and 62 transitions. The shared action between the
two models is the <sendLoad> action from the controller
and the <recLoad> action from the EMA, therefore, these
two are required to be performed synchronously. In order to
change action labels of an LTS, the relabeling operator “/”
is used, e.g., { recLoad / sendLoad }.

Table 4: Parallel Composition of EMA (Table 3) and Con-
troller (Table 2)

FSP Notation

1 : ‖ Leg = (EMA ‖ Controller) / { recLoad / sendLoad }.

As a result, the composed model consists of the following
actions:
{{allLoadsCompleted, block, disengage},

getLoad[1..4], getShaftPosition[0..4],
{jam,missionComplete,performLoad,
recLoad,timeout,unblock}}

As described, composed LTSs interact by synchronizing on
common actions shared in their FSP models with interleav-
ing of the remaining actions. Also, it is important to note
that the parallel composition operator enables both associa-
tive and commutative composition; therefore the order of
LTS models that are composed together is insignificant, e.g.,
‖Leg=(Controller ‖ EMA). Table 5 presents some of the

Table 5: Leg Subsystem: Two Possible Transitions

EMA: Nominal Mode EMA: Failure Mode

1 : ctrl getLoad.2 1 : ctrl getLoad.2

2 : EMA recLoad 2 : EMA recLoad

3 : EMA performLoad 3 : EMA performLoad

4 : LoadsCompleted 3 : EMA jam

5 : ShaftPositionIs.1 4 : Shaft block

6 : EMA recLoad 5 : EMA Disengage

7 : EMA performLoad 6 : Shaft Unblock

8 : LoadsCompleted 7 : LoadsCompleted

9 : getShaftPosition.2 8 : ShaftPositionIs.1

10 : EMA performLoad 9 : timeout

11 : missionComplete –

state transitions (or sequence of actions) produced by the
composed model. Two possible executions under the EMA’s
nominal and faulty conditions are considered. In nominal
mode, the EMA receives a request from a controller to pro-
vide two unit loads. At each time step, EMA performs one
unit load and repeats until the output shaft reaches the re-
quired position of two that is when the <missionComplete>
actions is performed. In the failed mode, initial actions are
the same as nominal mode until an EMA jams. The jammed
EMA blocks the rest of the system from moving until it is
disengaged. The process is followed by the <Unblock> ac-
tion which unblocks the shaft allowing the rest of the system

4 CASE STUDY 13

to be freed. By this time, the EMA has provided one unit
load before being disconnected from the rest of the system.
Since, the <Sha f tPositionIS> shows the current position of
the shaft being one instead of two, the EMA is required to
perform one more unit of load. However, the disengaged
EMA is incapable of doing so resulting in a <timeout>. The
<timeout> occurs only when there are no EMAs to perform
the required load.

So far, we provided the basis for decomposing and mod-
eling the system based on the modular description of the de-
sign components and subsystems. Next, the process of ex-
pressing the desired safety properties in terms of a state ma-
chine or LTS is described. The advantage is that both the
design and its requirements are modeled in a syntactically
uniform fashion. Therefore, the design can be compared to
the requirements to determine whether its behavior conforms
to that of the specifications.

In the context of this work, the properties of a system
are modeled as safety LTSs. A safety LTS contains no failure
states. In modeling and reasoning about complex systems, it
is more efficient to define safety properties by directly declar-
ing the desired behavior of a system instead of stating the
characteristics of a faulty behavior. In a Finite State Process
(FSP), the definition of properties is distinguished from those
of subsystem and component behaviors with the keyword
property. For example, the following model is constructed to
state the safety requirements of the quad-redundant EMAs.

Table 6: FSP Description of The Safety Requirement

FSP Notation

1 : property

2 : SafeOpn = (commandLoad[t:L]→ missionComplete→ SafeOpn).

The <safeOpn> property of Table 6, expresses the de-
sired system behavior that any <commandLoad[1..4]> ac-
tion eventually shall be followed by a <missionComplete>
action. As it is depicted in Fig. 12, while translating the

0 1 2 3 4-1

commandLoad[4]

commandLoad[3]

commandLoad[2]

commandLoad[1]

missionComplete

missionComplete

missionComplete

missionComplete

missionComplete

commandLoad[1..4]

commandLoad[1..4]

commandLoad[1..4]

commandLoad[1..4]

Fig. 12: The LTS Model of the Safety Operation Property.

FSP notation of a property, the verification algorithm auto-
matically generates the transitions that violate the properties
within the LTS model. For example, at state {0}, the occur-
rence of <missionComplete> without previously performed
<commandLoad> leads to a failure state. Another example
is the consecutive execution of the <commandLoad>. The
LTS of Fig. 12 is recognized as an error LTS with the failure
state of -1.

In the case of the <Sa f eOpn> property, the verification
algorithm had detected a property violation. Table. 7 repre-
sents the sequence of actions that lead to the failure state.

Table 7: Trace To Property Violation

1 : shaft.reset 15 : shaft.2.unblock

2 : commandLoad.2 16 : d.3.jam

3 : legsRecLoad 17 : shaft.3.block

4 : shaft.1.load 18 : leg.3.disengage

5 : d.1.jam 19 : shaft.3.unblock

6 : shaft.1.block 20 : d.4.jam

7 : shaft.2.load 21 : shaft.4.block

8 : shaft.3.load 22 : leg.4.disengage

9 : shaft.4.load 23 : shaft.4.unblock

10 : leg.1.disengage 24 : allLoadsCompleted

11 : shaft.1.unblock 25 : shaft.positionIs.1

12 : d.2.jam 26 : timeout

13 : shaft.2.block 27 : shaft.reset

14 : leg.2.disengage 28 : commandLoad.1

After resetting the output shaft, the command unit sends
a request for two units of load. Later in the process, the diag-
nostics subsystem identifies a jammed actuator causing shaft
#1 to be blocked. As it is presented in line #25, the overall
position of the output shaft connected to the Flight Control
Surface (FCS) is reported one. After the load provided by
shaft #1, the loads from other three shafts are not performed
due to the fact that shaft #1 has blocked the system. After dis-
engaging leg #1, the system returns to the operational mode.
However, at this point the diagnostic block detects that the
remaining actuators have also failed causing a <timeout> to
occur. The second load command is sent by the controller
to reach the required position of two, yet, sending the sec-
ond load command before a <missionComplete> results in
violation of <Sa f eOpn> property.

4.3 Design Topology and its Effect on Failure Propaga-
tion

In order to model the propagation characteristics of fail-
ures in complex engineered systems, two failure propagation
models are used. The quad-redundant Electro Mechanical
Actuator (EMA) is analyzed for its resilience to propagation
by evaluating the design for length of time to full propaga-
tion (NLDS) and for the breadth of propagation (SFF) when

4 CASE STUDY 14

Fig. 13: Time Evolution of Faulty Components’ Population Size (Origin of Failure: (Left Picture: EMA Engine) and (Right
Picture: Sensor)).

Fig. 14: Time Evolution of Faulty Components Density for The quad-redundant EMA design (Origin of Failure: (Left
Picture: EMA Engine) and (Right Picture: Sensor)).

a failure is introduced.

In order to gauge the resilience to propagation by each
designed system, an initial set of components in a state of
failure is defined so the failure can propagate along the un-
derlying graph structure from these components. For the
sake of comparison, each design has been compared twice,
once with an initially failed minimally connected component
and once with a highly connected component. Specifically,
a minimally connected temperature sensor and a highly con-
nected EMA engine are selected as the failure origins.

As can be seen in Fig. 13 the population of the infected
components with respect to time is different for the two ex-
periments. In the left hand side of Fig. 13, the defect at
the origin of failure in EMA engine caused a drastic in-
crease in infected population size. This occurred near the
second time step for quad-redundant EMA design. In this
case, the failure is able to spread much more quickly because
the EMA engine node is the most highly connected com-
ponent in this design. The result confirms the expectation
that a more highly connected component propagating failure
to neighboring component more quickly, while a minimally
connected component, such as a sensor, results in slower fail-

ure propagation.
The NLDS model proves that more highly connected

components spread a failure much faster. Therefore, nodal
hubs, or very modular areas of a design are more detrimental
to the rapid spread of a failure.

Unlike the NLDS model, the SFF epidemic spreading
model is based on the idea that failure propagations can be
stopped by fixing the faulty components. The SFF model
operates by the spread of a failure from an initially failed
component just as the NLDS model does. However, the SFF
model is not a probabilistic model that is solely dependent on
the architecture of an adjacency matrix as the NLDS model
is. Instead, the SFF model requires a time step dependent
simulation of the spread of a component failure. As with the
NLDS model, a time step is regarded as sufficiently close to
zero so that only the current population of failed components
transmit a failure.

Each “faulty” component has an opportunity to infect a
neighboring susceptible component in the next time step. In
one time step, a component infects its connected neighbors
according to a uniform failure probability. The simulation
run for the SFF model was conducted at λ = 10%. After

4 CASE STUDY 15

a component has had an opportunity to infect its neighbors,
the infected component would then be fixed in the conceptual
design to resist the same failure according to the probability
of failure removal µ = 10%. A repaired component is either
considered faulty without the ability to transfer the failure
to the neighboring components or is susceptible but resis-
tant to the failures of its connected neighbors. Therefore, the
cascading failure could be stopped with the provision that
enough faulty components become repaired in the design be-
fore they are able to fully propagate the failure. That is, prop-
agations can be halted if all transmission routes are blocked
by repaired components.

The same designs were used with the epidemic spread-
ing model as were used with the NLDS model. Additionally,
the same initial failure conditions were used. A temperature
sensor was initially failed as a minimally connected compo-
nent. An EMA engine node was then initially used to prop-
agate the failure as a highly connected component. Fig. 14
shows the epidemic spreading graphs.

In the SFF algorithm, the failure propagation is based on
connections, therefore the results must be reported in terms
of faulty component density. As it is depicted in Fig. 14,
each colored data set is representative of a set of components
with the same degree e.g. red colored data set represents
62 components in the system design with only three connec-
tions. Therefore, each set of components has a failure den-
sity ranging from 0 to 1; 0 representing that no components
of that degree are infected and a 1 representing every compo-
nent of that degree being infected. Fixed components are not
considered faulty. Consequently, a plot of faulty component
density fluctuates intermittently between 0 and 1, however
eventually settles at 0 as all failed components are fixed in
the system design. In the legend of each graph, a k value
is given which is indicative of the degree of the components
followed by the number of components within that data set.
When a minimally connected component, such as a temper-
ature sensor, is chosen as a failure origin, it is compared to
an initially infected highly connected component, such as an
EMA engine, the cascade spreads much slower, as expected.
Three most representative sets in each figure is chosen and
drawn.

The left hand side of Fig. 14, illustrates the simulation
results for an initially failed, highly connected EMA en-
gine. The plots present more immediate increases in infec-
tion density, regardless of component degree when a highly
connected component is failed initially. However, once the
initial infection has passed, and the failure density begins to
subside, the infection density is reduced. This is because a
stopped failure gets repaired probabilistically according to a
uniform rate.

However, it is possible to extend the LTS model of
<Sa f eOpn> to constrain the number of failures in a way
that the system never reaches the catastrophic failure. For ex-
ample, in the case of quad-redundant EMAs, the system can
tolerate up to three failures without reaching the catastrophic
failure condition. This way, system designers can impose a
new requirement of the form “if up to N number of EMAs fail
then the catastrophic failure condition shall not occur.”. To

achieve this, the following generic (or parameterized) safety
property with the following constants and a range definitions
is used:

const N =4 \\ number of faulty EMAs 1

const M =4 \\ number of EMAs
range EMAs = 1..M \\ EMA identities

In order to prevent the system from reaching the catas-
trophic event of <timeout>, it is essential to complete
the mission and provide the required loads based on
the command signal. Therefore, the events of interest
are the sent command signal, the jammed actuators, and
the completion of the mission. Consequently, as de-
picted in the LTS model of Fig. 15 <Fault Tolerance>
property contains {<commandLoad[1..4],d[1..4].jam, and
missionComplete>} actions. The property of Table 8, main-
tains a count of faulty EMAs with the variable f . To model
the fact that every command signal must be followed by a
<missioncomplete>, the processes in line #3 and 8 are re-
quired to constrain the number of faulty EMAs (f) to a num-
ber defined by the parameter of the property (N).

Table 8: FSP Model of Fault Tolerance Property

1 : property

2 : Fault Tolerance(N=4) = Jammed[0],

3 : Jammed[f : 0..M] =(when(f ≤ N)commandLoad[L] → Complete-
Mission[f]

4 : |when (f>N) commandLoad[L]→ Jammed[f]

5 : |d[EMAs].jam→ Jammed[f+1]

6 : |missionComplete→ Jammed[f]),

7 : CompleteMission[f:0..M] = (missionComplete→ Jammed[f]

8 : |when (f<N) d[EMAs].jam→ CompleteMission[f+1]

9 : |when (f==N) d[EMAs].jam→ Jammed[f+1]).

As can be seen in the compositional model of Table 9,
the <Fault Tolerance> property is predefined with N = 2.
Therefore, permitting only two out of four EMAs to fail dur-
ing the system operation. Safety analysis using the LTS an-
alyzer verifies that the safety property is satisfied. The com-
posed LTS model of Table 9 consists of 242 states, however
the verification algorithm reduced the number of states to
10733. The same result is obtained with three EMAs failing.

However, when the property is instantiated allowing four

Table 9: Compositional Model Of The System And Safety
Property

1 : ‖Extend CommandUnit=(Fault Tolerance(2)‖CommandUnit)

2 : /shaft.reset/resetShaft.

3 : ‖Check Property =(Extend CommandUnit‖RedundantSystem).

1by default is set to 4 but it can be redefined during the instantiation
process.

6 CONCLUSION AND FUTURE WORK 16

0 1 2 3 4-1 5 6 7

d[1..4].jam

missionComplete

d[1..4].jam

missionComplete

d[1..4].jam

missionComplete

d[1..4].jam

commandLoad[1..4],
missionComplete commandLoad[1..4],

missionComplete

commandLoad[1..4]

commandLoad[1..4]

commandLoad[1..4]

d[1..4].jamd[1..4].jam

d[1..4].jam

missionComplete
d[1..4].jam

commandLoad[1..4]

missionComplete

commandLoad[1..4] missionComplete

commandLoad[1..4]

Fig. 15: LTS Model Of The Fault Tolerance Property.

EMAs to fail, the safety analysis verifies that the property is
violated and a failure propagation path similar to the one in
Table 7 is produced. Therefore, the generic safety property
modeled in Table 8 verifies that the system never reaches the
failure condition of total loss if and only if N ≤ M-1 where
N is the number of faulty EMAs and M is the total number
of EMAs.

5 Discussion
From the result of case study: the characterization of the

system architecture by its subsystems and components, the
FSP annotation of the failure behavior of each of them, and
the system level safety analysis based on components’ inter-
action lead to achieving a manageable verification procedure.
As compositional reasoning approach significantly reduces
the number of states to be explored, exhaustive checking of
the entire state space is made feasible. This is especially im-
portant where the exhaustive simulation is too expensive and
non-exhaustive simulation can miss the critical safety viola-
tion.

A couple of telling conclusions can be drawn from the
result of the case study. Firstly, the NLDS models showed
that connectivity plays a major role in how fast an epidemic
spreads. A few components with a higher degree increase the
speed of infection throughout a system. The NLDS model
adequately identified those design components that are criti-
cal to a system and whose failure would cause shutdown of
the whole system, as can be seen by the differences in fail-
ure origins. Conversely, the SFF model can be used to com-
pare different conceptual design architectures for resilience
to propagation. This can be done by analyzing how a failure

propagates through a system and then fixing failed compo-
nents to inhibit the propagation of the failure. Both models
provide insight into design architectures that can be more re-
silient to failures.

Furthermore, this type of safety analysis are very helpful
during the early stages of the design because they provide
the required information to implement the appropriate level
of component redundancies. It is important to note that, even
though the application of component redundancy improves
system reliability, it also adds cost, weight, size, and higher
power consumption.

6 Conclusion and Future Work
In this research, resilience is addressed from different

viewpoints and a framework is presented that jointly enables
the design of resilient systems. Resilience design is consid-
ered an ability to design a system that is able to predict and
prevent failure through exhaustive verification and by using
automated assume-guarantee reasoning technique. Secondly,
resilience design is characterized as part of the physical in-
frastructure of the design that is robust and has the ability
to survive disruptions. Lastly, through the resilience design
approach, system is designed to recover from disruptions by
attempting to return to the pre-disruption state.

In addition, this research clarifies the difference between
safety and resilience. Safety is characterized as an emerging
behavior of the system that results from interactions among
system components and subsystems, including software and
humans. This is where designing a resilient system plays
a crucial role in developing a proactive design practice for
exploiting insights on faults in complex systems. In this con-
text, system failure is viewed as an inability of the system to

REFERENCES 17

adapt and recover from disruptions, rather than components’
and subsystems’ breakdown or malfunction.

Importantly, this work presented a framework for assess-
ing and improving the resilience of complex systems during
the early design process. The framework comprises failure
prediction and prevention techniques, analysis of the effect
of design topology on the propagation of failures, and pro-
vides methodologies for system recovery from disruptions.
The reason for these layers of analysis is to provide the sys-
tem designers a set of tools to support them to integrate safety
and resilience where needed.

This work presented a compositional verification ap-
proach and its novel application in the area of system de-
sign and verification through pre-verification of system com-
ponents and compositional reasoning. The aim of composi-
tional reasoning is to improve scalability of the design verifi-
cation problem by decomposing the original verification task
into subproblems. Also, two propagation models, a Non-
Linear Dynamical System (NLDS) model and an epidemic
spreading model, are studied to be used during the early de-
sign of complex systems. From the two models, equations
are provided to model the propagation characteristics of fail-
ures in complex engineered systems. The NLDS propaga-
tion model provides an indication for the length of time to
full propagation according to a graph layout. The SFF epi-
demic spreading model provides an indication of the extent
of a cascade according to a graph layout.

Future work will extend the existing verification tech-
nique to include systems that exhibit probabilistic behavior.
The approach will be based on the multi-objective proba-
bilistic model checking. Properties of these models are for-
mally defined as probabilistic safety properties. Further-
more, the behavioral modeling and the automata learning al-
gorithms require modification to support non-deterministic
systems. It is also necessary to explore symbolic implemen-
tation of the algorithms for increased scalability.

In addition this work presented a new technique for anal-
ysis of failure behavior for systems, based on design archi-
tecture. The proposed technique enables system designers
to assess failure behavior from the analysis of components
of the system, however, these algorithms have to expanded
so they can assess the probability of system-level failures
based on failures of components. This approach should be
connected to a probabilistic model checker, which will allow
verification of the failure models.

References
[1] Chase, K. W., and Parkinson, A. R., 1991. “A survey of

research in the application of tolerance analysis to the
design of mechanical assemblies”. Research in Engi-
neering design, 3(1), pp. 23–37.

[2] Martin, M. V., and Ishii, K., 2002. “Design for variety:
developing standardized and modularized product plat-
form architectures”. Research in Engineering Design,
13(4), pp. 213–235.

[3] Ameri, F., Summers, J. D., Mocko, G. M., and Porter,
M., 2008. “Engineering design complexity: an inves-

tigation of methods and measures”. Research in Engi-
neering Design, 19(2-3), pp. 161–179.

[4] Pariès, J., 2006. “Complexity, emergence, resilience”.
Hollnagel, E., Woods, dd, Leveson, N.(editors). Re-
silience Engineering. Concepts and Precepts. Ashgate.

[5] Bedau, M. A., 2002. “Downward causation and the
autonomy of weak emergence”. Principia, 6(1), pp. 5–
50.

[6] Chalmers, D. J., 2002. “Varieties of emergence”. De-
partment of Philosophy, University of Arizona, USA,
Tech. rep./preprint.

[7] Seager, W., 2012. “Emergence and supervenience”. In
Natural Fabrications. Springer, pp. 121–154.

[8] Pavard, B., Dugdale, J., Saoud, N. B.-B., Darcy, S.,
and Salembier, P., 2006. “Design of robust socio-
technical systems”. Resilience engineering, Juan les
Pins, France.

[9] Leveson, N. G., 2002. “System safety engineering:
Back to the future”. Massachusetts Institute of Tech-
nology.

[10] Leveson, N., 2004. “A new accident model for engi-
neering safer systems”. Safety science, 42(4), pp. 237–
270.

[11] Hollnagel, E., Woods, D. D., and Leveson, N., 2007.
Resilience engineering: Concepts and precepts. Ash-
gate Publishing, Ltd.

[12] Čepin, M., 2011. “Reliability block diagram”. In
Assessment of Power System Reliability. Springer,
pp. 119–123.

[13] Do, D., 1980. “Procedure for performing a failure
mode, effects and criticality analysis”. Department of
Defense, Washington DC.

[14] Stone, R. B., Tumer, I. Y., and Van Wie, M., 2005. “The
Function-Failure Design Method”. Journal of Me-
chanical Design(Transactions of the ASME), 127(3),
pp. 397–407.

[15] Tumer, I. Y., Stone, R. B., and Bell, D. G., 2003.
“Requirements for a Failure Mode Taxonomy for Use
in Conceptual Design”. In Proceedings of the In-
ternational Conference on Engineering Design, ICED,
Vol. 3, Paper 1612, Stockholm,, Sweden.

[16] Krus, D., and Lough, K. G., 2007. “Applying Function-
Based Failure Propagation in Conceptual Design”.
ASME.

[17] Lough, K. G., Stone, R. B., and Tumer, I., 2006. “The
Risk in Early Design (RED) Method: Likelihood and
Consequence Formulations”. In 2006 ASME Interna-
tional Design Engineering Technical Conferences and
Computers and Information In Engineering Confer-
ence, DETC2006, September 10, 2006-September 13.

[18] Devendorf, E., and Lewis, K., 2008. “Planning on mis-
takes: An approach to incorporate error checking into
the design process”. In ASME 2008 International De-
sign Engineering Technical Conferences and Comput-
ers and Information in Engineering Conference, Amer-
ican Society of Mechanical Engineers, pp. 273–284.

[19] Kurtoglu, T., Tumer, I. Y., and Jensen, D. C., 2010. “A
Functional Failure Reasoning Methodology for Evalu-

REFERENCES 18

ation of Conceptual System Architectures”. Research
in Engineering Design, 21(4), pp. 209–234.

[20] Lee, W.-S., Grosh, D., Tillman, F. A., and Lie, C. H.,
1985. “Fault Tree Analysis, Methods, and Applica-
tions? A Review”. Reliability, IEEE Transactions on,
34(3), pp. 194–203.

[21] Ericson, C. A., 2005. “Event tree analysis”. Hazard
Analysis Techniques for System Safety, pp. 223–234.

[22] Greenfield, M. A., 2001. “Nasa’s use of quantitative
risk assessment for safety upgrades”. Space safety, res-
cue and quality 1999-2000, pp. 153–159.

[23] Stamatelatos, M., Dezfuli, H., Apostolakis, G., Ever-
line, C., Guarro, S., Mathias, D., Mosleh, A., Paulos,
T., Riha, D., Smith, C., et al., 2011. “Probabilistic
risk assessment procedures guide for nasa managers
and practitioners”.

[24] Venkatasubramanian, V., Zhao, J., and Viswanathan, S.,
2000. “Intelligent systems for hazop analysis of com-
plex process plants”. Computers & Chemical Engineer-
ing, 24(9), pp. 2291–2302.

[25] Hollnagel, E., 2004. Barriers and accident prevention.
Ashgate Publishing, Ltd.

[26] Johnson, C. W., and Holloway, C. M., 2003. “The esa/-
nasa soho mission interruption: Using the stamp acci-
dent analysis technique for a software related mishap”.
Software: Practice and Experience, 33(12), pp. 1177–
1198.

[27] Berezin, S., Campos, S., and Clarke, E. M., 1998. Com-
positional reasoning in model checking. Springer.

[28] Alur, R., Madhusudan, P., and Nam, W., 2005. “Sym-
bolic Compositional Verification By Learning Assump-
tions”. In Computer Aided Verification, Springer,
pp. 548–562.

[29] Cobleigh, J. M., Giannakopoulou, D., and Păsăreanu,
C. S., 2003. “Learning Assumptions For Compositional
Verification”. In Tools and Algorithms for the Con-
struction and Analysis of Systems. Springer, pp. 331–
346.

[30] Giannakopoulou, D., Păsăreanu, C. S., and Barringer,
H., 2005. “Component Verification With Automati-
cally Generated Assumptions”. Automated Software
Engineering, 12(3), pp. 297–320.

[31] Nam, W., and Alur, R., 2006. “Learning-based Sym-
bolic Assume-guarantee Reasoning With Automatic
decomposition”. In Automated Technology for Verifi-
cation and Analysis. Springer, pp. 170–185.

[32] Chaki, S., Clarke, E., Sinha, N., and Thati, P., 2005.
“Automated Assume-guarantee Reasoning For Simula-
tion Conformance”. In Computer Aided Verification,
Springer, pp. 534–547.

[33] Mehrpouyan, H., Giannakopoulou, D., Brat, G., Tumer,
I. Y., and Hoyle, C., 2013. “Complex system design
verification using assumption generation”. In ASME
2013 International Design Engineering Technical Con-
ferences and Computers and Information in Engineer-
ing Conference, American Society of Mechanical En-
gineers.

[34] Ullman, D. G., 2002. “Toward the ideal mechanical

engineering design support system”. Research in Engi-
neering Design, 13(2), pp. 55–64.

[35] Booch, G., Rumbaugh, J., and Jacobson, I., 1999. The
unified modeling language user guide. Pearson Educa-
tion India.

[36] Rational DOORS.
[37] Geensoft, R. Effective solution for managing require-

ments traceability and impact analysis across hardware
and software projects lifecycle.

[38] Friedenthal, S., Moore, A., and Steiner, R., 2011. A
practical guide to SysML: the systems modeling lan-
guage. Elsevier.

[39] Blaise, J.-C., Lhoste, P., and Ciccotelli, J., 2003. “For-
malisation of normative knowledge for safe design”.
Safety Science, 41(2), pp. 241–261.

[40] Madni, A., 2007. “Designing for resilience”. ISTI Lec-
ture Notes on Advanced Topics in Systems Engineering.

[41] Henzinger, T., and Sifakis, J., 2006. “The Embedded
Systems Design Challenge”. pp. 1–15.

[42] Pnueli, A., 1977. “The Temporal Logic of Programs”.
In Foundations of Computer Science, 1977., 18th An-
nual Symposium on, IEEE, pp. 46–57.

[43] Giannakopoulou, D., Pasareanu, C. S., and Barringer,
H., 2002. “Assumption Generation for Software Com-
ponent Verification”. In Automated Software Engineer-
ing, 2002. Proceedings. ASE 2002. 17th IEEE Interna-
tional Conference on, IEEE, pp. 3–12.

[44] Cobleigh, J., Giannakopoulou, D., and Păsăreanu, C.,
2003. “Learning Assumptions for Compositional Ver-
ification”. Tools and Algorithms for the Construction
and Analysis of Systems, pp. 331–346.

[45] Cheung, S. C., and Kramer, J., 1999. “Checking Safety
Properties Using Compositional Reachability Analy-
sis”. ACM Transactions on Software Engineering and
Methodology (TOSEM), 8(1), pp. 49–78.

[46] Henzinger, T. A., Qadeer, S., and Rajamani, S. K.,
1998. “You assume, we guarantee: Methodology
and case studies”. In Computer Aided Verification,
Springer, pp. 440–451.

[47] Giannakopoulou, D., Pasareanu, C. S., and Cobleigh,
J. M., 2004. “Assume-guarantee verification of source
code with design-level assumptions”. In Proceedings
of the 26th International Conference on Software Engi-
neering, IEEE Computer Society, pp. 211–220.

[48] Rodrigues, R. W., 2000. “Formalising UML Activity
Diagrams Using Finite State Processes”. In Proc. of
the 3rd Intl. Conf. on the Unified Modeling Language,
York, UK, Citeseer.

[49] Mehrpouyan, H., Haley, B., Dong, A., Tumer, I. Y., and
Hoyle, C., 2013. “Resilient design of complex engi-
neered systems”. In ASME 2013 International Design
Engineering Technical Conferences and Computers
and Information in Engineering Conference, American
Society of Mechanical Engineers, pp. V03AT03A048–
V03AT03A048.

[50] Stone, R., Tumer, I., and Van Wie, M., 2005. “The
Function-failure Design Method”. Journal of Mechan-
ical Design, 127(3), pp. 397–407.

REFERENCES 19

[51] Michelena, N. F., and Papalambros, P. Y., 1997. “A hy-
pergraph framework for optimal model-based decom-
position of design problems”. Computational Opti-
mization and Applications, 8(2), pp. 173–196.

[52] McCulley, C., and Bloebaum, C., 1996. “A genetic tool
for optimal design sequencing in complex engineering
systems”. Structural Optimization, 12(2-3), pp. 186–
201.

[53] Braha, D., and Reich, Y., 2003. “Topological structures
for modeling engineering design processes”. Research
in Engineering Design, 14(4), pp. 185–199.

[54] Palmer, R. S., and Shapiro, V., 1993. “Chain models of
physical behavior for engineering analysis and design”.
Research in Engineering Design, 5(3-4), pp. 161–184.

[55] Harris, T. E., 1974. “Contact interactions on a lattice”.
The Annals of Probability, pp. 969–988.

[56] Marro, J., and Dickman, R., 2005. Nonequilibrium
Phase Transitions in Lattice Models. Cambridge Uni-
versity Press.

[57] Durrett, R., 1999. “Stochastic Spatial Models”. Siam
Review, 41(4), pp. 677–718.

[58] Bodden, D. S., Clements, N. S., Schley, B., and Jen-
ney, G., 2007. “Seeded failure testing and analysis of
an electro-mechanical actuator”. In Aerospace Confer-
ence, 2007 IEEE, IEEE, pp. 1–8.

[59] Aten, M., Towers, G., Whitley, C., Wheeler, P., Clare,
J., and Bradley, K., 2006. “Reliability comparison
of matrix and other converter topologies”. Aerospace
and Electronic Systems, IEEE Transactions on, 42(3),
pp. 867–875.

[60] Raimondi, G., McFarlane, R., Bingham, C., Atallah,
K., Howe, D., Mellor, P., Capewell, R., and Whitley,
C., 1998. “Large electromechanical actuation systems
for flight control surfaces”.

[61] Balaban, E., Saxena, A., Goebel, K., Byington, C.,
Watson, M., Bharadwaj, S., Smith, M., and Amin,
S., 2009. “Experimental Data Collection And Mod-
eling For Nominal And Fault Conditions On Electro-
mechanical Actuators”. In Annual Conference of the
Prognostics and Health Management Society, pp. 1–15.

